Усилитель генератор постоянного тока

Полезное про электронику: Источник тока на ОУ и транзисторе, от Gromov - читайте и комментируйте на Радиосхемах

Усилитель генератор постоянного тока

Источник тока на ОУ и транзисторе

Предлагаем очень несложную конструкцию аналогового генератора постоянного тока общего назначения, с использованием легко доступных компонентов. Это действительно простая схема, которую легко собрать, и она очень полезна, особенно если вы хотите провести эксперименты с мощными светодиодами и так далее. Вот полная схема аналогового генератора постоянного тока. Схемотехника и теория работы просты и понятны.

Схема аналогового источника постоянного тока

Поскольку это источник постоянного тока, то есть своеобразная электронная нагрузка, он адаптирован для работы со слаботочным независимым блоком питания 12 В. Силовая часть схемы — это доступный мощный полевой МОП-транзистор IRF3205, рассматриваемый как переменный резистор. Обратите внимание, что силовой полевой транзистор можно также использовать в линейном (а не переключающем) режиме, и тогда он обычно рассматривается как переменный резистор.

Следующим ключевым элементом в этой схеме является трехконтактный программируемый диод шунтирующего стабилизатора TL431A. Также есть микросхема маломощного двойного операционного усилителя — LM358.

Принцип работы источника тока на ОУ

Принцип работы аналогового источника тока: когда нагрузка постоянного тока находится под напряжением, на силовом резисторе 1 Ом (R4) создается небольшое напряжение, которое подается на инвертирующий вход (контакт 2) IC1. Это положительное напряжение инвертируется IC1, уменьшая напряжение на выходе (вывод 1), что дополнительно снижает напряжение на R4 через T1. Это стабилизирует выходное напряжение до значения, которое окажется на его неинвертирующем входе (вывод 3). Любое изменение тока через R4 вызывает изменение напряжения на выводе 2, которое точно компенсируется отрицательной обратной связью. В результате через силовой резистор и подключенную нагрузку протекает постоянный ток.

Опорное напряжение составляет около 2,5 В, использовалась TL431A (VR1) в качестве источника опорного напряжения, потому что микросхема была под рукой. Также можно попробовать другие, более дешевые идеи создания постоянного опорного напряжения. Потенциометр 10K (TM1) предназначен для точной настройки тока, и, следовательно, 10-оборотный точный многооборотный подстроечный резистор был бы лучше, чем обычный, который использовался в данном случае.

Обратите внимание, что когда через R4 протекает ток 1 А, на нём будет 1 В. И максимальное опорное напряжение, которое может видеть IC1, будет около 1,2 В. Опорное напряжение 2,5 В дополнительно уменьшено цепью резисторов R2 — TM1 примерно до 1,2 В.

Далее была сделана быстрая тестовая версия на макетной плате. Стоит обратить внимание на то, что эту схему довольно легко заставить возбуждаться, а это нежелательно и может затруднить точную регулировку тока нагрузки. Более того, силовой резистор 1 Ом должен рассеивать довольно много энергии, да и силовой полевой транзистор должен использоваться с подходящим радиатором.

Испытания собранного устройства

Сначала тестировался прототип с белым светодиодом 12 В / 10 Вт, и подключенный осциллограф показывает, что нет никаких лишних колебаний. А затем тестировался до 12 А, используя старый резистор 0,1 Ом / 20 Вт вместо резистора по схеме 1 Ом / 5 Вт. Конечно также поменян радиатор на более мощный. По паспортным данным транзистор IRF3205 может выдерживать ток 100 А, но при достаточном охлаждении.

Теперь о нескольких вещах, которые необходимо учесть при сборке. Во-первых, для схемы генератора постоянного тока следует использовать отдельный источник питания 12 В. Затем, если решите использовать другой операционный усилитель, то выберите ОУ с питанием от шины к сети, поскольку он будет лучше, чем операционный усилитель LM358, который использовался тут. Кроме того, важно уделять внимание номинальным характеристикам компонентов в цепи силовой электроники. Неправильный выбор может привести к серьезным бедствиям, таким как перегрев.

Если что, можете заменить опорное напряжение аналоговым (или широтно-импульсным сигналом с цифровым управлением). Это более условно и легче для понимания, поэтому я не буду сейчас вдаваться в подробности. В таких случаях неиспользуемый второй операционный усилитель будет выступать в качестве буфера с единичным усилением — повторитель напряжения. Входное сопротивление буфера операционного усилителя очень высокое, а выходное очень низкое. Такое включение помогает решить проблемы согласования сопротивлений. Такое включение помогает решить проблемы согласования сопротивлений.

Практические схемы токовых нагрузок

На базе операционного усилителя и полевого транзистора и делают большинство схем источников тока или токовых нагрузок. Практические примеры конструкций смотрите далее.

Подключение и испытание усилительного модуля на транзисторах КТ835 от электрофона «Россия 321 Стерео».

Схема гитарного комбо-усилителя с блоком эффектов на базе микросхем TDA2052, PT2399 и TL072.

Мощный транзистор BLF147 — вот основа схемы самодельного усилителя УКВ диапазона.

Электромашинные усилители

Усилителем называют такое устройство, в котором посредством сигнала малой мощности (входная величина) управляют сравнительно большой мощностью (выходная величина). При этом выходная величина является функцией входного сигнала и усиление происходит за счет энергии внешнего источника.

В электромашинных усилителях выходная (управляемая) электрическая мощность создается за счет механической мощности приводного двигателя.

Электромашинные усилители (ЭМУ) представляют собой коллекторную машину постоянного тока.

В зависимости от способа возбуждения электромашинные усилители подразделяются на усилители продольного поля и усилители поперечного поля.

К усилителям продольного поля, в которых основной поток возбуждения направлен по продольной оси машины, относятся:

1) независимый электромашинный усилитель,

2) Электромашинный усилитель с самовозбуждением,

3) двухмашинные усилители,

4) двухколлекторный электромашинный усилитель,

5)двух- и трехступенчатые электромашинные усилители продольного поля

К усилителям поперечного поля, в которых основной поток возбуждения направлен по поперечной оси машины, относятся:

1 ) Электромашинные усилители с диаметральным шагом обмотки якоря,

2) Электромашинные усилители с полудиаметральным шагом обмотки якоря,

3) Электромашинные усилители с разделенной магнитной системой.

Чем меньше мощность управления электромашинного усилителя, тем меньше вес и габариты аппаратуры управления. Поэтому основной характеристикой является коэффициент усиления. Различают коэффициенты усиления по мощности, току и напряжению.

Коэффициент усиления электромашинного усилителя по мощности kp есть отношение мощности на выходе Рвых к мощности на входе Рвх при установившемся режиме работы:

Коэффициент усиления по напряжению:

где Uвых — напряжение выходной цепи; — напряжение входной цепи.

Коэффициент усиления по току k i — это отношение тока выходной цепи I вых усилителя к току входной цепи I вх:

k i = I вых / I вх

Из сказанного следует, что электромашинные усилители могут иметь достаточно высокий коэффициент усиления по мощности (10 3 — 10 5 ). Не менее важным для усилителя является его быстродействие, характеризуемое постоянными времени его цепей.

От электромашинного усилителя стремятся получить большой коэффициент усиления по мощности и большое быстродействие, т. е. по возможности меньшие постоянные времени.

В системах автоматического регулирования электромашинные усилители применяются в качестве усилителей мощности и работают в основном при переходных режимах, в процессе которых возникают значительные перегрузки по току. Поэтому одним из требований к электромашинному усилителю является хорошая перегрузочная способность .

К числу важнейших требований, предъявляемых к электромашинному усилителю, относятся надежность в работе и стабильность характеристик.

Электромашинные усилители, используемые на самолетах и транспортных установках, должны обладать минимальными габаритами и весом.

В промышленности наибольшее распространение получили независимый электромашинный усилитель, электромашинный усилитель с самовозбуждением и электромашинный усилитель поперечного поля с диаметральным шагом.

Коэффициент усиления по мощности независимого ЭМУ не превышает 100. С целью повышения коэффициента усиления по мощности ЭМУ были созданы электромашинные усилители с самовозбуждением.

Конструктивно ЭМУ с самовозбуждением (ЭМУС) отличается от независимого ЭМУ только тем, что на его полюсах возбуждения соосно с обмотками управления размещается обмотка самовозбуждения, включаемая параллельно обмотке якоря или последовательно с ней.

Τаκие усилители применяются главным образом для питания обмотки возбуждения генератора в системе генератор—двигатель и в этом случае длительность переходного процесса определяется постоянной времени генератора.

В отличие от независимого ЭМУ и ЭМУ с самовозбуждением (ЭМУС), в которых основным потоком возбуждения является продольный магнитный поток, направленный вдоль полюсов возбуждения, в ЭМУ поперечного поля основным потоком возбуждения является поперечный поток реакции якоря.

Важнейшей статической характеристикой ЭМУ поперечного поля является коэффициент усиления по мощности. Высокий коэффициент усиления по мощности получается за счет того, что ЭМУ поперечного поля является двухступенчатым усилителем. Первая ступень усиления: обмотка управления — короткозамкнутая цепь поперечных щеток. Вторая ступень: короткозамкнутая цепь поперечных щеток — выходная цепь продольных щеток. Поэтому общий коэффициент усиления по мощности kp = kp1kp2, где kp1—коэффициент усиления 1-й ступени; kp2— коэффициент усиления 2-й ступени.

Читайте также  Цепи питания возбуждения генератора

При использовании электромашинных усилителей в замкнутых системах автоматического регулирования (стабилизаторы, регуляторы, следящие системы) машина должна быть несколько недокомпенсирована (к=0,97÷0,99), так как в случае перекомпенсации в системе во время работы возникнет ложное возмущение за счет остатка м. д. с. компенсационной обмотки, которое приведет к возникновению автоколебаний системы.

Общий коэффициент усиления по мощности ЭМУ поперечного поля пропорционален четвертой степени скорости вращения якоря, магнитным проводимостям по поперечной и продольной осям и зависит от соотношения сопротивлений обмоток машины и нагрузки.

Отсюда следует, что усилитель будет иметь тем больший коэффициент усиления по мощности, чем меньше будет насыщена его магнитная цепь и чем выше будет скорость его вращения. Чрезмерно увеличивать скорость вращения нельзя, так как начинает сильно возрастать действие коммутационных токов. Поэтому при чрезмерном увеличении скорости за счет повышения коммутационных токов коэффициент усиления по мощности расти не будет, а может даже снижаться.

Применение электромашинных усилителей

Электромашинные усилители выпускаются серийно и нашли широкое применение в системах автоматического регулирования и автоматизированного электропривода. В системах генератор — двигатель генератор, а часто еще и возбудитель, по существу представяют собой независимые электромашинные усилители, соединенные и каскад. Наибольшее распространение получили электромашинные усилители поперечного поля. Эти усилители обладают рядом достоинств, главными из которых являются:

1) большой коэффициент усиления по мощности,.

2) малая входная мощность,

3) достаточное быстродействие, т. е. малые постоянные времени цепей усилителя. Время нарастания напряжения от нуля до номинального значения для промышленных усилителей мощностью 1-5 кВт составляет 0,05—0,1 сек,

4) достаточные надежность, долговечность и широкие пределы изменения мощности,

5) возможность изменения характеристик за счет изменения степени компенсации, позволяющая получать необходимые внешние характеристики.

К числу недостатков электромашинных усилителей следует отнести:

1) относительно большие габариты и вес по сравнению с генераторами постоянного тока той же мощности, так как для получения больших коэффициентов усиления применяется ненасыщенная магнитная цепь,

2) наличие остаточного напряжения за счет гистерезиса. ЭДС, наводимая в якоре потоком остаточного магнетизма, искажает линейную зависимость выходного напряжения от входного сигнала в зоне малых сигналов и нарушает однозначность зависимости выходных параметров электромашинных усилителей от входных при изменении полярности входного сигнала, ибо поток остаточного магнетизма при постоянной полярности сигнала будет увеличивать поток управления, а при изменении полярности сигнала — уменьшать поток управления.

Кроме того, под действием остаточной ЭДС электромашинного усилителя, работающего в режиме перекомпенсации, при малом сопротивлении нагрузки и нулевом входном сигнале может самовозбуждаться и терять управляемость. Это явление объясняется неуправляемым увеличением продольного магнитного потока машины, первоначально равного потоку остаточного магнетизма, за счет подмагничивающего действия компенсационной обмотки.

Для нейтрализации вредного действия потока остаточного магнетизма в электромашинном усилителе осуществляют размагничивание переменным током, а сами электромашинные усилители ставят в автоматические системы несколько недокомпенсированными.

Следует отметить, что с внедрением полупроводниковых преобразователей применение электромашинных усилителей в системе электропривода электромашинный усилитель (генератор) — двигатель значительно сокращается.

Источники тока на полевых и биполярных транзисторах.

Схемы генераторов тока, разновидности токовых зеркал, Онлайн калькулятор
расчёта элементов источников тока.

На сегодняшнем мероприятии, посвящённом открытию «Культурно-досугового центра Лоховского муниципального образования», поговорим о разновидностях источников постоянного и, желательно, стабильного выходного тока.
— Если напряжение можно понять умом, то ток только чувством! — начал свой доклад руководитель кружка по художественному рукоделию Семён Самсонович Елдыкин.
— Целью нашего сегодняшнего радиолюбительского заседания является освоение упорядоченного движения свободных электрически заряженных частиц — как суммы знаний, физических умений и врождённых навыков.
«Как заземлить незаземлённое заземление? Сколько нужно выпить водки в граммах для снижения сопротивление тела на 1 кОм? И как не вступить с электричеством в интимные отношения?» — станет темой нашего научного коллоквиума.

Спасибо Семёну Самсоновичу за вводные слова, а нам пора переместиться поближе к обозначенной в заголовке теме. Напустим энциклопедического глубокомыслия:

«Источник тока — элемент, двухполюсник, сила тока через который не зависит от напряжения на его зажимах (полюсах). Используются также термины генератор тока и идеальный источник тока. » — учит нас Википедия.

Дополним редакцию. Источник тока должен иметь большое внутреннее дифференциальное сопротивление, такое чтобы при изменении сопротивления нагрузки сила тока в нагрузке практически не изменялась. Такую возможность нам предоставляет биполярный транзистор со стороны коллектора, полевик со стороны стока, либо операционник между инвертирующим входом и выходом.

Есть несколько основных характеристик, которые характеризуют источник тока.
Первой и основной из них является величина выходного тока.
Во-вторых, его выходное сопротивление, которое определяет, насколько ток источника меняется в зависимости от сопротивления нагрузки.
Третья спецификация — это минимальное и максимальное напряжения на выходе источника, при котором узел работает должным образом, т.е. выходной транзистор находится в активном режиме.
В-четвёртых, температурная стабильность и способность противостоять колебаниям напряжения источника питания.

Для разминки рассмотрим схемы простейших генераторов (источников) тока на транзисторах и операционных усилителях.


Рис.1

Схема источника тока на биполярном транзисторе — самая плохая. В ней присутствует полный букет недостатков — и температурная нестабильность, и зависимость тока от колебаний напряжения источника питания и наличие пресловутого эффекта Эрли (эффект влияния напряжения между коллектором и базой на ток коллектора).
Здесь входной делитель на резисторах R1, R2 задаёт ток базы транзистора Iб, выходной ток в первом приближении можно считать равным Iн = Iк≈β×Iб.

Схема на полевом транзисторе не столь чувствительна к нестабильности источника питания, однако имеет другой существенный недостаток — практическую невозможность заранее рассчитать выходной ток генератора из-за значительности разброса параметров данных типов полупроводников.
Максимальный ток данного типа источника равен начальному току стока при R1=0 (паспортная характеристика), минимальный ограничен падением напряжения на токозадающем резисторе R1.

Генераторы тока на операционных усилителях (инвертирующий слева, неинвертирующий справа) — вполне себе работоспособные устройства, которые являются близкими аналогами идеальных источников тока, и практически лишены недостатков, присущих транзисторным схемам.
Единственное, но существенное в отдельных случаях «но» состоит в том, что нагрузка является «плавающей», т.е. не подключённой никаким боком к земле.
Ток через нагрузку практически с 100% точностью описывается формулой Iн= Uвх/R1.

Размялись? Пришло время избавляться от недостатков простейших источников тока, обкашлянных нами выше.

Рис.2

Схемы стабилизаторов тока, представленные на Рис.2, будут полезны в устройствах, работающих с конечными потребителями, которые чувствительны не столько к стабильности напряжения, сколько к постоянству протекающего через них тока.
За примерами далеко ходить не надо — источники питания светодиодов, газоразрядных ламп, зарядные устройства для аккумуляторов и т.д. Все они требуют наличия на выходе постоянного, либо изменяющегося по определённому алгоритму тока.
Принцип работы приведённых схем предельно прост. При увеличении тока нагрузки пропорционально увеличивается и падение напряжения на токозадающем резисторе R1. При достижении уровня падения этого напряжения ≈0,6В, начинает открываться транзистор T1, снижая величину Uбэ (или Uзи) второго транзистора T2. Он начинает закрываться, соответственно, уменьшается и количество тока, протекающего через нагрузку.
Для схемы на биполярном транзисторе номинал резистора Rб следует выбирать из соображений Rб .
Для полевика, в силу его высокого входного сопротивления, величина резистора Rз1 может выбрана достаточно высокой (десятки килоом). Единственное, за чем надо зорко послеживать — максимально допустимое значение напряжения затвор-исток транзистора. Если оно меньше Еп, следует добавить дополнительный резистор Rз2 такого номинала, чтобы образованный делитель вогнал напряжение на затворе в допустимые пределы.
Выходной ток рассчитывается по простой формуле Iн≈0,6/ R1 .
В этих схемах нет температурной компенсации, изменение выходного тока составляет величину ≈ 0,3% на один °С.

Про схему токового зеркала, изображённую на Рис.3, смело можно сказать, что это базовая схема источника тока.
Резисторы в эмиттерных цепях транзисторов создают отрицательную обратную связь по току, что с одной стороны, приводит к улучшению термостабилизирующих свойств узла, а с другой, позволяет в широких пределах регулировать соотношения токов транзисторов Т1 и Т2.

Для снижения зависимости выходного тока от колебаний напряжения питания широкое применение нашли источники тока (Рис.4), называемые двойным зеркалом тока.
Механизм работает следующим образом: Предположим, увеличилось напряжение питания. Тогда увеличивается и падение напряжения на резисторе R1. Это приводит к уменьшению потенциала базы транзистора VТ3, транзистор VТ3 призакроется, его ток Iэ3 уменьшится, соответственно уменьшится ток базы Iб2 и Iн тоже уменьшится и вернётся в исходное состояние.

Читайте также  Флюгер генератор своими руками

Источник тока, представленный на Рис. 5, называется схемой токового зеркала Уилсона и обеспечивает высокую степень постоянства выходного тока за счёт подавления проявлений эффекта Эрли (эффект влияния напряжения между коллектором и базой на ток коллектора).
Транзисторы T1 и T2 в этой схеме включены так же, как в обычном токовом зеркале, но благодаря транзистору T3 потенциал коллектора токозадающего Т2 фиксирован и не влияет на выходной ток.

Каскодный генератор тока, изображённый на Рис. 6, обладает достоинствами, связанными с очень высоким внутренним сопротивлением и значительным ослаблением эффекта Эрли. Динамическое внутреннее сопротивление такого отражателя тока превышает величину в несколько МОм.

И по традиции приведу таблицу, позволяющую не сильно утруждаться, при желании воплотить описанные узлы в реальную жизнь.

РАСЧЁТ ТОКОЗАДАЮЩИХ ЭЛЕМЕНТОВ ИСТОЧНИКОВ ТОКА НА БИПОЛЯРНЫХ ТРАНЗИСТОРАХ.

Источники тока на полевых транзисторах, в связи со значительностью разброса параметров данного типа полупроводников, практическое применение получили в основном при производстве аналоговых интегральных микросхем. При этом при использовании МОП-структур полевых транзисторов, схемотехника токовых зеркал практически не отличается от приведённых выше источников тока на биполярных собратьях.

Рис.6

Проектировать источники тока на дискретных полевых транзисторах — занятие, на мой взгляд, довольно нецелесообразное.
Другое дело — специально разработанные полупроводники, называемые токостабилизирующими диодами (CRD), в основе которых лежит полевой транзистор с каналом n-типа.

Рис.7

Полевые диоды имеют только два вывода и оптимизированы с точки зрения вольт-амперных характеристик. При их изготовлении можно достичь нулевого температурного коэффициента, объединяя CRD с резистором, имеющим тот же самый, но противоположного знака температурный коэффициент.
Токостабилизирующие диоды не очень известны в широких массах радиолюбительского сообщества, но тем временем активно выпускаются буржуйскими промышленниками, имеют приличную номенклатуру токов и достаточно широкий диапазон рабочих напряжений.

А на следующей странице продолжим тему — посвятим её источникам тока на операционных усилителях, а также преобразователям напряжение-ток на ОУ и транзисторах.

Бурыкин Валерий

Жизнь в динамике

Генератор тока (источник тока). Различия и сходства стабилизаторов тока и напряжения.

Стабилизатор напряжения.

Генератор тока.

Что нужно для расчёта источника тока.

Пример расчета простого генератора тока на биполярном транзисторе

Пример расчета:

10 response to «Генератор тока (источник тока). Различия и сходства стабилизаторов тока и напряжения.»

By: Александр Posted: 03.05.2020

Здравствуйте. Скажите,как посчитали: При Rбал. = 2 кОм и дельта Uпит. = 18 В, дельта Uоп. составит 0,53 В.

Динамическое сопротивление стабилитрона:
rст = 60 Ом (См. таблицу выше)

dI = dU/2кОм = 9мА
dUоп. = dI * rст. = 0.009 * 60 = 0.54 В
Простите на 0,01V ошибся. Но я считал навскидку.

By: АЛЕКС Posted: 16.01.2020

А во! — Вразумте дядько разницу между генератором тока и напряжения или как там ЭДС, а также, что подразумить глядя на батарейку — это источник тока и источник ЭДС, а где там вооще то есть напряжение и что мы в первую очередь можем определить и измерить.
Может это курица и яйцо ;))

То есть дядько Вам сейчас в своём ответе должен пересказать всю статью?
Там есть объяснение в чём разница.
А к чему Вы приплели здесь ЭДС. Это вообще овощ с другого огорода и к созданию электронных схем никакого отношения не имеет.
Если Вам это точно интересно то вот Вам ссылка: https://samelectrik.ru/chto-takoe-eds-obyasnenie-prostymi-slovami.html

By: triak Posted: 01.08.2020

нас в институте учили так — если внутреннее сопротивление источника близко к нулю, — это источник напряжения.
Если внутреннее сопротивление источника близко к бесконечности, — это источник тока.
Любая реальная батарейка, аккум или выход выпрямителя — где-то между.
Пока при снижении сопротивления нагрузки (т.е. увеличении нагрузки) напряжение на ней не падает (а только растёт ток через неё) — это она питается от хорошего источника напряжения.
Если при изменении величины нагрузки остаётся стабильным ток через неё (по при этом меняется напряжение, и ИСТОЧНИК НЕ ПЕРЕГРЕВАЕТСЯ и не сгорает) — она питается от хорошего источника тока

Ну так в статье как раз об этом и рассказано. Только вот в статье дано математическое обоснование всему этому и примеры расчетов.
Что касается батарейки, аккумуляторов, солнечных элементов, различных электрогенераторов без схем управления и т.д. и т.п., то они действительно находятся между генератором напряжения и генератором тока. Называются такие источники источниками ЭДС.

By: Алекс Posted: 15.01.2020

Упс:)
<>
— Из тогот, что Uстаб=Uбэ+Uэ и постоянном напряжением Uiсточ. МОЖНО сделать вывод:, — что повышая Rнагр ток проходящий через Rэ будет падать и ни о какой стабилизации тока нет и речи касательно самых первых примитивных схем. Источнику негде взять повышение напряжения соразмерно повышения Rнагр.

УПС:)
А Вы статью вообще читали в каком состоянии?
Ведь в ней об этом говорится и в расчётах это учитывается.
Да, есть граничные условия для напряжения питания и максимальной величины Rнагр.
При определённом Uпит. есть некоторый диапазон 0

By: Юрий Posted: 28.04.2019

Идеального генератор тока и напряжения в природе не существует.Все зависит он нагрузки, когда мы можем говорить об одном или о другом.Точнее об соотношении нагрузки и внутреннего сопротивления источника.То,что вы приводите в конце статьи- это перевод .Возможно даже машинный.Что же к этому придираться?

Я придираюсь к тем кто публикует такие переводы.
Или их также публикуют машины?

Но на самом деле если Вы наберёте в поиске запрос «генератор тока»
То таких, как Вы говорите «переводов» найдёте море, да практически
все результаты поиска будут из них состоять.

Конструкции генераторов. Примеры схем

Неотъемлемой частью почти любого электронного устройства является генератор гармонических или каких-либо других колебаний.
Самые очевидные использования генераторов, например, в качестве источников синусоидальных сигналов, каких-либо функций, импульсов.
Источник регулярных колебаний необходим в любом периодически действующем измерительном приборе, в устройствах, инициирующих измерения или технологические процессы. Вообще в любом приборе, работа которого связана с периодическими состояниями или периодическими колебаниями. Они присутствуют практически везде. Так, например, генераторы колебаний специальной формы используются в цифровых мультиметрах, осциллографах, радиоприемниках, ЭВМ, в любом периферийном устройстве ЭВМ, почти в любом цифровом приборе (счетчики, таймеры, калькуляторы и любые приборы с «многократным отображением») и во множестве других устройств, слишком многочисленных, чтобы их здесь перечислять.

Устройство без генератора либо вообще ни на что не способно, либо предназначено для подключения к другому (которое скорее всего содержит генератор). Не будет преувеличением сказать, что генераторы являются таким же необходимым устройством в электронике, как регулируемый источник питания постоянного тока.

В зависимости от конкретного применения генератор может использоваться просто как источник регулярных импульсов («часы» в цифровой системе). От него может потребоваться стабильность и точность (например, опорный интервал времени в частотомере), регулируемость (гетеродин передатчика или приемника) или способность генерировать колебания в
точности заданной формы (как например, генератор горизонтальной развертки осциллографа).

Релаксационный генератор

Очень простой генератор можно получить несложными манипуляциями. Зарядим конденсатор через резистор (или источник тока), а затем, когда напряжение достигнет некоторого порогового значения, быстро его разрядим и начнем цикл сначала. Это можно сделать с помощью внешней цепи, обеспечивающей изменения полярности тока заряда при достижении некоторого порогового напряжения. Следовательно, будут генерироваться колебания треугольной формы, а не пилообразные. Генераторы, построенные на этом принципе, известны под названием «релаксационные генераторы». Они просты и недороги и при умелом проектировании могут обеспечивать удовлетворительную стабильность по частоте.

Раньше для создания релаксационных генераторов применялись устройства с отрицательным сопротивлением, такие, как однопереходные транзисторы или неоновые лампы. Теперь предпочитают ОУ или специальные интегральные схемы таймеров. На рисунке показан классический релаксационный RС-генератор.

Работает он просто. Допустим, что при начальном включении питания выходной сигнал ОУ выходит на положительное насыщение (каким образом это произойдет — неважно). Конденсатор начинает заряжаться до напряжения U + с постоянной времени, равной RC. Когда напряжение на конденсаторе достигнет половины напряжения источника питания, ОУ переключается в состояние отрицательного насыщения (он включен как триггер Шмитта). Конденсатор начинает разряжаться до U- с той же самой постоянной времени. Этот цикл повторяется бесконечно, с периодом 2,2 RС. Цикл не зависит от напряжения источника питания.

Применяя для заряда конденсатора источники тока, можно получить колебания хорошей треугольной формы. Пример удачной схемы (datasheet СА3160):

Читайте также  Щетки генератора ваз 2107 причины

Иногда необходим генератор с очень низким уровнем шума (так называемый «низкий внеполосный шум»). В этом отношении хороша простая схема, показанная на рисунке:

В схеме используется пара КМОП-инверторов (в виде цифровых логических схем). Соединение инверторов между собой образует некоторую разновидность RC релаксационного генератора с выходным сигналом в виде прямоугольного колебания. Измерения, проведенные для этой схемы, работающей на частоте 100 кГц, показали, что плотность мощности шума в ближайшей боковой полосе ниже, по крайней мере, на 85 дБ уровня основного колебания. Иногда встречается аналогичная схема, в которой заменяют местами элементы R2 и С. Хотя это и превосходный генератор, но он уже имеет крайне зашумленный выходной сигнал.

Представленная на рисунке ниже схема имеет даже более низкий уровень шума.

Кроме того, имеется возможность модулировать выходную частоту с помощью внешнего тока, прикладываемого к базе транзистора Т1. В этой схеме транзистор Т1 функционирует как интегратор. На коллекторе Т1 вырабатывается сигнал асимметричной треугольной формы. Сами же инверторы работают в качестве неинвертирующего компаратора. Изменяют полярность возбуждения на базе каждые полпериода. Эта схема имеет плотность шума — 90 дБД/Гц, измеренную на частоте 100Гц смещения от несущего колебания 150 кГц, и —100 дБД/Гц, измеренную при смещении 300 Гц. Эти схемы превосходны в отношении уровня бокового шума. Но генерируемая частота имеет большую чувствительность к колебаниям напряжения источника питания.

Электронные генераторы. Виды и устройство. Работа и особенности

Устройства, преобразующие электроэнергию источника постоянного тока в незатухающую энергию электрических колебаний расчетной частоты и формы, называются электронные генераторы.

Электронные генераторы

Такие генераторы приобрели популярность в электронике, компьютерной технике, радиоприемниках. Генераторами может выдаваться сигнал частотой до нескольких мегагерц. Форма выходного напряжения имеет формы синусоиды, прямоугольника и пилы.

Контур колебаний получает возбуждение от наружного источника тока, появляются колебания, которые со временем затухают, так как сопротивление поглощает энергию. Чтобы колебания не затухали, в контуре нужно восполнять потерю энергии. Этот процесс восполнения выполняется положительной обратной связью. Эта связь подает в контур некоторую часть сигнала, который должен совпадать с сигналом обратной связи.

Электронные генераторы состоят из следующих частей:

  • Контур колебаний, задающий частоту генератора.
  • Усилитель, повышающий амплитуду сигнала на выходе контура колебаний.
  • Обратная связь, подающая некоторое количество энергии в контур.

Электронные генераторы используют постоянный ток для образования колебаний переменного тока, и являются схемами с положительной связью.

Классификация

Электронные генераторы делятся на несколько классов по различным параметрам. Рассмотрим основные разновидности таких генераторов.

По форме сигнала:
  • В виде синусоиды.
  • Прямоугольные.
  • В форме пилы.
  • Специальные.
По частоте:
  • Высокочастотные (более 100 килогерц).
  • Низкочастотные (менее 100 килогерц).
По возбуждению:
  • С независимым возбуждением.
  • Автогенераторы (самовозбуждение).

Автоматическим генератором называют устройство, которое самостоятельно возбуждается, без воздействия извне, преобразует поступающую энергию в колебания. Электронные генераторы выполняются по схемам, аналогичным усилителям, за исключением отсутствия питания сигнала входа. Вместо него используют обратную связь, которая является передачей некоторого количества сигнала выхода на вход.

Определенная форма сигнала создается обратной связью. Частота колебаний создается на цепях RС или LС, и зависит от времени зарядки емкости. Сигнал обратной связи приходит на вход усилителя, где повышается в несколько раз и выходит. Часть сигнала возвращается и ослабевает в несколько раз, что дает возможность поддерживать одинаковую амплитуду сигнала на выходе.

Генераторы с внешним видом возбуждения считаются усилителями мощности с определенным частотным интервалом. На его вход подается сигнал от автогенератора, усиливается определенный интервал частот.

Электронные генераторы RС

Для образования низкочастотных генераторов применяют усилители. В них вместо обратной связи монтируют RС цепи для создания некоторой частоты колебаний. Эти цепи являются фильтрами частоты, которые пропускают сигналы в специальном интервале частот и не пропускают за его пределами. По обратной связи возвращается некоторая полоса частот.

Типы фильтров

  • Низкочастотные фильтры.
  • Высокочастотные фильтры.
  • Полосовые фильтры.
  • Заграждающие фильтры.

Характеристикой фильтра является частота среза. Если взять положение ниже этой частоты, или выше, то сигнал значительно уменьшается. Заграждающие и полосовые фильтры имеют характеристику в виде ширины полосы.

На рисунке изображена цепь генератора с синусоидальным сигналом. Усиление определяется цепью обратной связи R1, R2. Для создания нулевого сдвига по фазе обратная связь подключена от выхода усилителя на неинвертирующий его вход. Цепь обратной связи выступает в качестве полосового фильтра.

Для стабилизации величины частоты пользуются кварцевыми резонаторами, которые состоят из минеральной тонкой пластины, закрепленной в держателе. Кварц славится своим пьезоэффектом. Это дает возможность применять его в качестве системы, аналогичной колебательному контуру со свойством резонанса. Частота резонанса пластин колеблется от единиц до тысяч мегагерц.

Мультивибраторы

Эти электронные генераторы создают колебания формы прямоугольника, являются 2-х каскадным усилителем с обратной связью на основе резисторов. Выходы каскадов соединены со входами. Название этого генератора объясняет наличие значительного количества гармоник.

Мультивибратор способен действовать в нескольких режимах:
  • Автоколебательный режим.
  • Синхронизация.
  • Ждущий режим.

В первом виде режима мультивибратор работает с самовозбуждением. При синхронизации на генератор оказывает воздействие внешнее напряжение с частотой импульсов. Ждущий режим подразумевает работу с внешним возбуждением.

Автоколебательный режим мультивибратора

Устройство мультивибратора включает в себя два каскада усилителя с резисторами. Выходы каскадов подключены ко входам других каскадов через емкости С1 и С2.

Мультивибраторы с аналогичными транзисторами и симметричными компонентами имеют название симметричных.

В режиме автоколебаний мультивибратор может находиться в 2-х состояниях равновесия:
  1. Один транзистор в насыщении, второй в отсечке.
  2. Первый транзистор на отсечке, другой в насыщении.

Такие положения неустойчивы. Одна схема переходит в другую с эффектом лавины с помощью обратной связи. Для оптимизации формы импульсов на выходе генератора подключают разделительные диоды в схемы коллекторов. Через диоды подключают вспомогательные резисторы.

По такой схеме после закрытия одного транзистора и уменьшения потенциала коллектора диод тоже закрывается. При этом он отключает конденсатор от цепи. Конденсатор заряжается через вспомогательный резистор. Наибольшая длина импульсов определяется параметрами частоты транзисторов.

Такой тип схемы дает возможность создать импульсы практически прямоугольной формы. В качестве недостатков можно отметить малую скважность и невозможность плавного регулирования периода колебаний.

По такой схеме резисторы R2 и R5 включены параллельно емкостям С1 и С2. Резисторы R(1, 3, 4, 6) создают делители напряжения, которые стабилизируют потенциал базы транзистора. При коммутации мультивибратора ток базы резко меняется. Это уменьшает время снижения зарядов в базе и увеличивает скорость выхода транзистора из насыщения.

Ждущий мультивибратор (одиночный)

Если мультивибратор действует в режиме автоколебаний и не имеет устойчивости, то его можно преобразовать в генератор с одной устойчивой позицией и одной неустойчивой позицией. Такие цепи имеют название одновибраторов (релаксационных реле). Чтобы перевести схему из одного состояния в другое, необходимо воздействие внешнего импульса.

В неустойчивой позиции цепь находится некоторое время, зависящее от ее параметров. Далее она скачкообразно возвращается в устойчивую позицию. Чтобы получить ждущий режим генератора, необходимо собрать следующую схему:

В исходном положении транзистор VТ1 находится в закрытом виде. При поступлении на вход плюсового импульса по транзистору идет ток коллектора. При изменении разности потенциалов на транзисторе VТ1 оно подается через емкость С2 на базу VТ2. С помощью обратной связи повышается лавинный эффект, который приводит к закрытию VТ2 и открытию VТ1.

В такой неустойчивой позиции схема находится до полного разряда емкости С2. Далее транзистор VТ2 открывается, VТ1 закрывается. Положение схемы возвращается в первоначальную позицию.

Яков Кузнецов/ автор статьи

Приветствую! Я являюсь руководителем данного проекта и занимаюсь его наполнением. Здесь я стараюсь собирать и публиковать максимально полный и интересный контент на темы связанные ремонтом автомобилей и подбором для них запасных частей. Уверен вы найдете для себя немало полезной информации. С уважением, Яков Кузнецов.

Понравилась статья? Поделиться с друзьями:
NEVINKA-INFO.RU
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: