Чем отличается генератор от трансформатора - NEVINKA-INFO.RU

Чем отличается генератор от трансформатора

Ответ:Объяснение:Электриический генератор — устройство, в котором неэлектрические виды энергии преобразуются в электрическую энергию. (короче, как Крастер с пом…

Чем отличается генератор от трансформатора

В чем отличие и сходство генератора от трансформатора?

u042du043bu0435u043au0442u0440u0438u0438u0447u0435u0441u043au0438u0439 u0433u0435u043du0435u0440u0430u0442u043eu0440 u2014 u0443u0441u0442u0440u043eu0439u0441u0442u0432u043e, u0432 u043au043eu0442u043eu0440u043eu043c u043du0435u044du043bu0435u043au0442u0440u0438u0447u0435u0441u043au0438u0435 u0432u0438u0434u044b u044du043du0435u0440u0433u0438u0438 u043fu0440u0435u043eu0431u0440u0430u0437u0443u044eu0442u0441u044f u0432 u044du043bu0435u043au0442u0440u0438u0447u0435u0441u043au0443u044e u044du043du0435u0440u0433u0438u044e. (u043au043eu0440u043eu0447u0435, u043au0430u043a u041au0440u0430u0441u0442u0435u0440 u0441 u043fu043eu043cu043eu0449u044cu044e u043au043eu0441u0442u0440u0430 u0441u043cu043eu0433 u0437u0430u0440u044fu0434u0438u0442u044c u0442u0435u043bu0435u0444u043eu043d).

u0422u0440u0430u043du0441u0444u043eu0440u043cu0430u0442u043eu0440 u00a0 u2014 u0441u0442u0430u0442u0438u0447u0435u0441u043au043eu0435 u044du043bu0435u043au0442u0440u043eu043cu0430u0433u043du0438u0442u043du043eu0435 u0443u0441u0442u0440u043eu0439u0441u0442u0432u043e, u0438u043cu0435u044eu0449u0435u0435 u0434u0432u0435 u0438u043bu0438 u0431u043eu043bu0435u0435 u0438u043du0434u0443u043au0442u0438u0432u043du043e u0441u0432u044fu0437u0430u043du043du044bu0435 u043eu0431u043cu043eu0442u043au0438 u043du0430 u043au0430u043au043eu043c-u043bu0438u0431u043e u043cu0430u0433u043du0438u0442u043eu043fu0440u043eu0432u043eu0434u0435 u0438 u043fu0440u0435u0434u043du0430u0437u043du0430u0447u0435u043du043du043eu0435 u0434u043bu044f u043fu0440u0435u043eu0431u0440u0430u0437u043eu0432u0430u043du0438u044f u043fu043eu0441u0440u0435u0434u0441u0442u0432u043eu043c u044du043bu0435u043au0442u0440u043eu043cu0430u0433u043du0438u0442u043du043eu0439 u0438u043du0434u0443u043au0446u0438u0438 u043eu0434u043du043eu0439 u0438u043bu0438 u043du0435u0441u043au043eu043bu044cu043au0438u0445 u0441u0438u0441u0442u0435u043c (u043du0430u043fu0440u044fu0436u0435u043du0438u0439) u043fu0435u0440u0435u043cu0435u043du043du043eu0433u043e u0442u043eu043au0430 u0432 u043eu0434u043du0443 u0438u043bu0438 u043du0435u0441u043au043eu043bu044cu043au043e u0434u0440u0443u0433u0438u0445 u0441u0438u0441u0442u0435u043c (u043du0430u043fu0440u044fu0436u0435u043du0438u0439), u0431u0435u0437 u0438u0437u043cu0435u043du0435u043du0438u044f u0447u0430u0441u0442u043eu0442u044b.

