Что такое магнитная система генератора
Генераторы на магнитах, работающие без топлива
28 сентября 2018
Время на чтение:
Всё большую популярность набирают генераторы, которые способны вырабатывать электричество без использования бензина или дизельного топлива, так как они гораздо экономичнее. Также эти устройства не выделяют токсичных веществ и не загрязняют окружающий мир. Генераторы на магнитах, работающие без топлива, применяют не только в домашнем хозяйстве, но и в некоторых отраслях промышленности.
Бестопливные генераторы
Многие государства сейчас делают упор на разработку альтернативных источников энергии, а также на экономию полезных ископаемых. Достигается это благодаря использованию магнитных электрогенераторов. Принцип их работы заключается в элементарных законах физики. Наиболее успешными видами устройств считаются такие:
- Бестопливный генератор на магнитах Адамса. На сегодняшний день является наиболее популярным магнитным двигателем. У него довольно простая конструкция, но при этом очень высокий коэффициент полезного действия.
- Мотор Дудышева. В основе его работы применяется магнитный ток, который видоизменяется в электрический импульс.
- Соленоидальный мотор Дудышева. В его конструкцию включён магнитный ротор. Наибольшую эффективность показывает на малых мощностях.
- Двигатель Минато. КПД устройства составляет 100%. Это достигается благодаря использованию усилителей мощности.
- Мотор Джонсона. Это довольно популярный тип устройств, но в промышленности его не применяют из-за малой мощности.
Большинство видов агрегатов можно успешно применять в разных отраслях промышленности. Это позволит не только экономить на топливе, но и снизить уровень загрязнения окружающей среды.
Прибор Вега и его особенности
Бтг работают по схеме захвата свободной энергии, после чего идёт её преобразование в индукционный ток. Адамс и Бедини посвятили свою жизнь изучению этого физического явления. Приборы можно применять как автономное обеспечение электроснабжением для:
- частных домов;
- фермерских или же лесных угодий;
- судоходства;
- автомобилестроения;
- самолётостроения и космонавтики.
Эффективность бестопливных генераторов на магнитах зачастую проявляется в местах, которые не получается обеспечить топливом, а силы природной энергии недостаточно для полного обеспечения электричеством. Следует понимать, что устройство Адамса не является вечным генератором электричества. При эксплуатации ему необходим периодический ремонт. Также агрегат требует постоянного обслуживания.
Бестопливный генератор на магнитах от производителя «Вега» имеет ряд преимуществ:
- Прибор можно использовать в любых погодных условиях, а также вдали от сетей электроснабжения.
- Топливом является кинетическая энергия.
- Ограничения по производству электричества отсутствуют.
- Полностью безопасен для организма человека и природы.
- Сделать бестопливный генератор можно своими руками.
- Агрегат очень компактный.
- Минимальный срок эксплуатации составляет 20 лет.
Основное преимущество заключается в том, что не нужно самостоятельно придавать движение валу. Весь процесс автоматизирован, благодаря преобразованию кинетической энергии в электрический импульс.
Принцип работы
Работа генератора заключается в гибридной в системе. Переменный ток получается после преобразования кинетической энергии. Ротор вращается благодаря силе магнитного поля, которое исходит от торцов электромагнитов. Таким образом, магнитные колебания позволяют создать электрический импульс. Самая простая конструкция содержит в себе:
- Генератор. Это цилиндрическая ёмкость, которая обязательно должна герметично закрываться. Внутри возникает электромагнитное поле, благодаря направленному воздействию катушек.
- Конвектор-преобразователь. Продуцирует электроэнергию из магнитных импульсов. На выходе получается переменный ток.
- Аккумуляторы. Необходимы для накапливания заряда. Благодаря им можно пользоваться электричеством в любое время.
Главным элементом в конструкции является многополюсный генератор прямого вращения. Снаружи располагаются магниты. Их количество зависит от необходимой мощности. Минимальный коэффициент полезного действия такого устройства составляет 90%. Из генераторов можно создать электрические сети, соединяя несколько устройств между собой. Это выгодно, если мощность аппарата составляет, например, 5 киловатт, а требуется мощность в 10 киловатт.
Создание аппарата своими руками
Получение электрической энергии в огромных количествах без затрат топлива — идея заманчивая и вполне выполнимая. Создание такого устройства можно рассмотреть на примере генератора Адамса. Для самостоятельной сборки понадобятся:
- Магниты. Чем больше магнит, тем сильнее он воздействует на индукционное поле, а также на количество вырабатываемой энергии. Для генератора небольшой мощности подойдут маленькие куски. Желательно, чтобы размеры были одинаковыми. Для нормальной работы достаточно 15 штук. Плюсовой полюс одного магнита должен устанавливаться напротив плюса другого. Если не соблюсти это условие, то индукционного поля не будет.
- Медные провода.
- Две катушки. Их можно достать из старых двигателей или же намотать проволоку самостоятельно.
- Листовая сталь для изготовления корпуса.
- Болты, шайбы, шурупы и гвозди. Они необходимы для крепежа небольших элементов.
Сначала магнит нужно закрепить на основании катушки. Сделать это можно, если высверлить в нём отверстие, а затем закрепить болтами. Провода на катушках должны быть толщиной в 1,25 мм и иметь слой изоляции. Катушки следует крепить на металлической раме так, чтобы между торцами были небольшие зазоры. Это требуется для свободного вращения основного элемента.
На этом этапе аппарат уже можно использовать. Проверить правильность сборки довольно просто: следует вручную прокрутить магниты. Если конструкция собрана правильно, то на концах обмотки возникнет напряжение.
Это наиболее примитивный генератор, работающий от магнитов. Но на основе такой схемы можно создать устройство, которое будет способно обеспечить электроэнергией весь дом. Также можно приобрести уже готовые аппараты от проверенных производителей.
Наиболее популярные модели
На текущий момент наиболее популярными генераторами являются модели от производителей «Энерджистем», «U-Polemag», «Вега», а также «Верано-Ко». Они занимают обширную часть рынка устройств.
«Вега» производит аппараты, которые работают исходя из принципа магнитной индукции. Эту идею смог воплотить знаменитый физик Адамс. Цена зачастую зависит от мощности и размеров аппарата. Минимальная стоимость составляет 45 тыс. руб. У этого производителя есть ряд преимуществ:
- Продукция от компании «Вега» очень экологична.
- Генераторы полностью бесшумны, что позволяет их устанавливать в любом месте.
- Аппараты сравнительно компактные.
- У производителя довольно много моделей, мощность которых начинается от 1,5 кВт и достигает до 10 кВт.
Минимальный эксплуатационный срок составляет 20 лет. Аккумуляторы необходимо заменять через каждые 3−4 года.
«Верано-Ко» — это украинский производитель, использующий для своей продукции только качественные комплектующие. Производит генераторы как для бытовых нужд, так и для промышленных целей. Принцип работы альтернативного источника энергии такой же, как и у других магнитных агрегатов. Самая дешёвая модель стоит 50 тыс. руб. Цены на устройства достигают 200 тыс. руб.
«U-Polemag» является китайским производителем. Представляет наибольшее разнообразие моделей генераторов. Стандартное КПД устройств составляет 93%. Максимальные потери энергии — 1%. Зачастую приобретается для бытового использования. Имеет компактные габариты, низкий уровень шума и небольшой вес. В комплектацию входят системы охлаждение. Максимальная длительность использования достигает 15 лет. Цены на модельный ряд начинаются от 30 тыс. руб. и достигают 90 тыс. руб.
«Энерджисистем» производит устройства вертикального типа. Однозначного мнения о качестве и мощности аппаратов у потребителей нет. Цены на генераторы немного завышены и начинаются от 50 тыс. руб.
Рекомендации по выбору
Любые подобные устройства (особенно магнитные генераторы) стоят довольно много. Зачастую потребители хотят купить качественную модель, но при этом потратить минимальное количество денег. В последнее время люди начали приобретать товары из Китая. Это обусловлено тем, что продукция стоит дешёво и имеет вполне терпимое качество. Генераторы или же элементы конструкции можно купить за границей, но есть определённые риски, которые следует учитывать:
- Приходится платить за товар до его получения.
- Часто случается, что продукция не соответствует описанию на сайте.
- Иногда посылка не доходит до адресата, а деньги при этом никто не вернёт.
Часто такая экономия оказывается ложной. Есть возможность покупки генератора напрямую от производителя. Но при таком варианте необходимо знать все тонкости конструкции аппарата, чтобы опытный продавец не смог «втюхать» генератор, не соответствующий требованиям, поэтому перед покупкой следует:
- Досконально изучить рынок таких устройств. Это позволит обнаружить лидеров среди производителей.
- Правильно рассчитать мощность. Так можно сэкономить, не переплачивая за ненужные характеристики.
Желательно убедиться, что к товару выписывается гарантийный талон. У каждой модели должен быть лист испытаний, который может подтвердить качество.
УСТРОЙСТВО ТЯГОВОГО ГЕНЕРАТОРА ПОСТОЯННОГО ТОКА
Тяговый генератор тепловоза 2ТЭ10Л представляет собой электрическую машину постоянного тока. Его длительная номинальная мощность, т. е. мощность, которая может быть получена от него неограниченное время, равна 2000 кВт. Тяговый генератор состоит из следующих основных частей: магнитной системы, якоря, щеткодержателей со щетками и вспомогательных устройств (рис. 143). Магнитная система генератора предназначена для создания мощного магнитного поля в нем. Она образована из станины (ярма) генератора, главных и добавочных полюсов.
Рис. 143. Тяговый генератор тепловоза 2ТЭ10Л
Станина генератора, являясь частью магнитной системы, представляет собой и его остов (корпус). Изготовлена станина из стали с малым содержанием углерода, обладающей высокой магнитной проницаемостью. Снаружи станина имеет лапы, с помощью которых генератор устанавливают на поддизельной раме.
Магнитная система генераторов постоянного тока в зависимости от их мощности может иметь различное число полюсов. Генераторы большой мощности выполняются многополюсными, так как при этом уменьшаются их размеры и масса. Тяговый генератор, тепловоза 2ТЭ10Л имеет 10 главных полюсов. Сердечники главных полюсов изготовлены из тонких листов электротехнической стали с большой магнитной проницаемостью (рис. 144). В сердечнике, набранном из отдельных изолированных листов, вихревые токи намного меньше, чем в цельном. Листы стягиваются заклепками.
Рис. 144. Главный полюс тягового генератора
Сердечники полюсов прикреплены к станине болтами. Наконечники сердечников имеют такую форму, которая позволяет, во-первых, удерживать полюсную катушку и, во-вторых, придать распределению магнитных силовых линий между полюсом и якорем желаемый характер.
На каждом главном полюсе размещены катушки обмоток независимого возбуждения и пусковой. Катушка независимого возбуждения выполнена из 105 витков медного провода сечением 1,7 х 6,9 мм. Пусковая катушка полюса, по которой кратковременно пропускается ток большой силы только при пуске дизеля, имеет всего три витка из сдвоенного провода сечением 2,26X40 мм. В генераторах северный и южный полюсы чередуются между собой, т. е. за северным полюсом следует южный, затем опять северный и т. д.
Добавочные полюсы установлены между главными. По числу главных полюсов тяговый генератор тепловоза 2ТЭ10Л оборудован 10 добавочными полюсами. Каждый добавочный полюс состоит из сердечника и катушки с шестью витками провода сечением 16X25 мм (рис. 145).
Рис. 145. Добавочный полюс тягового генератора
Ввиду небольших размеров сердечники добавочных полюсов выполнены цельными (сплошными). Полюсы снабжены изоляционными рамками для усиления изоляции от корпуса и пружинными рамками для предупреждения вибрации катушек на сердечниках полюсов.
Якорь генератора (рис. 146) служит для размещения на нем обмотки и коллектора, а также для уменьшения сопротивления магнитной цепи генератора.
Рис. 146. Якорь тягового генератора (без обмотки)
С целью снижения массы генератора корпус якоря выполнен полым. Корпус оканчивается фланцем для соединения с помощью муфты с коленчатым валом дизеля, а с противоположной стороны снабжен ребристой втулкой. Во внутреннее отверстие втулки запрессован укороченный вал якоря. Применение укороченного вала вместо сквозного позволило дополнительно уменьшить массу якоря. Наружное кольцо ребристой втулки предназначено для установки коллектора генератора. Вал якоря опирается на сферический двухрядный роликовый подшипник (см. рис. 143), расположенный в съемной капсуле. Капсула крепится к подшипниковому щиту генератора и позволяет снять подшипник без полной разборки электрической машины. Подшипник закрыт крышками и уплотнительными кольцами.
Сердечник якоря набран из сегментных листов электротехнической (см. рис. 146) стали толщиной 0,5 мм, стянутых с помощью нажимных шайб и шпилек. Нажимные шайбы одновременно являются обмоткодержателями для лобовых частей якорной обмотки. Листы сердечника изолированы друг от друга, благодаря чему резко снижаются потери энергии в сердечнике, уменьшается его нагрев вихревыми токами. Эти листы по наружной поверхности имеют зубцы. При сборке впадины между зубцами образуют пазы, в которые укладывается обмотка якоря.
Якорная обмотка — двухходовая петлевая с уравнительными соединениями. Обмотка состоит из секций. Каждая секция имеет несколько витков хорошо изолированного медного провода прямоугольного сечения 2,83 X 5,5 мм. Готовые секции укладывают в пазы сердечника якоря и соединяют с пластинами коллектора.
При работе генератора его якорь вращается с большой скоростью и на секции обмотки якоря действуют значительные центробежные силы. В пазах сердечника якоря секции обмотки укрепляют специальными клиньями из изоляционного материала (рис. 147).
Рис. 147. Размещение обмотки в пазу якоря генератора
Участки обмотки, выходящие из пазов сердечника якоря, стягивают бандажами из стальной проволоки , наматываемой с предварительным натяжением, или стеклоткани. Для того чтобы витки проволоки бандажа не расходились, их по всей окружности пропаивают оловом вместе с пластинами из жести (замками). Бандажи надежно прижимают лобовые части обмоток к цилиндрическим обмоткодержателям корпуса якоря. В генераторах последних лет изготовления проволочные бандажи заменены более надежными в эксплуатации стеклобандажами (из стеклоткани). Стеклобандажи в отличие от проволочных не оказывают влияния на магнитное поле электрической машины.
Коллектор, как уже указывалось, служит для выпрямления переменной э. д. с, индуктируемой в обмотке якоря генератора, и для съема тока. Он состоит из большого числа медных коллекторных пластин. Например, коллектор тягового генератора тепловоза 2ТЭ10Л имеет 465 пластин. При сборке коллектора между его пластинами прокладывают изоляцию из миканитовых прокладок. Миканит -— электроизоляционный материал, получаемый склеиванием тонких листочков слюды различными связующими материалами. Изоляция (миканитовые манжеты и цилиндры) прокладывается также между собранными в виде кольца коллекторными пластинами, корпусом коллектора и нажимным конусом (см. рис. 146). Основания коллекторных пластин выполнены в виде ласточкина хвоста и входят в выступы корпуса коллектора и нажимного конуса, которые стягиваются шпильками и надежно удерживают пластины. Собранный коллектор напрессовывают на ребристую втулку якоря.
Выступающую часть коллекторных пластин, в которую впаиваются выводы обмотки якоря, называют петушками. В тяговых генераторах тепловозов 2ТЭ10Л каждая коллекторная пластина соединена с концами секций обмотки якоря посредством ленточной меди («гибкого петушка») . Гибкий петушок припаивают одним концом к пластине коллектора, другим — к выходам обмотки якоря.
Токосъем с коллектора электрических машин осуществляется щетками. В тепловозных электрических машинах применяются высококачественные электрографитовые щетки (рис. 148).
Рис. 148. Щетка тягового генератора
Эти щетки изготовлены из угольного порошка с добавлением связующих материалов. Они прессуются в виде брусков нужных размеров и подвергаются действию высокой температуры (до 3000°С) в электропечах. В результате термической обработки углерод переходит в другую свою модификацию — графит. Поэтому термообработка щеток и получила название графитации. Графитация позволяет значительно повысить качество щеток. Они становятся мягче, прочнее, износоустойчивее, меньше изнашивают коллектор, выдерживают большие токовые нагрузки. Такие щетки имеют достаточное электрическое сопротивление, поэтому обладают высокими коммутирующими качествами.
Рабочую поверхность щеток точно притирают (пришлифовывают) к поверхности коллектора. Поверхность коллектора, по которой скользят щетки, делается строго цилиндрической и тщательно шлифуется. Для обеспечения более спокойной, без ударов и вибраций работы щеток с целью повышения надежности их могут устанавливать наклонно к поверхности коллектора электрической машины или снабжать резиновыми амортизаторами.
Щетки вставляют в специальные латунные обоймы, называемые щеткодержателями. Щеткодержатели тягового генератора тепловоза 2ТЭ10Л показаны на рис. 149. Назначение щеткодержателей — удерживать щетки в правильном положении и прижимать их к поверхности коллектора. Для этого щеткодержатели имеют пружины. В щеткодержателе установлены две щетки с резиновыми амортизаторами. Электрический ток отводится от щеток по гибким медным тросикам (шунтам). Второй конец тросика надежно соединен с бракетом щеткодержателей.
В соответствии с числом главных полюсов тяговый генератор тепловоза 2ТЭ10Л имеет десять алюминиевых бракетов , на каждом из них укреплено по девять щеткодержателей с восемнадацатью щетками. Бракеты на изоляторах крепятся к поворотной траверсе. Траверса устанавливается в подшипниковом щите генератора (см. рис. 143 и 149) и может поворачиваться для облегчения доступа при осмотре и ремонте к каждому щеткодержателю. Пять бракетов щеткодержателей одной полярности соединены шиной; одна из шин является плюсовой, вторая — минусовой.
Рис. 149. Щеткодержатели
При работе дизеля тепловоза коленчатый вал через пластинчатую муфту вращает якорь тягового генератора в магнитном поле, создаваемом его полюсами. В якорной обмотке индуктируется э. д. с, при замыкании внешней цепи ток проходит из якорной обмотки через одну группу пластин коллектора, плюсовые щеткодержатели к тяговым электродвигателям и далее через минусовые щеткодержатели, другую группу пластин коллектора возвращается в якорную обмотку.
Несмотря на принимаемые меры по снижению электрических, магнитных, механических потерь энергии в генераторе, они остаются достаточно большими и приводят к нагреву деталей. Наиболее чувствительной к повышенным температурам является изоляция обмоток и коллектора электрических машин. Для предупреждения перегрева генераторов, прежде всего электрической изоляции, их охлаждают наружным воздухом. При этом в отечественных тяговых генераторах мощностью до 1500 кВт обычно используется самовентиляция. Для подачи охлаждающего воздуха в более мощные тяговые генераторы на тепловозах устанавливают специальные дополнительные вентиляторы.
Тяговый генератор тепловоза ТЭЗ выполнен с самовентиляцией. Для этого на якоре генератора со стороны, противоположной коллектору, укреплен центробежный вентилятор. Вентилятор засасывает воздух со стороны коллектора. Далее поток воздуха проходит внутри генератора, охлаждает его. и выбрасывается вентилятором через патрубок наружу под раму тепловоза.
На тепловозах 2ТЭ10Л установлен отдельный центробежный вентилятор для охлаждения воздухом тягового генератора (рис. 150).
Рис. 150. Система воздушного охлаждения тягового генератора тепловоза 2ТЭ10Л
Очищенный от посторонних примесей воздух подается вентилятором по нагнетательному каналу через воздухоподводящий патрубок (см. рис. 143) со стороны, противоположной коллектору. Внутри генератора охлаждающий воздух проходит параллельными потоками через магнитную систему и якорь, отводит от них тепло и выбрасывается наружу через выпускной патрубок в подшипниковом щите и выпускные каналы. Для обеспечения надежной работы тяговых генераторов охлаждающий воздух не должен нести с собой несгоревшее топливо, выбрасываемое дизелем, пыль, влагу. Поэтому очень важным является рациональный выбор места забора охлаждающего воздуха и применение достаточно эффектной его очистки.
Генератор на постоянных магнитах
В современных условиях предпринимаются постоянные попытки усовершенствования электромеханических устройств, снижения их массы и габаритных размеров. Одним из таких вариантов является генератор на постоянных магнитах, представляющий собой достаточно простую конструкцию с высоким коэффициентом полезного действия. Основная функция данных элементов заключается в создании вращающегося магнитного поля.
- Виды и свойства постоянных магнитов
- Принцип работы устройств
- Постоянные магниты в конструкциях генераторов
Виды и свойства постоянных магнитов
С давних пор были известны постоянные магниты, получаемые из традиционных материалов. В промышленности впервые начал использоваться сплав алюминия, никеля и кобальта (алнико). Это дало возможность применять постоянные магниты в генераторах, двигателях и других видах электрооборудования. Особенно широкое распространение получили ферритовые магниты.
Впоследствии были созданы самарий-кобальтовые жесткие магнитные материалы, энергия которых обладает высокой плотностью. Вслед за ними произошло открытие магнитов на основе редкоземельных элементов – бора, железа и неодима. Плотность их магнитной энергии значительно выше, чем самарий-кобальтового сплава при значительно низкой стоимости. Оба вида искусственных материалов успешно заменяют электромагниты и применяются в специфических областях.Неодимовые элементы относятся к материалам нового поколения и считаются наиболее экономичными.
Принцип работы устройств
Главной проблемой конструкции считался возврат вращающихся деталей в исходной положение без существенных потерь крутящего момента. Данная проблема была решена с помощью медного проводника, по которому был пропущен электрический ток, вызывающий притяжение. При отключении тока, действие притяжения прекращалось. Таким образом, в устройствах этого типа использовалось периодическое включение-отключение.
Повышенный ток создает увеличенную силу притяжения, а та, в свою очередь, участвует в выработке тока, проходящего через медный проводник. В результате циклических действий, устройство, кроме совершения механической работы, начинает производить электрический ток, то есть выполнять функции генератора.
Постоянные магниты в конструкциях генераторов
В конструкциях современных устройств, кроме постоянных магнитов применяются электромагниты с постоянным электрическим током в катушке. Такая функция комбинированного возбуждения позволяет получить необходимые регулировочные характеристики напряжения и частоты вращения при пониженной мощности возбуждения. Кроме того, уменьшается величина всей магнитной системы, что делает подобные устройства значительно дешевле по сравнению с классическими конструкциями электрических машин.
Мощность устройств, в которых используются данные элементы может составлять только несколько киловольт-ампер. В настоящее время ведутся разработки постоянных магнитов с лучшими показателями, обеспечивающими постепенный рост мощности. Подобные синхронные машины используются не только в качестве генераторов, но и как двигатели различного назначения. Они широко применяются в горнодобывающей и металлургической отрасли, тепловых станциях и других сферах. Это связано с возможностью работы синхронных двигателей с различными реактивными мощностями. Сами они работают с точной и постоянной скоростью.
Станции и подстанции функционируют вместе со специальными синхронными генераторами, которые в режиме холостого хода обеспечивают выработку только реактивной мощности. В свою очередь, реактивная мощность обеспечивает работу асинхронных двигателей.
Генератор на постоянных магнитах работает по принципу взаимодействия магнитных полей движущегося ротора и неподвижного статора. Не до конца изученные свойства этих элементов позволяют работать над изобретением других электротехнических устройств, вплоть до создания безтопливного вечного двигателя.
Магнитный двигатель: миф или реальность?
Идея разработки вечного бестопливного двигателя не нова, за разработку такого агрегата во все времена брались именитые ученые своего времени. Однако ни технических средств для реализации задумки, не возможностей того времени не хватало. В некоторых случаях дело доходило только до теоретического обоснования, но существуют примеры реально разработанных альтернативных двигателей, которые призваны создать конкуренцию классическим электрическим машинам. Одним из таких вариантов является магнитный двигатель.
Миф или реальность?
Вечный двигатель знаком практически каждому еще со школьной скамьи, только на уроках физики четко утверждалось, что добиться практической реализации невозможно из-за сил трения в движущихся элементах. Среди современных разработок магнитных моторов представлены самоподдерживающие модели, в которых магнитный поток самостоятельно создает вращательное усилие и продолжает себя поддерживать в течении всего процесса работы. Но основным камнем преткновения является КПД любого двигателя, включая магнитный, так как он никогда не достигает 100%. Со временем мотор все равно остановится.
Поэтому все практические модели требуют повторного вмешательства через определенное время или каких-либо сторонних элементов, работающих от независимого источника питания. Наиболее вероятным вариантом бестопливных двигателей и генераторов выступает магнитная машина. В которой основной движущей силой будет магнитное взаимодействие между постоянными магнитами, электромагнитными полями или ферромагнитными материалами.
Актуальным примером реализации являются декоративные украшения, выполненные в виде постоянно двигающихся шаров, рамочек или других конструкций. Но для их работы необходимо использовать батарейки, которые питают постоянным током электромагниты. Поэтому далее рассмотрим тот принцип действия, который подает самые обнадеживающие ожидания.
Устройство и принцип работы
Сегодня существует достаточно большое количество магнитных двигателей, некоторые из них схожи, другие имеют принципиально отличительную конструкцию.
Для примера мы рассмотрим наиболее наглядный вариант:
Принцип действия магнитного двигателя
Как видите на рисунке, мотор состоит из следующих компонентов:
- Магнит статора здесь только один и расположен он на пружинном маятнике, но такое размещение требуется только в экспериментальных целях. Если вес ротора окажется достаточным, то инерции движения хватит для преодоления самого малого расстояния между магнитами и статор может иметь стационарный магнит без маятника.
- Ротор дискового типа из немагнитного материала.
- Постоянные магниты, установленные на роторе в форме улитки в одинаковое положение.
- Балласт — любой увесистый предмет, который даст нужную инерционность (в рабочих моделях эту функцию может выполнять нагрузка).
Все, что нужно для работы такого агрегата — это придвинуть магнит статора на достаточное расстояние к ротору в точке самого наибольшего удаления, как показано на рисунке. После этого магниты начнут притягиваться по мере приближения формы улитки по кругу, и начнется вращение ротора. Чем меньше размер магнитов и чем более плавная форма получится, тем легче произойдет движение. В месте максимального сближения на диске установлена «собачка», которая сместит маятник от нормального положения, чтобы магниты не притянулись в статическое положение.
Разновидности магнитных двигателей и их схемы
Сегодня существует много моделей бестопливных генераторов, электрических машин и моторов, чей принцип действия основан на природных свойствах постоянных магнитов. Некоторые варианты были спроектированы именитыми ученными, достижения которых стали основополагающим камнем в фундаменте науки. Поэтому далее мы рассмотрим самые популярные из них.
Николы Тесла
В данном примере мы рассмотрим одну из разработок известного ученого, конструкция которой приведена на рисунке ниже:
Магнитный двигатель Тесла
Конструктивно магнитный двигатель Тесла состоит из таких элементов:
- электрического генератора, который представлен двумя дисками из проводника, помещенными в униполярной магнитной среде;
- гибкого ремня, изготовленного из проводящего материала, расположенного по периферии дисков;
- независимых магнитов, сохраняющих униполярность полей при вращении дисков.
Такой двигатель, по словам изобретателя, может функционировать и в качестве генератора, вырабатывая электрическую энергию при вращении дисков.
Минато
Этот пример нельзя назвать самовращающимся двигателем, так как для его работы требуется постоянная подпитка электрической энергией. Но такой электромагнитный мотор позволяет получать значительную выгоду, затрачивая минимум электричества для выполнения физической работы.
Схема двигателя Минато
Как видите на схеме, особенностью этого вида является необычный подход к расположению магнитов на роторе. Для взаимодействия с ним на статоре возникают магнитные импульсы за счет кратковременной подачи электроэнергии через реле или полупроводниковый прибор.
При этом ротор будет вращаться, пока его элементы не размагнитятся. Сегодня все еще ведутся разработки по улучшению и повышению эффективности устройства, поэтому назвать его полностью завершенным нельзя.
Николая Лазарева
Это не только простейший гравитационный двигатель, но и одна из реально работающих моделей вечного двигателя. Пример приведен на рисунке ниже:
Двигатель Лазарева
Как видите, для изготовления такого двигателя или генератора вам потребуется:
- колба;
- жидкость;
- трубка;
- прокладка из пористого материала;
- крыльчатка и нагрузка на вал.
Принцип действия заключается в том, что вода по тонкой трубке из-за избытка давления будет подниматься вверх и скапывать на прокладку и вращать крыльчатку. Далее вода будет просачиваться сквозь губку и под воздействием магнитного поля Земли дальше стекать в нижний резервуар. Цикл будет повторяться до тех пор, пока жидкость не исчезнет, что в идеально герметичном контуре не произойдет никогда. Для усиления момента на вращаемый вал добавляют магнитные усилители.
Говарда Джонсона
В своих исследованиях Джонсон руководствовался теорией потока непарных электронов, действующих в любом магните. В его двигателе обмотки статора формируются из магнитных дорожек. На практике эти агрегаты получили реализацию в конструкции роторного и линейного двигателя. Пример такого устройства приведен на рисунке ниже:
Двигатель Джонсона
Как видите, на оси вращения в двигателе устанавливаются сразу и статор и ротор, поэтому классически вал вращаться здесь не будет. На статоре магниты повернуты одноименным полюсом к роторным, поэтому они взаимодействуют на силах отталкивания. Особенность работы ученого заключалась в длительном вычислении расстояний и зазоров между основными элементами мотора.
Перендева
Данный вид двигателя, как и предыдущий, представляет собой еще одну модель магнитного взаимодействия между статором и ротором, где обе части содержат постоянные магниты. Схема конструкции обоих представляет собой диск или кольцо, в котором точечно устанавливаются вектолиты.
Магниты статора и ротора в двигателе Переднева
Как видите на рисунке, положение активных элементов имеет угол смещения, который и определяет эффективность вращения машины. Взаимодействие магнитных потоков в двигателе происходит при задании начального крутящего момента. Точность положения и угла наклона можно отстроить только в лабораторных или заводских условиях.
Василия Шкондина
Получить вечный генератор Василию Шкодину не удалось, КПД такого магнитного двигателя и сегодня не превышает 83%. Но и этого более чем достаточно, чтобы его повсеместно применяли для велосипедов, байков и самокатов. Он может эксплуатироваться как в режиме тяги, так и для рекуперации электроэнергии.
Двигатель Шкондина
На рисунке приведена конструкция магнитного двигателя Шкодина. Как видите, и ротор и статор представляют собой кольца. Из магнитных деталей он содержит 11 пар неодимовых магнитов. Ротор устройства содержит 6 электромагнитов, смещенных на одинаковое расстояние друг относительно друга.
Свинтицкого
Еще в конце 90-х украинский конструктор предложит модель самовращающегося магнитного двигателя, который стал настоящим прорывом в технике. За основу им был взят асинхронный двигатель Ванкеля, которому не удалось решить проблему с преодолением 360° оборота.
Игорь Свинтицкий эту проблему решил и получил патент, обратился в ряд компаний, однако асинхронное магнитное чудо техники никого не заинтересовало, поэтому проект был закрыт и за его масштабное тестирование ни одна компания не взялась.
Джона Серла
От электрического мотора такой магнитный двигатель отличает взаимодействие исключительно магнитного поля статора и ротора. Но последний выполняется наборными цилиндрами с таблетками из специального сплава, которые создают магнитные силовые линии в противоположном направлении. Его можно считать синхронным двигателем, так как разница частот в нем отсутствует.
Двигатель Серла
Полюса постоянных магнитов расположены так, что один толкает следующий и т.д. Начинается цепная реакция, приводящая в движение всю систему магнитного двигателя, до тех пор, пока магнитной силы будет хватать хотя бы для одного цилиндра.
Алексеенко
Интересный вариант магнитного двигателя представил ученый Алексеенко, который создал устройство с роторными магнитами необычной формы.
Двигатель Алексеенко
Как видите на рисунке, магниты имеют необычную изогнутую форму, которая максимально сближает противоположные полюса. Что делает магнитные потоки в месте сближения значительно сильнее. При начале вращения отталкивание полюсов получается значительно большим, что и должно обеспечить непрерывное движение по кругу.
Что такое система возбуждения в генераторе переменного тока?
Понятие возбуждения и его особенности
Возбуждение – это термин, используемый инженерами-электриками, означающий создание магнитного поля. Простой магнит, используемый в этой главе для иллюстрации работы генератора, конечно способен создать ток в обмотках генератора, но постоянный магнит перестает быть постоянным под действием вибраций и нагрева.
Описание процесса
Обычно ротор выполняется в виде электромагнита, изготовленного из мягкой стали или железа, на который намотана катушка. Через катушку пропускается постоянный ток, индуцирующий в железном роторе магнитное поле. Напряженность наведенного таким обрезом магнитного поля зависит от силы тока, пропускаемого через обмотку возбуждения, и этот факт дает еще одно преимущество, поскольку позволяет регулировать э.д.с, в статорных обмотках генератора.
Простой электромагнит и концентрация поля
Если катушку ротора намотать не железный сердечник так, как показано на рис. 3.13(а), то получится магнит с одной парой полюсов N (North – северный) и S (South – южный).
Рис. 3.13(а). Простой электромагнит.
Из-за большого расстояния между полюсами магнитные силовые линии окажутся сильно рассеянными в пространстве. Теперь протянем полюса магнита навстречу друг другу, так, чтобы между ними остался лишь небольшой зазор (см. рис. 3.13(б)).
Рис. 3.13(6). Загнем концы электромагнита, чтобы сконцентрировать поле.
И, наконец, выполним полюса магнита в виде набора зубьев, входящих друг в друга, но без соприкосновения (см. рис. 3.14). Мы получим в сумме длинный узкий зазор между полюсами N и S, через который будет происходить “утечка” магнитного поля наружу. При вращении ротора эта “утечка” будет пересекать обмотки статора, и наводить в них э.д.с.
Питание ротора постоянным током: особенности процесса
Для того чтобы магнитное поле в роторе не меняло направления, его катушка должна питаться постоянным током одной полярности. Подвод тока к вращающейся катушке осуществляется через угольные щетки и коллекторные кольца.
Для питания обмотки ротора постоянным током применяют два способа: самовозбуждение и возбуждение от внешнего источника (обычно от аккумулятора).
Рис. 3.14. Зубчатый ротор генератора.
Возбуждение генератора: знакомство с определением
Возбуждение генератора – это процесс, который происходит на основе магнитодвижущей силы. Она выполняет процесс наведения магнитного поля, которое, в свою очередь, производит процесс образования электроэнергии. Для возбуждения генераторов первого поколения использовали специальные ротаторы постоянного тока, которые еще принято называть возбудителями. Их обмотка получала питание постоянного тока от другого генератора, его принято называть подвозбудителем. Все компоненты размещаются на одном валу, а их вращение происходит синхронно.
Обмотка возбуждения генератора: знакомство с определением
Обмотка возбуждения генератора – это один из основных конструктивных элементов синхронного генератора. Она получает питание от источника, предоставляющего постоянный ток. Чаще всего функцию источника выполняет электронный генератор напряжения. Такие регуляторы используется в новых моделях, работающих на основе самовозбудителя. А самовозбуждение, в свою очередь, основано на том, что первоначальное возбуждение происходит с помощью остаточного магнетизма магнитопровода синхронного генератора (СГ). Важно понимать, что энергия переменного тока поступает именно от обмотки статора СГ, трансформируя ее в энергию постоянного тока.
Для чего служит обмотка возбуждения генератора
Обмотка ротора возбуждается источником постоянного тока. Ротор вращается с помощью первичного двигателя, тем самым магнитное поле, создаваемое в роторе, тоже вращается вместе с ним с той же скоростью. Теперь линии магнитного поля пересекают обмотку статора, расположенную вокруг ротора. В результате в обмотке образуемся переменная электродвижущая сила (эдс).
Катушка возбуждения генератора: знакомство с определением
Катушка возбуждения генератора – это специальный электромагнит, который используют для генерации электромагнитного поля в электромагнитных машинах. В его состав входит катушка и проволока, по которой протекает ток. Если взять к примеру вращающиеся машины, то там катушки возбуждения наматываются на специальный железный магнитный сердечник. Именно последний выполняет функцию направления силовой линии магнитного поля. В состав магнитопровода входит два основные компонента:
- Статор – он неподвижный.
- Ротор – производит вращения вокруг статора.
Силовые линий магнитного поля непрерывно проходят от от статора к ротору и обратно. Катушки возбуждения могут располагаться либо на статоре, либо на роторе.
Сверхсильные импульсные магнитные поля
Что такое сверхсильные магнитные поля?
В науке для познания природы в качестве инструментов используются различные взаимодействия и поля. В ходе физического эксперимента исследователь, воздействуя на объект исследования, изучает отклик на это воздействие. Анализируя его, делают заключение о природе явления. Наиболее эффективным средством воздействия является магнитное поле, так как магнетизм – широко распространенное свойство веществ.
Силовой характеристикой магнитного поля является магнитная индукция. Далее приводится описание наиболее распространенных методов получения сверхсильных магнитных полей, т.е. магнитных полей с индукцией свыше 100 Тл (тесла).
- минимальное регистрируемое с помощью сверхпроводящего квантового интерферометра (СКВИД) магнитное поле – 10 -13 Тл;
- магнитное поле Земли – 0,05 мТл;
- сувенирные магниты на холодильник – 0,05 Тл;
- альнико (алюминий-никель-кобальт) магниты (AlNiCo) – 0,15 Тл;
- ферритовые постоянные магниты (Fe2O3) – 0,35 Тл;
- самариево-кобальтовые постоянные магниты (SmCo) — 1,16 Тл;
- самые сильные неодимовые постоянные магниты (NdFeB) – 1,3 Тл;
- электромагниты Большого адронного коллайдера – 8,3 Тл;
- самое сильное постоянное магнитное поле (Национальная лаборатории сильных магнитных полей Флоридского университета) – 36,2 Тл;
- самое сильное импульсное магнитное поле, достигнутое без разрушения установки (Лос-Аламосская национальная лаборатория, 22 марта 2012 года) – 100,75 Тл.
В настоящее время исследования в области создания сверхсильных магнитных полей проводятся в странах – участниках «Megagauss Club» и обсуждаются на Международных конференциях по генерации мегагауссных магнитных полей и родственным экспериментам (гаусс – единица измерения магнитной индукции в системе СГС, 1 мегагаусс = 100 тесла).
Для создания магнитных полей такой силы необходима очень большая мощность, поэтому в настоящее время их получение возможно только в импульсном режиме, причем длительность импульса не превышает десятков микросекунд.
Разряд на одновитковый соленоид
Самым простым методом получения сверхсильных импульсных магнитных полей с магнитной индукцией в диапазоне 100. 400 тесла является разряд ёмкостных накопителей энергии на одновитковые соленоиды (соленоид — это однослойная катушка цилиндрической формы, витки которой намотаны вплотную, а длина значительно больше диаметра).
Внутренний диаметр и длина используемых катушек обычно не превышают 1 см. Индуктивность их мала (единицы наногенри), поэтому для генерации в них сверхсильных полей требуются токи мегаамперного уровня. Их получают с помощью высоковольтных (10-40 киловольт) конденсаторных батарей с низкой собственной индуктивностью и запасаемой энергией от десятков до сотен килоджоулей. При этом время нарастания индукции до максимального значения не должно превышать 2 микросекунды, иначе разрушение соленоида произойдет раньше, чем будут достигнуто сверхсильное магнитное поле.
Деформация и разрушение соленоида объясняются, что из-за резкого возрастания тока в соленоиде существенную роль играет поверхностный («скин») эффект — ток концентрируется в тонком слое на поверхности соленоида и плотность тока может достигать очень больших величин. Следствием этого является возникновение в материале соленоида области с повышенными температурой и магнитным давлением. Уже при индукции 100 тесла поверхностный слой катушки, выполненный даже из тугоплавких металлов, начинает плавиться, а магнитное давление превышает предел прочности большинства известных металлов. С дальнейшим ростом поля область плавления распространяется вглубь проводника, а на его поверхности начинается испарение материала. В итоге происходит взрывообразное разрушение материала соленоида («взрыв скин-слоя»).
Если же величина магнитной индукции превышает значение 400 тесла, то такое магнитное поле обладает плотностью энергии, сравнимой с энергией связи атома в твёрдых телах и намного превышает плотность энергии химических взрывчатых веществ. В зоне действия такого поля происходит, как правило, полное разрушение материала катушки со скоростью разлета материала витка до 1 километра в секунду.
Метод сжатия магнитного потока (магнитная кумуляция)
Для получения максимального магнитного поля (до 2800 Тл) в условиях лаборатории применяется метод сжатия магнитного потока (магнитная кумуляция).
Внутри проводящей цилиндрической оболочки (лайнера) с радиусом r0 и сечением S0 создается аксиальное стартовое магнитное поле с индукцией B0 и магнитным потоком Ф = B0S0 и. Затем лайнер симметрично и достаточно быстро сжимается внешними силами, при этом его радиус уменьшается до rf и площадь сечения до Sf. Пропорционально площади сечения уменьшается и магнитный поток, пронизывающий лайнер. Изменение магнитного потока в соответствии с законом электромагнитной индукции вызывает возникновение в лайнере индуцированного тока, создающего магнитное поле, стремящееся компенсировать уменьшение магнитного потока. При этом магнитная индукция соответственно увеличивается до значения Bf=B0*λ*S0/Sf, где λ – коэффициент сохранения магнитного потока.
Метод магнитной кумуляции реализован в устройствах, получивших название магнитокумулятивных (взрывомагнитных) генераторов. Сжатие лайнера осуществляется давлением продуктов взрыва химических взрывчатых веществ. Источником тока для создания начального магнитного поля служит конденсаторная батарея. Основоположниками исследований в области создания магнитокумулятивных генераторов были Андрей Сахаров (СССР) и Кларенс Фоулер (США).
В одном из опытов в 1964 году на магнитокумулятивном генераторе МК-1 в полости диаметром 4 мм удалось зарегистрировать рекордное поле 2500 Тл. Однако неустойчивость магнитной кумуляции явилась причиной невоспроизводимого характера взрывной генерации сверхсильных магнитных полей. Стабилизация процесса магнитной кумуляции возможна при сжатии магнитного потока системой последовательно включаемых коаксиальных оболочек. Такие устройства называют каскадными генераторами сверхсильных магнитных полей. Их основное достоинство заключается в том, что они обеспечивают стабильность работы и высокую воспроизводимость сверхсильных магнитных полей. Многокаскадная конструкция генератора МК-1, использующая 140 кг взрывчатого вещества, обеспечивающих скорость сжатия лайнера до 6 км/с, позволила получить в 1998 году в Российском федеральном ядерном центре рекордное в мире магнитное поле 2800 тесла в объеме 2 см 3 . Плотность энергии такого магнитного поля более чем в 100 раз превышает плотность энергии самых мощных химических взрывчатых веществ.
Применение сверхсильных магнитных полей
Начало использованию сильных магнитных полей в физических исследованиях было положено трудами советского физика Петра Леонидовича Капицы в конце 1920-х годов. Сверхсильные магнитные поля применяются в исследованиях гальваномагнитных, термомагнитных, оптических, магнитно-оптических, резонансных явлений.
Они применяются, в частности:
- для исследования эффекта Фарадея (эффект Фарадея – поворот на угол β плоскости поляризации линейно поляризованного светового луча, проходящего через изотропную среду, находящуюся в магнитном поле);
- для исследования эффекта Зеемана (эффект Зеемана — расщепление энергетических уровней и спектральных линий атомов под воздействием магнитного поля)
- для изучения свойств веществ в экстремальных условиях, так как энергия магнитного поля напряжённостью 1000. 1500 Тл превышает энергию связи частиц в твёрдых телах, а магнитное давление превышает давление в центре Земли. Это может быть использовано, например, для сжатия водорода. В химических реакциях, отдавая электрон, водород ведет себя как металл, но для полноценного металла водороду не хватает кристаллической решетки. Существует предположение, что при температурах, приближенных к абсолютному нулю, и давлении в миллионы атмосфер, возможно образование кристаллической решетки водорода с удивительными свойствами, например, сверхпроводимостью;
- в оружии электромагнитного импульса (ЭМИ).