u041au043eu0440u043eu0447u0435 u0433u043eu0432u043eu0440u044f, u0438u0437 u044du0442u0438u0445 u0434u0432u0443u0445 u043fu0440u0438u0431u043eu0440u043eu0432 u043cu043eu0436u043du043e u043fu043eu043bu0443u0447u0438u0442u044c u044du043bu0435u043au0442u0440u0438u0447u0435u0441u0442u0432u043e, u043du043e u0433u0435u043du0435u0440u0430u0442u043eu0440 u0435u0451 u043fu0440u0435u043eu0431u0440u0430u0437u0443u0435u0442 u0438u0437 u043du0435u044du043bu0435u043au0442u0440u0438u0447u0435u0441u043au043eu0439, u0430 u0442u0440u0430u043du0441u0444u043eu0440u043cu0430u0442u043eu0440 u043fu0435u0440u0435u0434u0430u0451u0442 u044du043du0435u0440u0433u0438u044e u043fu0435u0440u0435u043cu0435u043du043du043eu0433u043e u0442u043eu043au0430 u043eu0434u043du043eu0433u043e u043au043eu043du0442u0443u0440u0430 u043a u0434u0440u0443u0433u043eu043cu0443 u0441u043fu043eu0441u043eu0431u043eu043c u044du043bu0435u043au0442u0440u043eu043cu0430u0433u043du0438u0442u043du043eu0433u043e u0432u0437u0430u0438u043cu043eu0434u0435u0439u0441u0442u0432u0438u044f. «>]» data-test=»answer-box-list»>

«Генератор. Трансформатор. Применение трансформатора»

«Генератор. Трансформатор. Применение трансформатора»

Так как действие трансформатора основано на явлении электромагнитной индукции, следовательно, перед объяснением нового материала необходимо повторить следующие вопросы:

Объяснение нового материала.

Генератор переменного тока.

Генератор тока – устройство, преобразующее механическую энергию в электрическую.

Основные части генератора:

Индуктор – устройство, создающее МП. Якорь – обмотка, в которой индуцируется ЭДС. Кольца со щетками – устройство, которым снимают с вращающихся частей индукционный ток или подают ток питания электромагнитом.

ЭДС, индуцируемая в последовательно соединенных витках, будет складываться из суммы ЭДС в каждом из них, поэтому обмотка якоря состоит из множества витков.

Генератор состоит из неподвижной части — статора и подвижной части — ротора. Обычно на роторе располагаются электромагниты с полюсами N и S. Их обмотка, называемая обмоткой возбуждения, питается через кольца и щетки от источника постоянного тока. В пазах статора, собранного из стальных листов, находятся проводники обмотки статора. Они соединены друг с другом последовательно поочередно с передней и с задней сторон статора.

Для технических целей применяется переменный ток синусоидальной формы с частотой 50 Гц, для этого ротор должен вращаться с частотой 50 об/с. Чтобы уменьшить частоту вращения, увеличивают число пар полюсов индуктора. н = nf, n – число пар полюсов, f — частота вращения ротора.

Впервые трансформаторы были использованы в 1878 г. русским учёным П. Н. Яблочковым для питания изобретённых им »электрических свечей» – нового в то время источника света. Идея была развита сотрудником Московского университета , сконструировавшим усовершенствованный трансформатор. (Демонстрация разборного универсального трансформатора).

С помощью разборного универсального трансформатора рассматриваем устройство трансформатора.

Трансформатор состоит из замкнутого сердечника, на который надеты две (иногда и более) катушки с проволочными обмотками. Одну из обмоток, называемую первичной, подключают к источнику переменного напряжения. Вторую обмотку, к которой присоединяют «нагрузку», то есть приборы и устройства, потребляющие электроэнергию, называют вторичной.

Зарисовать в тетрадь схему устройства трансформатора, его условное обозначение (планшет)

Действие трансформатора основано на явлении электромагнитной индукции. При прохождении переменного тока по первичной обмотке в сердечнике появляется переменный магнитный поток, который возбуждает ЭДС индукции в каждой обмотке. Сердечник из трансформаторной стали концентрирует магнитное поле, так, что магнитный поток существует только внутри сердечника и одинаков во всех его сечениях.

В первичной обмотке, имеющей n1 витков, полная ЭДС индукции е1 равна n1е.

Во вторичной обмотке полная ЭДС е2 равна n2е, следовательно

Обычно активное сопротивление обмоток трансформатора мало, и им можно пренебречь. В этом случае модуль напряжения на зажимах катушки приблизительно равен ЭДС индукции, значит:

,

Мгновенные значения ЭДС е1 и е2 изменяются синфазно (одновременно достигают максимума и одновременно проходят через нуль.) Поэтому отношение можно заменить:

Величину k называют коэффициентом трансформации.

При k > 1, — трансформатор – понижающий. При k

Генераторы, электродвигатели и трансформаторы

Плененное электричество

Если паровые котлы и механические двигатели к ним сначала были придуманы инженерами и изобретателями, а физики после этого помогли их значительно усовершенствовать, то в области электрических машин все обстояло наоборот.

Здесь открытия ученых — ив первую очередь Фарадея — послужили толчком для изобретательской фантазии инженеров, которые теперь с полным правом могли называть себя электриками и энергетиками…

В технике основными устройствами, использующими явление электромагнитной индукции, являются генераторы электрического тока, электродвигатели и трансформаторы.

Генератор состоит из статора и ротора. Массивный неподвижный статор представляет собой полый стальной цилиндр, на внутренней стенке которого уложено большое число витков металлического провода, ведущего во внешнюю электрическую цепь — к потребителю электроэнергии. Ротор — цилиндр с пазами, большой подвижный электромагнит, установленный внутри статора.

Под действием пара, газа или падающей воды (на гидростанциях) ротор начинает быстро вращаться — ив проводах статора благодаря электромагнитной индукции возникает электрический ток.

В электродвигателях происходит другое превращение: переменный электрический ток, протекая через провода статора, заставляет ротор вращаться. С помощью механических приспособлений движение ротора можно передать ленте траспортера, эскалатору метро, зубчатым и ременным передачам любого станка на современном заводе.

Огромные генераторы и электродвигатели выпускаются сейчас промышленностью многих стран мира. На советских теплоэлектростанциях монтируются генераторы мощностью до 1 миллиона киловатт! Такие генераторы, как правило, вырабатывают низкое электрическое напряжение, которое обязательно повышают, прежде чем передать электроэнергию от расположенных вдалеке электростанций к городам, где ее нетерпеливо ждут промышленные предприятия и жилые дома.

Здесь уже незаменимыми оказываются такие электрические устройства, как трансформаторы, состоящие из сердечника и двух катушек, в которых разное число витков. Если к катушке с большим числом витков подвести переменный электрический ток большого напряжения, то со стороны катушки с малым числом витков можно «снять» больший ток, но значительно меньшее напряжение. Ведь в электрической сети жилой квартиры лучше иметь напряжение, безопасное для жизни… и спиралей электрических лампочек. Тоненькие вольфрамовые спирали легко перегорают при повышенном напряжении. А свет лампочки, как справедливо заметил Владимир Маяковский, для нас столь же важен, как «хороший стих и букварь».

Машинный зал современной электростанции. Электрогенераторы превращают механическое вращение турбин в электрический ток.

Современники Фарадея — английский физик Джоуль и русский ученый Ленц практически одновременно и независимо друг от друга вывели закон, определяющий тепловое действие электрического тока. Количество теплоты, выделяемой проводником с током, гласит закон Джоуля — Ленца, равно произведению квадрата силы тока, времени его протекания и сопротивления проводника. Но ведь переход в тепло означает, что электричество постепенно теряется и при очень длинных проводах может вообще не дойти до места назначения? Конечно, вероятность такого печального исхода тем выше, чем больше сила электрического тока, чем тоньше и протяженнее провода.

Здесь, как мы знаем, выручает трансформатор: повышая напряжение, он уменьшает силу тока, отправляемого в дальний путь…

Скульптор, создавший статую Фарадея, установленную в Королевском институте в Лондоне, изобразил его держащим в руке историческую катушку с навитыми проводами. Маленькая, но очень важная деталь — с этой катушки началась, как мы видим, вся современная электротехника.

Что такое трансформатор: устройство, принцип работы, схема и назначение

Может быть, кто-то думает, что трансформатор – это что-то среднее между трансформером и терминатором. Данная статья призвана разрушить подобные представления.

Читайте также  Электронный блок управления для генератора

Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

Трансформатор – статическое электромагнитное устройство, предназначенное для преобразования переменного электрического тока одного напряжения и определенной частоты в электрический ток другого напряжения и той же частоты.

Работа любого трансформатора основана на явлении электромагнитной индукции, открытой Фарадеем.

Назначение трансформаторов

Разные виды трансформаторов используются практически во всех схемах питания электрических приборов и при передаче электроэнергии на большие расстояния.

Электростанции вырабатывают ток относительно небольшого напряжения – 220, 380, 660В. Трансформаторы, повышая напряжение до значений порядка тысяч киловольт, позволяют существенно снизить потери при передаче электроэнергии на большие расстояния, а заодно и уменьшить площадь сечения проводов ЛЭП.

Непосредственно перед тем как попасть к потребителю (например, в обычную домашнюю розетку), ток проходит через понижающий трансформатор. Именно так мы получаем привычные нам 220 Вольт.

Самый распространенный вид трансформаторов – силовые трансформаторы. Они предназначены для преобразования напряжения в электрических цепях. Помимо силовых трансформаторов в различных электронных приборах применяются:

  • импульсные трансформаторы;
  • силовые трансформаторы;
  • трансформаторы тока.

Принцип работы трансформатора

Трансформаторы бывают однофазные и многофазные, с одной, двумя или большим количеством обмоток. Рассмотрим схему и принцип работы трансформатора на примере простейшего однофазного трансформатора.

Кстати, в других статьях можно почитать, что такое фаза и ноль в электричестве.

Из чего состоит трансформатор? Во простейшем случае из одного металлического сердечника и двух обмоток. Обмотки электрически не связаны одна с другой и представляют собой изолированные провода.

Одна обмотка (ее называют первичной) подключается к источнику переменного тока. Вторая обмотка, называемая вторичной, подключается к конечному потребителю тока.

Когда трансформатор подключен к источнику переменного тока, в витках его первичной обмотки течет переменный ток величиной I1. При этом образуется магнитный поток Ф, который пронизывает обе обмотки и индуцирует в них ЭДС.

Бывает, что вторичная обмотка не находится под нагрузкой. Такой режимы работы трансформатора называется режимом холостого хода. Соответственно, если вторичная обмотка подключена к какому-либо потребителю, по ней течет ток I2, возникающий под действием ЭДС.

Величина ЭДС, возникающей в обмотках, напрямую зависит от числа витков каждой обмотки. Отношение ЭДС, индуцированных в первичной и вторичной обмотках, называется коэффициентом трансформации и равно отношению количества витков соответствующих обмоток.

Путем подбора числа витков на обмотках можно увеличивать или уменьшать напряжение на потребителе тока с вторичной обмотки.

Идеальный трансформатор

Идеальный трансформатор – трансформатор, в котором отсутствуют потери энергии. В таком трансформаторе энергия тока в первичной обмотке полностью преобразуется сначала в энергию магнитного поля, а далее – в энергию вторичной обмотки.

Конечно, такого трансформатора не существует в природе. Тем не менее, в случае, когда теплопотерями можно пренебречь, в расчетах удобно пользоваться формулой для идеального трансформатора, согласно которой мощности тока в первичной и вторичной обмотках равны.

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Потери энергии в трансформаторе

Коэффициент полезного действия трансформаторов достаточно высок. Тем не менее, в обмотке и сердечнике происходят потери энергии, приводящие к тому, что температура при работе трансформатора повышается. Для трансформаторов небольшой мощности это не представляет проблемы, и все тепло уходит в окружающую среду – используется естественное воздушное охлаждение. Такие трансформаторы называют сухими.

В более мощных трансформаторах воздушного охлаждения оказывается недостаточно, и применяется охлаждение маслом. В этом случае трансформатор помещается в бак с минеральным маслом, через которое тепло передается стенкам бака и рассеивается в окружающую среду. В трансформаторах высоких мощностей дополнительно применяются выхлопные трубы – если масло закипает, образовавшимся газам нужен выход.

Конечно, трансформаторы не так просты, как может показаться на первый взгляд — ведь мы рассмотрели принцип действия трансформатора кратко. Контрольная по электротехнике с задачами на расчет трансформатора внезапно может стать настоящей проблемой. Специальный студенческий сервис всегда готов оказать помощь в решении любых проблем с учебой! Обращайтесь в Zaochnik и учитесь легко!

Чем отличается генератор от трансформатора

§ 11. генератор переменного тока. Трансформаторы

Трансформаторы практически без потерь передают энергию из одной цепи переменного тока в другую.

Электрическую энергию в отличие от других видов энергии можно передавать со сравнительно малыми потерями на большие расстояния. Электроэнергию получают из других видов энергии с помощью специальных устройств: гальванических элементов, топливных элементов, солнечных батарей и др. Самые распространённые источники электроэнергии — генераторы переменного тока, преобразующие механическую энергию в электрическую.

Работа генератора переменного тока основана на явлении электромагнитной индукции: в проводящем контуре, вращающемся в магнитном поле, возникает переменная ЭДС индукции (см. §10). Простейший генератор (см. рис. 11а) представляет собой неподвижный постоянный магнит или электромагнит (статор, 1), в поле которого вращается катушка (ротор, 2). ЭДС индукции соседних витков катушки складываются между собой, и поэтому амплитуда ЭДС индукции всей катушки пропорциональна количеству витков в ней. Контактные кольца (3), присоединённые к катушке ротора и подвижные контакты (щетки, 4) соединяют ЭДС индукции с внешней цепью. Ротор может приводиться в движение турбиной электростанции или двигателем внутреннего сгорания.

Для возникновения ЭДС индукции не имеет значения, вращается ли катушка в неподвижном магнитном поле или катушка неподвижна, а вращается поле, – необходимо лишь их относительное вращение. Так как через подвижные контакты трудно пропустить большую силу тока, часто применяется обращенная схема генератора: электромагнит вращается, а катушка неподвижна.

Трансформатором называют электромагнитное устройство, позволяющее практически без потерь передавать электрическую энергию из одной цепи переменного тока в другую и при этом увеличивать или уменьшать его напряжение в несколько раз. Трансформатор состоит из замкнутого сердечника, сделанного обычно из стальных пластин, на который надеты две катушки (обмотки) – первичная и вторичная (рис. 11б). Работа трансформатора зависит от того, течёт или нет ток во вторичной обмотке.

Пусть ключ на рис. 11б разомкнут (режим холостого хода). В первичной обмотке трансформатора, соединенной с источником переменного тока течёт ток, в результате чего в сердечнике появляется переменный магнитный поток Ф, пронизывающий обе обмотки. Так как Ф одинаков в обеих обмотках трансформатора, то изменение Ф приводит к появлению одинаковой ЭДС индукции в каждом витке первичной и вторичной обмоток. Поэтому амплитуда ЭДС индукции в первичной E 1 и вторичной E 2 обмотках будет пропорционально числу витков в соответствующей обмотке, или , где N 1 и N 2 – число витков в них, соответственно. Падение напряжение на первичной обмотке, как на резисторе, очень мало, по сравнению с E 1 , и поэтому для действующих значений напряжения в первичной U 1 и вторичной U 2 обмотках будет справедливо следующее выражение:

где величину К называют коэффициентом трансформации. При К >1 трансформатор называют понижающим, а при К Если ключ на рис. 11в замкнуть (нагрузить трансформатор), то во вторичной обмотке появится переменный ток. Если считать, что трансформатор передаёт энергию практически без потерь, то мощность, отбираемая трансформатором у источника переменного тока, должна быть приблизительно равна мощности в цепи, подсоединённой ко вторичной обмотке:

Читайте также  Фильтры синуса от генератора

Из (11.2) следует, что, например, увеличивая напряжение во вторичной обмотке, трансформатор во столько же раз уменьшает величину тока в ней, и наоборот.

Вопросы для повторения:

· На каком явлении основана работа генераторов переменного тока?

· Как трансформатор понижает или повышает напряжение?

· Что такое коэффициент трансформации?

Рис. 11.(а) – схема работы генератора переменного тока, на роторе 2 которого показан только один виток катушки; (б) и (в) – работа трансформатора при холостом ходе и нагрузке, соответственно.

Что такое трансформатор

Трансформатор – статическое устройство, имеющее две или более обмотки связанные индуктивно на магнитопроводе, предназначенное для преобразования одной величины напряжение и тока в другое посредством электромагнитной индукции, без изменения частоты.

  1. Немного истории
  2. Конструкция и принцип работы
  3. Режимы работы
  4. Классификации
  5. Силовой
  6. Измерительные
  7. Импульсный
  8. Автотрансформатор
  9. Разделительный
  10. Согласующий
  11. Пик-трансформатор
  12. Сдвоенный дроссель
  13. Сварочный
  14. Расшифровка основных параметров
  15. Цена трансформаторов
  16. Видео: Как проверить исправность трансформатора

Немного истории

Благодаря английскому физику Майклу Фарадею в 1831 году человечество познакомилось с электромагнитной индукцией. Великому учёному не суждено было стать изобретателем трансформатора, поскольку в его опытах фигурировал постоянный ток. Прообразом устройства можно считать необычную индукционную катушку француза Г. Румкорфа, которая была представлена учёному миру в 1848-м.

В 1876 году русский электротехник П. Н. Яблочков запатентовал трансформатор переменного тока с разомкнутым сердечником. Современному виду устройство обязано англичанам братьям Гопкинсон, а также румынами К. Циперановскому и О. Блати. С их помощью конструкция приобрела замкнутый магнитопровод и сохранила схему до наших дней.

Виды магнитопроводов

Конструкция и принцип работы

Обязательными элементами практически любого устройства преобразования напряжения являются изолированные обмотки, формированные из проволоки или ленты. Они располагаются на магнитопроводе, представленном сердечником из ферромагнитного материала. Связь между катушками осуществляется при помощи магнитного потока. В случае работы с высокочастотными токами (100 и более кГц) сердечник отсутствует.

Принцип работы трансформатора

В принципе работы трансформатора сочетаются основные постулаты электромагнетизма и электромагнитной индукции. Его можно рассмотреть на примере простейшего прибора с двумя катушками и стальным сердечником. Подача переменного напряжения на первичную обмотку приводит к возникновение магнитного потока в магнитопроводе, после чего во вторичной и первичной обмотке возникает ЭДС индукции, если подключить нагрузку ко вторичной обмотке то потечёт ток. Частота напряжения на выходе остаётся неизменной, а его величина зависит от соотношения витков катушек.

Трансформаторы бывают повышающие и понижающие, что бы это определить нужно узнать коэффициент трансформации, с его помощью можно узнать какой трансформатор. Если коэффициент меньше 1 то трансформатор повышающий(также это можно определить по значениям если во вторичной обмотке больше чем в первичной то такой повышающий) и наоборот если К>1, то понижающий(если в первичной обмотке меньше витков чем во вторичной).

  • U1 и U2 – напряжение в первичной и вторичной обмотки,
  • N1 и N2 – количество витков в первичной и вторичной обмотке,
  • I1 и I2 – ток в первичной и вторичной обмотки.

Конструкция силового трансформатора:

Режимы работы

Характеристики трансформаторов определяются условиями работы, где ключевая роль отводится сопротивлению нагрузки. За основу берутся следующие режимы:

  1. Холостого хода. Выводы вторичной цепи находятся в разомкнутом состоянии, сопротивление нагрузки приравнивается бесконечности. Измерения тока намагничивания, протекающего в первичной обмотке, даёт возможность подсчитать КПД трансформатора. При помощи этого режима вычисляется коэффициент трансформации, а также потери в сердечнике;
  2. Под нагрузкой (рабочий). Вторичная цепь нагружается определённым сопротивлением. Параметры протекающего по ней тока напрямую связаны с соотношением витков катушек.
  3. Короткого замыкания. Концы вторичной обмотки закорочены, сопротивление нагрузки равно нулю. Режим информирует о потерях, которые вызываются нагревом обмоток, что на профессиональном языке значится «потерями в меди».

Режим короткого замыкания

Информация о поведении трансформатора в различных режимах получаются опытным путём с использованием схем замещения.

Классификации

Трансформаторы классифицируются по ряду параметров, таким как:

  • Назначение. Применяются: для изменения напряжения, измерения тока, защиты электрических цепей, как лабораторные и промежуточные устройства.
  • Способ установки. В зависимости от размещения и мобильности трансформатор может быть: стационарным, переносным, внутренним, внешним, опорным, шинным.
  • Число ступеней. Устройства подразделяются на одноступенчатые и каскадные.
  • Номинальное напряжение. Бывают низко- и высоковольтными.
  • Изоляция обмоток. Наиболее часто используется бумажно-масляная, сухая, компаундная.

Помимо этого, преобразовательные устройства разнятся типами, каждому из которых присуща своя система классификации.

Силовой

Наибольшее распространение получил силовой трансформатор. Приборы с непосредственным преобразованием переменного напряжения, рассчитанные на большую мощность, востребованы различными областями электроэнергетики. Они применяются на линиях электропередач с напряжениями 35–1150 кВ, в городских электросетях, работающих с напряжением 6 и 10 кВ, в обеспечении конечных потребителей напряжением 220/380В. С помощью устройств осуществляется питание всевозможных электроустановок и приборов в диапазоне от долей до сотен тысяч вольт.

Силовой трансформатор

Измерительные

Трансформаторы тока (ТА) понижают ток до необходимых показателей. Схема их работы отличается последовательным включением первичной обмотки и нагрузки. В то же время вторичная обмотка, находящаяся в состоянии, близком к короткому замыканию, используется для подключения измерительных приборов, исполнительных и индикаторных устройств. С помощью ТА осуществляется гальваническая развязка, что позволяет при измерениях отказаться от шунтов.

Высоковольтный ТТ(слева) и низковольтный ТТ(справа)

С помощью трансформаторов напряжения (ТН), тоже самое что и ТА только по напряжению. Помимо преобразования входных параметров, электроаппаратура и её отдельные элементы получают защиту от высокого вольтажа.

Высоковольтный ТН(слева) и низковольтный ТН(справа)

Импульсный

При необходимости преобразования сигналов импульсного характера применяются импульсные трансформаторы (ИТ). Изменяя амплитуду и полярность импульсов, устройства сохраняют их длительность и практически не затрагивают форму.

Автотрансформатор

В автотрансформаторах обмотки составляют одну цепь и взаимодействуют посредством электромагнитной и электрической связи. В отличие от других типов преобразователей, устройства могут содержать всего 3 вывода, позволяющих оперировать с различными напряжениями. Приборы выделяются высоким коэффициентом полезного действия, что особо сказывается при незначительном перепаде входного и выходного напряжения.

Однофазный(слева) и трёхфазный(справа)

Не имея гальванической развязки, представители данного типа повышают риск высоковольтного удара по нагрузке. Обязательным условием работы устройств являются надёжное заземление и низкий коэффициент трансформации. Недостаток компенсируется меньшим расходом материалов при изготовлении, компактностью и весом, стоимостью.

Разделительный

Для разделительных трансформаторов взаимодействие между обмотками исключено. Устройства повышают безопасность электрооборудования при повреждённой изоляции.

Разделительный трансформатор

Согласующий

Согласующие трансформаторы применяются для выравнивания сопротивлений между каскадами схем электроники. Сохраняя форму сигнала, они играют роль гальванической развязки.

Пик-трансформатор

С помощью пик-трансформатора синусоидальное напряжение преобразуется в импульсное. При этом импульсы меняют полярность с каждым полупериодом.

Сдвоенный дроссель

Особенностью сдвоенного дросселя является идентичность обмоток. Взаимная индукция катушек делает его более эффективным, по отношению стандартным дросселям. Устройства используются как входные фильтры в блоках питания, в звуко- и цифровой технике.

Сдвоенный дроссель

Сварочный

Помимо вышеперечисленных, существует понятие сварочные трансформаторы. Специализированные приборы для сварочных работ понижают напряжение бытовой сети при одновременном повышении тока, измеряемого тысячами ампер. Регулировка последнего осуществляется разделением обмоток на сектора, что отражается на индуктивном сопротивлении.

Сварочный трансформатор

Расшифровка основных параметров

Разнообразие в конструкции и широкий диапазон параметров трансформаторов привели к необходимости их маркировки по специальному стандарту. Не имея под рукой технического описания, характеристики устройства можно выяснить по нанесённой на его поверхности информации, выраженной буквенно-цифровым кодом.

Маркировка силовых трансформаторов содержит 4 блока.

Скачать и посмотреть ГОСТ 15150 можно здесь(откроется в новой вкладе в PDF формате): Смотреть файл

Расшифруем первые три блока:

Расшифровка маркировки: 1,2,3 блока

  1. Первая буква «А» прикреплена за автотрансформаторами. При её отсутствии буквы «Т» и «О» соответствуют трёхфазным и однофазным трансформаторам.
  2. Наличие далее буквы «Р» информирует об устройствах с расщеплённой обмоткой.
  3. Третья буква означает охлаждение, масляной естественной системе охлаждения присвоена литера «М». Естественному воздушному охлаждению выделена буква «С», масляное с принудительным обдувом обозначается «Д», с принудительной циркуляцией масла – «Ц». Сочетание «ДЦ» указывает на наличие принудительной циркуляции масла с одновременным воздушным обдувом.
  4. Литерой «Т» помечаются трёхобмоточные преобразователи.
  5. Последний знак характеризует особенности трансформатора:
  • «Н» – РПН(регулировка напряжения под нагрузкой);
  • пробел – переключение без возбуждения;
  • «Г» – грозозащищенный.

Цена трансформаторов

Цена трансформатора варьируется в широких пределах и зависит от множества факторов. Здесь учитывается тип и назначение, мощность и другие электрические параметры. На стоимости устройств отражается сложность производства и используемые материалы. Немаловажное значение играет защита и другие особенности.

Трансформатор известного производителя не может быть дешёвым. Однако покупатель может быть уверен, что приобретённое им устройство полностью соответствует указанным характеристикам, не выйдет из строя при первом включении и гарантированно отработает заложенный ресурс.

Высоковольтные трансформаторы можно оценивать по их мощности, то есть если мощность трансформатора 63 МВт(63000 кВА), то он стоит около 63 млн рублей, но это примерна оценка.

Видео: Как проверить исправность трансформатора

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: