Устройства генератора 220 вольт - NEVINKA-INFO.RU

Устройства генератора 220 вольт

Проблема неустойчивой подачи электроэнергии решается установкой автономного источника питания, часто используют однофазные генераторы. Каковы устройство, принцип работы и схема подключения таких генераторов?

Устройства генератора 220 вольт

Особенности и подключение однофазных генераторов

  1. Устройство и принцип работы
  2. Плюсы и минусы
  3. Схема подключения

Проблемы с наличием централизованного электроснабжения и его стабильной подачей ставят перед собственниками домов и многими потребителями вопрос, как обеспечить непрерывную подачи энергии. Зачастую проблема решается установкой автономного источника питания, часто используют однофазные генераторы. Это силовое устройство бытового класса. Их отличает простая конструкция, удобство эксплуатации, невысокая стоимость, совместимость с однофазными электроприборами. Принцип работы таких генераторов основан на преобразовании в электричество кинетических видов энергии, используя принцип электромагнитной индукции.

Устройство и принцип работы

Основная часть генераторов работает на механизме вращающегося поля. Токопроводящая рамка совершает вращательные движения в магнитном поле катушки, между парой магнитов с противоположными полюсами, что приводит к возникновению электродвижущей силы. Индуцирование тока происходит в момент пересечения проводниками магнитных линий силового поля. Рамка меняет свою ориентацию по отношению к полюсам магнита, что ведет к изменению направления электрического тока. Он вырабатывается генератором до тех пор, пока проводник вращается источником механической энергии.

Устройство однофазных генераторов содержит в своей схеме несколько элементов:

индукторная вращающаяся часть;

неподвижная якорная часть;

скользящая щеточная часть;

кольца контактного типа.

Выработанная генератором электроэнергия по сети поступает к различным типам оборудования. Происходит перераспределение по объектам полученного питания. Схемы устройства для оптимального переключения снабжаются перекидным рубильником и блокираторами.

Рубильники имеют разные технические параметры. Перекидной рубильник в трехфазной сети должен устанавливаться одновременно с блоком питания, имеющим высокий показатель напряжения. Перекидные рубильники производятся в двух вариантах:

  • двухполюсной.

Первая модель состоит из одного модуля, включает медные проводники для подключения. Двухполюсная разновидность рубильника используется в электрических схемах. Они совместимы с разнофазными сетями, конденсаторами открытого типа. Перекидные рубильники подключают исходя из типа электрических сетей.

Однофазная сеть допускает подключение только двухполюсного прибора, функционирующего с блоком питания. При двухфазной сети эксплуатация генератора в сети дома осуществляется с переходным типом прибора. При такой схеме используются выключатели расширительного типа.

Плюсы и минусы

Основные достоинства генераторов, вырабатывающих электрическую энергию для использования на разных объектах:

  • простота управления и состава элементов;
  • компактный вес устройства;
  • надежность конструкции;
  • отсутствие гистерезисных потерь и вихревых потоков;
  • нет фазовой погрешности;
  • постоянные магниты не требуют установки дополнительного энергетического источника;
  • способность работы в сложных условиях;
  • эффективная производительность.

К недостаткам можно отнести:

  • недостаточная мощность;
  • необходимость контроля;
  • проведение частого технического обслуживания.

Схема подключения

Для ввода в эксплуатацию однофазного генератора необходимо придерживаться нескольких правил, особенно если устройство подключается к жилому дому своими руками.

Рекомендуется использовать в работе только целостные кабели, предусмотреть заземление, избегать продолжительных перегрузок сети, строго придерживаться правил безопасности.

Генератор в процессе установки необходимо защищать от влаги. При монтаже следует устранить выхлопы газа путем их отвода. При максимальных нагрузках можно использовать резервный источник. Для уменьшения затрат необходимо подбирать корректную схему монтажа. Обычно электрогенератор устанавливается после счетчика. Если существует нестабильная подача электрической энергии, нужно выбирать наиболее простые схемы.

Присоединение к распределительному автомату, если рядом есть рабочая заземленная розетка, будет оптимальным вариантом. Наличие трехпозиционного стационарного переключателя позволит подключить электрооборудование и не отсоединять провода от его зажимов. Ток по цепи может проходить от различных веток, при этом подключение нагрузки возможно лишь к одной. В целях исключения контактов проводов рекомендуется установить нейтральное положение. Однофазный генератор обладает собственным нолем, поэтому переключатель должен быть соответствующим.

При самостоятельном подключении нужно учитывать показатель мощности, типы потребителей энергии и двигателя. Однофазный генератор рекомендован для подсоединения приборов, которые рассчитаны на производительность от сети 220 вольт. Генерируемая таким устройством энергия в 10-15 киловатт позволит максимально покрыть потребности электроснабжения стандартного загородного дома. При этом вычисляется нужная мощность установки и общее домовое потребление электроэнергии при пиковой нагрузке.

Далее смотрите видеоурок о том, как подключить генератор к сети.

Самодельный асинхронный генератор

Для питания бытовых устройств и промышленного оборудования необходим источник электроэнергии. Выработать электрический ток возможно несколькими способами. Но наиболее перспективным и экономически выгодным, на сегодняшний день, является генерация тока электрическими машинами. Самым простым в изготовлении, дешёвым и надёжным в эксплуатации оказался асинхронный генератор, вырабатывающий львиную долю потребляемой нами электроэнергии.

Применение электрических машин этого типа продиктовано их преимуществами. Асинхронные электрогенераторы, в отличие от синхронных генераторов, обеспечивают:

  • более высокую степень надёжности;
  • длительный срок эксплуатации;
  • экономичность;
  • минимальные затраты на обслуживание.

Эти и другие свойства асинхронных генераторов заложены в их конструкции.

Устройство и принцип работы

Главными рабочими частями асинхронного генератора является ротор (подвижная деталь) и статор (неподвижный). На рисунке 1 ротор расположен справа, а статор слева. Обратите внимание на устройство ротора. На нём не видно обмоток из медной проволоки. На самом деле обмотки существуют, но они состоят из алюминиевых стержней короткозамкнутых на кольца, расположенные с двух сторон. На фото стержни видны в виде косых линий.

Конструкция короткозамкнутых обмоток образует, так называемую, «беличью клетку». Пространство внутри этой клетки заполнено стальными пластинами. Если быть точным, то алюминиевые стержни впрессовываются в пазы, проделанные в сердечнике ротора.

Рис. 1. Ротор и статор асинхронного генератора

Асинхронная машина, устройство которой описано выше, называется генератором с короткозамкнутым ротором. Тот, кто знаком с конструкцией асинхронного электродвигателя наверняка заметил схожесть в строении этих двух машин. По сути дела они ничем не отличаются, так как асинхронный генератор и короткозамкнутый электродвигатель практически идентичны, за исключением дополнительных конденсаторов возбуждения, используемых в генераторном режиме.

Ротор расположен на валу, который сидит на подшипниках, зажимаемых с двух сторон крышками. Вся конструкция защищена металлическим корпусом. Генераторы средней и большой мощности требуют охлаждения, поэтому на валу дополнительно устанавливается вентилятор, а сам корпус делают ребристым (см. рис. 2).

Рис. 2. Асинхронный генератор в сборе

Принцип действия

По определению, генератором является устройство, преобразующее механическую энергию в электрический ток. При этом не имеет значения, какая энергия используется для вращения ротора: ветровая, потенциальная энергия воды или же внутренняя энергия, преобразуемая турбиной либо ДВС в механическую.

В результате вращения ротора магнитные силовые линии, образованные остаточной намагниченностью стальных пластин, пересекают обмотки статора. В катушках образуется ЭДС, которая, при подсоединении активных нагрузок, приводит к образованию тока в их цепях.

При этом важно, чтобы синхронная скорость вращения вала немного (примерно на 2 – 10%) превышала синхронную частоту переменного тока (задаётся количеством полюсов статора). Другими словами, необходимо обеспечить асинхронность (несовпадение) частоты вращения на величину скольжения ротора.

Следует заметить, что полученный таким образом ток будет небольшим. Чтобы повысить выходную мощность необходимо увеличить магнитную индукцию. Добиваются повышения КПД устройства путём подключения конденсаторов к выводам катушек статора.

На рисунке 3 изображена схема сварочного асинхронного альтернатора с конденсаторным возбуждением (левая часть схемы). Обратите внимание на то, что конденсаторы возбуждения подключены по схеме треугольника. Правая часть рисунка – собственно схема самого инверторного сварочного аппарата.

Рис. 3. Схема сварочного асинхронного генератора

Существуют и другие, более сложные схемы возбуждения, например, с применением катушек индуктивности и батареи конденсаторов. Пример такой схемы показан на рисунке 4.

Рисунок 4. Схема устройства с индуктивностями

Отличие от синхронного генератора

Главное отличие синхронного альтернатора от асинхронного генератора в конструкции ротора. В синхронной машине ротор состоит из проволочных обмоток. Для создания магнитной индукции используется автономный источник питания (часто дополнительный маломощный генератор постоянного тока, расположенный на одной оси с ротором).

Преимущество синхронного генератора в том, что он генерирует более качественный ток и легко синхронизируется с другими альтернаторами подобного типа. Однако синхронные альтернаторы более чувствительны к перегрузкам и КЗ. Они дороже от своих асинхронных собратьев и требовательнее в обслуживании – необходимо следить за состоянием щёток.

Коэффициент гармоник или клирфактор асинхронных генераторов ниже, чем у синхронных альтернаторов. То есть они вырабатывают практически чистую электроэнергию. На таких токах устойчивее работают:

  • ИБП;
  • регулируемые зарядные устройства;
  • современные телевизионные приёмники.

Асинхронные генераторы обеспечивают уверенный запуск электромоторов, требующих больших пусковых токов. По этому показателю они, фактически, не уступают синхронным машинам. У них меньше реактивных нагрузок, что положительно сказывается на тепловом режиме, так как меньше энергии расходуется на реактивную мощность. У асинхронного альтернатора лучшая стабильность выходной частоты на разных скоростях вращения ротора.

Классификация

Генераторы короткозамкнутого типа получили наибольшее распространение, ввиду простоты их конструкции. Однако существуют и другие типы асинхронных машин: альтернаторы с фазным ротором и устройства, с применением постоянных магнитов, образующих цепь возбуждения.

На рисунке 5 для сравнения показаны два типа генераторов: слева на базе асинхронного двигателя с короткозамкнутым ротором, а справа – асинхронная машина на базе АД с фазным ротором. Даже при беглом взгляде на схематические изображения видно усложнённую конструкцию фазного ротора. Привлекает внимание наличие контактных колец (4) и механизма щёткодержателей (5). Цифрой 3 обозначены пазы для проволочной обмотки, на которую необходимо подать ток для её возбуждения.

Читайте также  Щетки генератора газель некст замена

Рис. 5. Типы асинхронных генераторов

Наличие обмоток возбуждения в роторе асинхронного генератора повышает качество генерируемого электрического тока, однако при этом теряются такие достоинства как простота и надёжность. Поэтому такие устройства используются в качестве источника автономного питания только в тех сферах, где без них трудно обойтись. Постоянные магниты в роторах применяют в основном для производства маломощных генераторов.

Область применения

Наиболее часто встречается применение генераторных установок с короткозамкнутым ротором. Они недорогие, практически не нуждаются в обслуживании. Устройства, оборудованные пусковыми конденсаторами, обладают приличными показателями КПД.

Асинхронные альтернаторы часто используют в качестве автономного или резервного источника питания. С ними работают переносные бензиновые генераторы, их используют для мощных мобильных и стационарных дизельных генераторов.

Альтернаторы с трёхфазной обмоткой уверенно запускают трехфазный электродвигатель, поэтому часто используются в промышленных энергоустановках. Они также могут питать оборудование в однофазных сетях. Двухфазный режим позволяет экономить топливо ДВС, так как незадействованные обмотки находятся в режиме холостого хода.

Сфера применения довольно обширная:

  • транспортная промышленность;
  • сельское хозяйство;
  • бытовая сфера;
  • медицинские учреждения;

Асинхронные альтернаторы удобны для сооружения локальных ветровых и гидравлических электростанций.

Асинхронный генератор своими руками

Оговоримся сразу: речь пойдёт не об изготовлении генератора с нуля, а о переделывании асинхронного двигателя в альтернатор. Некоторые умельцы используют готовый статор от мотора и экспериментируют с ротором. Идея состоит в том, чтобы с помощью неодимовых магнитов сделать полюса ротора. Примерно так может выглядеть заготовка с наклеенными магнитиками (см. рис. 6):

Рис. 6. Заготовка с наклеенными магнитами

Вы наклеиваете магниты на специально выточенную заготовку, посаженную на валу электродвигателя, соблюдая их полярность и угол сдвига. Для этого потребуется не менее 128 магнитиков.

Готовую конструкцию необходимо подогнать к статору и при этом обеспечить минимальный зазор между зубцами и магнитными полюсами изготовленного ротора. Поскольку магнитики плоские, придётся их шлифовать или обтачивать, при этом постоянно охлаждая конструкцию, так как неодим теряет свои магнитные свойства при высокой температуре. Если вы сделаете всё правильно – генератор заработает.

Проблема состоит в том, что в кустарных условиях очень сложно изготовить идеальный ротор. Но если у вас есть токарный станок и вы готовы потратить несколько недель на подгонку и доработки – можете поэкспериментировать.

Я предлагаю более практичный вариант – превращение асинхронного двигателя в генератор (смотрите видео ниже). Для этого вам понадобится электромотор с подходящей мощностью и приемлемой частотой вращения ротора. Мощность двигателя должна быть минимум на 50% выше от требуемой мощности альтернатора. Если такой электромотор есть в вашем распоряжении – приступайте к переработке. В противном случае лучше купить готовый генератор.

Для переработки вам потребуется 3 конденсатора марки КБГ-МН, МБГО, МБГТ (можно брать другие марки, но не электролитические). Конденсаторы подбирайте на напряжение не менее 600 В (для трёхфазного двигателя). Реактивная мощность генератора Q связанная с емкостью конденсатора следующей зависимостью: Q = 0,314·U 2 ·C·10 -6 .

При увеличении нагрузки возрастает реактивная мощность, а значит, для поддержания стабильного напряжения U необходимо увеличивать ёмкость конденсаторов, добавляя новые ёмкости путём коммутации.

Видео: делаем асинхронный генератор из однофазного двигателя – Часть 1
https://www.youtube.com/watch?v=ZQO5S9F72CQ

Часть 2
https://www.youtube.com/watch?v=nDCdADUZghs

Часть 3
https://www.youtube.com/watch?v=6M_w1b2xyM8

Часть 4
https://www.youtube.com/watch?v=CONHg7p-IYE

Часть 5
https://www.youtube.com/watch?v=z2YSqVh1vM8

Часть 6
https://www.youtube.com/watch?v=FNU83kOeSbA

Для упрощения подбора конденсаторов воспользуйтесь таблицей:

Мощность альтернатора (кВт-А) Ёмкость конденсатора (мкФ) на холостом ходу Ёмкость конденсатора (мкФ) при средней нагрузке Ёмкость конденсатора (мкФ) при полной нагрузке
2 28 36 60
3,5 45 56 100
5 60 75 138

На практике, обычно выбирают среднее значение, предполагая, что нагрузка не будет максимальной.

Подобрав параметры конденсаторов, подключите их к выводам обмоток статора так, как показано на схеме (рис. 7). Генератор готов.

Рис. 7. Схема подключения конденсаторов

Советы по эксплуатации

Асинхронный генератор не требует особого ухода. Его обслуживание заключается в контроле состояния подшипников. На номинальных режимах устройство способно работать годами без вмешательства оператора.

Слабое звено – конденсаторы. Они могут выходить из строя, особенно тогда, когда их номиналы неправильно подобраны.

При работе генератор нагревается. Если вы часто подключаете повышенные нагрузки – следите за температурой устройства или позаботьтесь о дополнительном охлаждении.

Инверторный генератор — как устроен и работает

Вопросы резервирования электропитания по-прежнему остаются популярными в среде пользователей электроэнергии. Для этих целей производители сейчас массово выпускают электрические генераторы различных видов и мощностей. Среди всех конструкций подобных приборов особое место отводится элитным моделям, работающим по принципу выработки электроэнергии повышенного качества.

Для этого в их алгоритме реализован метод инверторного преобразования основных параметров электрических сигналов. За счет этого они получили название инверторных генераторов.

Их могут выпускать с различной мощностью, но наибольшей популярностью у населения пользуются модели от 800 до 3000 ватт.

Источником энергии для питания двигателя может служить:

Как устроен инверторный генератор

В конструкцию прибора, заключенную в единый корпус, входят:

двигатель внутреннего сгорания,

генератор переменного тока:

блок инверторного преобразования;

разъемы для подключения выходных цепей;

органы управления и контроля отслеживания технологических процессов.

Для подключения электроприборов используется общепромышленный вывод электроэнергии через три силовых контакта обычной стандартной розетки переменного тока 220 вольт.

Помимо переменного напряжения, генератор выдает постоянный ток, который можно использовать для зарядки различных аккумуляторов, например, применяемых для стартерного запуска двигателя автомобиля. Для этого в комплекте поставки предусмотрены специальные зажимы для подключения е его входными клеммами.

Генератор снабжен защитами, которые автоматически размыкают цепь питания при подключении к выходным контактам чрезмерной нагрузки. Также защиты контролируют техническое состояние двигателя, особенно достижение критического уровня масла. Когда его станет недостаточно для смазки всех движущихся узлов, то двигатель от действия защит автоматически остановится. Чтобы этого не произошло необходимо следить за уровнем масла в картере.

Подобные генераторы оборудуются, как правило, четырехтактным двигателем с верхним расположением клапанов.

Принцип работы инверторного блока

Схема взаимосвязей различных технологических процессов, происходящих при инвертировании сигналов, пояснена рисунком.

Двигатель внутреннего сгорания раскручивает обычный генератор, вырабатывающий электрическую энергию синусоидальной формы. Ее поток направляют на выпрямительный мост, состоящий из силовых диодов, расположенных на мощных радиаторах охлаждения. В результате на его выходе производится пульсирующее напряжение.

После моста работает конденсаторный фильтр, сглаживающий пульсации до стабильной прямой линии, характерной для цепей постоянного тока. Специальная конструкция электролитических конденсаторов подобрана для надежной работы с напряжением выше 400 вольт.

Запас сделан для исключения воздействия пульсирующих пиков амплитуды действующего напряжения 220 V: 220∙1,4=310 V. Емкость конденсаторов рассчитывают по мощности подключаемой нагрузки. На практике она составляет величину от 470 мкФ и выше для одного конденсатора.

Инвертор получает выпрямленный стабилизированный постоянный ток и из него вырабатывает качественную гармонику промышленной частоты.

Для работы инвертора разработаны различные алгоритмы технологических процессов, но лучшей формой сигнала обладают мостовые схемы с трансформатором.

Основным элементом, формирующим сигнал синусоиды, выступает полупроводниковый транзисторный ключ, собранный на элементах IGBT или MOSFIT.

Для образования синусоиды используется принцип создания многократно повторяющейся периодичности широтно-импульсных модуляций. Чтобы его реализации каждый полупериод колебания напряжения формируется срабатыванием определенной пары транзисторов в режиме высокочастотных импульсов с соответствующей амплитудой, меняющейся во времени по закону синуса.

Окончательное выравнивание синусоиды и сглаживание пиков импульсов производится высокочастотным фильтром нижних частот.

Таким образом, инверторный блок служит для преобразования электроэнергии, вырабатываемой обмотками генератора в стабилизированную величину с точными метрологическими характеристиками, обеспечивающими установившуюся частоту 50 гЦ и напряжение 220 вольт.

Работой инверторного блока занимается система управления, контролирующая посредством обратных связей все технологические процессы генератора от различных состояний двигателя внутреннего сгорания до формы синусоиды напряжения и величины нагрузки, подключенной к выходным цепям.

При этом ток, приходящий с обмоток генератора на блок преобразования, может значительно отличаться по частоте и форме сигнала от номинальных величин. В этом и состоит основное отличие инверторных моделей от всех остальных конструкций.

Применение инверторов позволяет добиться значительных преимуществ по сравнению с обычными генераторами:

1. Они обладают повышенной экономичностью из-за автоматической настройки числа оборотов двигателя при работе и создании оптимального режима для него по действующей величине нагрузки.

Чем большее усилие приложено на двигатель, тем быстрее начинает вращаться его вал при условиях, когда расход количества топлива строго сбалансирован системой управления. У традиционных же генераторов расход топлива слабо зависит от приложенной нагрузки.

2. Инверторные генераторы выдают практически идеальную синусоиду при питании потребителей под нагрузкой. Такой ток высокого качества очень важен для работы чувствительного цифрового оборудования.

3. Габариты элитных моделей отличаются компактным расположением, легким весом по сравнению с обычными устройствами при одинаковой мощности.

4. Надежность инверторных генераторов настолько высока, что их производители гарантируют им удвоенный срок эксплуатации по сравнению с простыми аналогами.

Инверторные генераторы создаются для использования в трех режимах:

1. длительной эксплуатации под номинальной нагрузкой, не превышающей заявленную производителем выходную мощность;

Читайте также  Электромобиль с водородным генератором

2. кратковременной перегрузки не более получасового периода;

3. запуска двигателя и выхода генератора на рабочий режим, когда требуется преодолевать большие усилия противодействия раскрутки ротора и емкостной нагрузки в схеме силовой части.

В третьем режиме инвертор может противостоять значительной величине противодействующей моментальной мощности, но время его работы ограничено всего несколькими миллисекундами.

Как запустить двигатель

Для этого необходимо выполнить ряд операций. Рассмотрим их последовательность на примере одной из доступных моделей генератора ER 2000 i. Очередность действий:

1. проверить уровень масла, ибо без него запуска не произойдет благодаря блокировке защитами и очень высокой вероятности поломки;

2. залить топливо — без него двигателю неоткуда будет получать энергию для создания вращательного движения;

3. открыть клапан крышки топливного бака;

4. переключить дроссель в положение «Запуск»;

5. установить рукоятку крана топлива в положение «Работа»;

6. запустить генератор ручной раскруткой с помощью шнура.

При первоначальном запуске двигателя кратковременно загорается лампочка перегрузки, а затем длительно — индикатор напряжения нормального режима, горение которого свидетельствует об оптимальных условиях работы.

После запуска двигателя генератор работает на холостом ходу и имеет оптимальные электрические параметры. Напряжение и частота, показанные на картинке, соответствуют нормальным величинам.

После проверки характеристик холостого хода подключаем нагрузку к генератору, например, используя мощный промышленный фен.

Мощность подключенного прибора не изменила напряжение и частоту на выходе устройства, а по индикации рабочего тока можно судить о потребляемой феном мощности.

После этого эксперимента подключаем к выходу постоянного тока цифровую вычислительную технику и видим, что она надежно работает. При использовании обычных генераторов без инверторного блока часто наблюдаются сбои микропроцессорных цифровых устройств из-за низкого качества напряжения питания.

Рекомендации по безопасной эксплуатации

Инверторные генераторы относятся к аппаратуре, использующей микропроцессорные устройства и сложную электронную базу. Правильное соблюдение условий эксплуатации, а также бережная транспортировка и обеспечение условий температурно-влажностного режима при хранении являются гарантией его длительной работоспособности.

При постоянном нахождении в зимнее время в условиях неотапливаемого гаража на всех внутренних частях может образоваться конденсат, который станет причиной выхода из строя электронных компонентов.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Как устроен генератор переменного тока — назначение и принцип действия

Люди пользуются энергией электрического тока практически во всех сферах своей деятельности. Сейчас нелегко представить жизнь без электричества, которое с помощью специального оборудования преобразуется из механической энергии. Рассмотрим подробнее, как происходит этот процесс, и как устроены современные генераторы.

Превращение механической энергии в электрическую

Любой генератор работает по принципу магнитной индукции. Самый простой генератор переменного тока можно представить, как катушку, которая вращается в магнитном поле. Также есть вариант, при котором катушка остается неподвижной, но магнитное поле только её пересекает. Именно во время этого движения и вырабатывается переменный ток. По такому принципу функционирует огромное количество генераторов во всем мире, объединенных в систему электроснабжения.

Устройство и конструкция генератора переменного тока

Стандартный электрогенератор имеет следующие компоненты:

  • Раму, к которой закреплен статор с электромагнитными полюсами. Изготовлена она из металла и должна выполнять защитную функцию всех элементов механизма.
  • Статор, к которому крепится обмотка. Изготавливается он из ферромагнитной стали.
  • Ротор – подвижный элемент, на сердечнике которого располагается обмотка, образующая электрический ток.
  • Узел коммутации, который отводит электричество с ротора. Представляет собой систему подвижных токопроводящих колец.

В зависимости от назначения, генератор имеет определенные особенности конструкции, но существуют два компонента, которыми обладает любое устройство, конвертирующее механическую энергию в электричество:

  1. Ротор – подвижная цельная деталь из железа;
  2. Статор – неподвижный элемент, который изготовлен из железных листов. Внутри него есть пазы, внутри которых располагается проволочная обмотка.

Для получения большей магнитной индукции, между этими элементами должно быть небольшое расстояние. По своей конструкции генераторы бывают:

  • С подвижным якорем и статическим магнитным полем.
  • С неподвижным якорем и вращающимся магнитным полем.

В настоящее время более распространено оборудование с вращающимися магнитными полями, т.к. значительно удобнее снимать электрический ток со статора, чем с ротора. Устройство генератора имеет немало сходств с конструкцией электродвигателя.

Схема генератора переменного тока

Принцип работы электрогенератора: в тот момент, когда половина обмотки находится на одном из полюсов, а другая на противоположном, ток движется по цепи от минимального до максимального значения и обратно.

Классификация и виды агрегатов

Все электрогенераторы можно распределить по критерию работы и по типу топлива, из которого и образуется электроэнергия. Все генераторы делятся на однофазные (выход напряжения 220 Вольт, частота 50 Гц) и трехфазные (380 Вольт с частотой 50 Гц), а также по принципу работы и типу топлива, которое конвертируется в электричество. Ещё генераторы могут использоваться в разных сферах, что определяет их технические характеристики.

По принципу работы

Разделяют асинхронные и синхронные генераторы переменного тока.

Асинхронный

У асинхронных электрогенераторов нет точной зависимости ЭДС от частоты вращения ротора, но здесь работает такой термин, как «скольжение S». Оно определяет эту разницу. Величина скольжения вычисляется, поэтому некоторое влияние элементов генератора в электромеханическом процессе асинхронного двигателя все же есть.

Синхронный

Такой генератор обладает физической зависимостью от вращательного движения ротора к генерируемой частоте электроэнергии. В таком устройстве ротор является электромагнитом, состоящим из сердечников, обмоток и полюсов. Статором являются катушки, которые соединены по принципу звезды, и имеющими общую точку – ноль. Именно в них вырабатывается электрический ток.
Ротор приводит в движение посторонняя сила подвижных элементов (турбин), которые двигаются синхронно. Возбуждение такого генератора переменного тока может быть, как контактным, так и бесконтактным.

По типу топлива двигателя

Удаленность от электросети с появлением генераторов больше не становится препятствием для пользования электроприборами.

Газовый генератор

В качестве топлива здесь используется газ, во время сгорания которого и вырабатывается механическая энергия, которая затем заменяется электрическим током. Преимущества использования газогенератора:

  • Безопасность для окружающей среды, ведь газ при сгорании не выделяет вредных элементов, копоти и токсичных продуктов распада;
  • Экономически это очень выгодно – сжигать дешевый газ. В сравнении с бензином, это обойдется значительно дешевле;
  • Подача топлива осуществляется автоматически. Бензин и дизельное топливо требуется по мере необходимости подливать, а газовый генератор обычно подключают к системе газоснабжения;
  • Благодаря автоматике, аппарат приходит в действие самостоятельно, но для этого он должен располагаться в теплом помещении.

Дизельный генератор

Эту категорию составляют преимущественно однофазные агрегаты мощностью 5 кВт. 220 Вольт и частота 50 Гц являются стандартными для бытовой техники, поэтому дизельный аппарат неплохо справляется со стандартной нагрузкой. Как можно догадаться, для его работы требуется дизельное топливо. Почему стоит выбрать именно дизельный электрогенератор:

  • Относительная дешевизна топлива;
  • Автоматика, позволяющая автоматически запускать генератор при прекращении подачи электрического тока;
  • Высокий уровень противопожарной безопасности;
  • В течении длительного периода времени агрегат на дизеле способен проработать без сбоев;
  • Внушительная долговечность – некоторые модели способны работать в общей сумме 4 года непрерывной эксплуатации.

Бензогенератор

Такие аппараты довольно востребованы как бытовое оборудование. Несмотря на то, что бензин дороже газа и дизеля, такие генераторы имеют немало сильных сторон:

  • Малые габариты при высокой мощности;
  • Просты в эксплуатации: большинство моделей можно запустить вручную, а более мощные генераторы оснащены стартером. Регулируется напряжение под определенную нагрузку при помощи специального винта;
  • В случае перегрузки генератора автоматически срабатывает защита;
  • Просты в обслуживании и ремонте;
  • Во время работы не издают много шума;
  • Можно применять и в помещении, и на улице, но следует защищать от попадания влаги.

Как сделать генератор электрического тока в домашних условиях

Электрический генератор – это устройство, предназначенное для получения электроэнергии, расходуемой на конкретные цели. Самодельный аппарат способен выполнять функцию источника лишь при соблюдении определенных условий. Собрать его полностью «с нуля» дома вряд ли удастся. Единственный способ изготовить электрогенератор своими руками – использовать для этих целей другие, работающие по тому же принципу механизмы. Больше всего подходит старый двигатель от мотоблока или ветряной установки. Работы по сборке потребуют больших затрат сил и средств, а также наличия определенного опыта. Если полной уверенности в удаче нет – лучше всего приобрести хоть и дорогое, но эффективно работающее фирменное изделие.

  1. Устройство и принцип работы
  2. Сборка генератора своими руками
  3. Подготовительный этап
  4. Ветряк – простейший вариант
  5. Силовая установка на основе генератора от мотоблока
  6. Достоинства и недостатки
  7. Советы по эксплуатации

Устройство и принцип работы

Генератор постоянного тока

Перед тем как изготовить электрогенератор своими руками в чисто домашних условиях потребуется ознакомиться с его конструкцией и разобраться, как он работает. Основой такого устройства является многосекционная обмотка, располагающаяся на неподвижном статоре. Внутри помещается подвижный якорь (ротор), в конструкции которого предусмотрен постоянный магнит. Эта часть генератора посредством специального приводного механизма связана с движителем, приводимым во вращение от ветряка или бензинового двигателя. В качестве привода допускается использовать альтернативные энергоресурсы (вода или тепло, образуемое при сгорании дров, например).

Читайте также  Щетки генератора hover h5

  • при вращении ротора его магнитные линии пересекают э/м поле статорных катушек;
  • благодаря этому, согласно закону индукции Фарадея, в них наводится ЭДС соответствующей величины;
  • к катушкам статора подключается нагрузка, переменный ток в которой меняется по синусоиде.

В зависимости от числа обмоток статора и схемы включения можно получить однофазный 220 Вольт или трехфазный (380 Вольт) самодельный генератор.

Этот принцип действия распространяется на все образцы электрических машин без исключения (независимо от типа привода).

Эффективно работающий генератор электрического тока, своими руками изготовленный из подсобных деталей, способен решить целый ряд бытовых проблем. Самодельные изделия традиционно используются для выработки электрической энергии, достаточной для питания домашней электросети. Помимо этого от агрегата может работать не очень мощное сварочное оборудование или водяной насос для полива грядок на даче. Изготовленное в виде ветряного генератора изделие допускается эксплуатировать на даче и в походе.

Сборка генератора своими руками

Инструкция по сборке генераторов тока своими руками предполагает выполнение работ в несколько этапов. Они начинаются с подготовительной стадии, на которой необходимо запастись исходными заготовками и требуемым материалом.

Подготовительный этап

Двигатель мотоблока Крот

Для сборки потребуются:

  • Старый электродвигатель от мотоблока или ветряка с рабочей статорной обмоткой. Также популярны варианты использования двигателей от старой стиральной машины или водяного насоса.
  • Для выравнивания выходного тока желательно заранее изготовить выпрямитель (преобразователь).
  • Для облегчения запуска будущего устройства и самовозбуждения его обмоток 220 Вольт потребуется высоковольтный (не менее 400-500 Вольт) конденсатор емкостью 3-7 микрофарад. Точное его значение выбирается в зависимости от планируемой мощности генератора.

Следует заранее побеспокоиться о заземлении корпуса будущего изделия, вырабатывающего напряжение опасной для человека величины.

По завершении подготовки переходят к сборке, порядок которой зависит от выбранного исходного образца.

Ветряк – простейший вариант

Схема ветрогенератора своими руками

Самый простой в исполнении способ – изготовление ветряного генератора, собранного из подручных деталей и готовых модулей. От него могут работать совсем простые электрические нагрузки, мощность которых не превышает 100 Ватт (лампочка, например). Для его изготовления потребуются:

  • (он будет работать в качестве генератора).
  • Каретка и основная звездочка от взрослого велосипеда.
  • Цепь роликовая от старого мотоцикла.
  • Велосипедная рама.

У хорошего мастера все эти подручные заготовки наверняка отыщутся в гараже, из них без труда своими руками собирается электрический генератор.

Для ознакомления с этой процедурой желательно просмотреть видео, в котором подробно рассказывается о порядке изготовления ветряка.

Силовая установка на основе генератора от мотоблока

Строение генератора от мотоблока

Более сложный в исполнении вариант предполагает применение старого мотоблока, используемого в качестве привода. Функцию генератора в этой системе выполняет асинхронный двигатель с частотой вращения до 1600 об/мин и эффективной мощностью до 15 кВт. В процессе сборки его приводной механизм посредством шкивов и ремня связывается с осью мотоблока. Диаметр шкивов выбирается таким, чтобы частота вращения переделанного в генератор электродвигателя была на 15% выше паспортного значения.

Достоинства и недостатки

В отличие от заводских самодельные бензиновые генераторы, изготовленные в домашних условиях, обычно имеют большие габариты и вес

К достоинствам собранного ручным способом изделия следует отнести:

  • Возможность не зависеть от перебоев в работе питающих подстанций, получая необходимый минимум электричества самостоятельно.
  • Генератор-самоделка настраивается на рабочие параметры, соответствующие конкретным запросам пользователя.
  • Его изготовление вместо покупного изделия позволит сэкономить значительные суммы (особенно – в ситуации с асинхронными машинами на 380 Вольт).

Недостатком самостоятельного изготовления считаются возможные сложности со сборкой конкретного типа изделия и необходимость расходования средств на энергоносители (горючее, например).

Советы по эксплуатации

Перед тем как сделать бытовой генератор электричества, нужно ознакомиться с правилами его эксплуатации. Их суть состоит в следующем:

  1. Перед запуском устройства все нагрузки отключаются, чтобы он поработал вхолостую.
  2. Проверяется наличие масла в рабочем отсеке генератора – его уровень должен быть выше установленной отметки;
  3. Устройство остается включенным примерно на 5 минут, после чего допускается подключать нагрузку.

В соответствии с правилами эксплуатации и ухода за такими генераторами, самым подходящим режимом работы считается использование его мощности на 70% от предельного значения. При соблюдении этого требования оборудование не будет перегреваться и легко справится с расчетной нагрузкой.

Устройство и схема генератора Huter

Huter DY3000L. Общий вид

В данной статье подробно рассмотрю конструкцию и электрическую схему бензинового генератора Huter DY3000L. Генератор без автозапуска. Фото генератора – слева.

Этот электрогенератор был куплен для резервного питания на дачу, и про то, как я его подключал, и какие схемы АВР при этом рассмотрел, читайте – как я подключал генератор Huter через АВР.

А все мои статьи по генераторам – здесь.

Характеристики бензогенератора Huter DY3000L

Вот вкратце параметры этого бензинового электрогенератора, которые интересуют нас, как электриков: Выходная мощность – 2500 ВА (с учетом коэффициента мощности и запаса – берём 2 кВт), запуск – ручной. Больше в принципе с электрической стороны знать ничего не требуется.

Остальные параметры генератора можно узнать из инструкции.

Инструкцию к генератору, а также ещё кое-что, можно будет скачать, дочитав статью до конца.

Основные потребители питания – система отопления (около 300 Вт, зимой – самый стратегически важный потребитель, ради него и покупался генератор), телевизор (100 Вт), холодильник (300Вт), освещение (300 Вт). Итого – прекрасно укладываемся в 1,5кВт. Чтобы питать такую нагрузку, данного генератора вполне хватает.

Ещё в доме есть электрообогреватель мощностью 2,2 кВт и стиральная машина, но мне было дано честное слово, что от генератора они питаться не будут.

Конструкция генератора

Самая важная и капризная часть бензинового генератора Huter, как и любого другого – это система его запуска. Топливный кран, воздушная заслонка, свеча, уровень масла и бензина – всё должно быть в нужном положении и в норме.

Что нас интересует – выключатель работы двигателя (в выключенном состоянии – замкнут), автоматы защиты по переменному и постоянному току.

Ниже – несколько фотографий электрических внутренностей генератора Huter 2500l:

1_электросхема Huter DY3000L_диодный мост и вольтметр

Видим диодный мост KBPC3510 на 35 Ампер и 1000 Вольт. При заявленном токе заряда не выше 9А, максимальном напряжении 14В и токе защитного автомата 10А диодный мост будет работать без проблем.

2_ электросхема бензогенератора Huter DY3000L _выходные клеммы и защита

На второй фотографии виден автомат защиты по переменному напряжению, на котором наклейка с информацией, что его номинальный ток – 12А, ток срабатывания – 15А. Справа – тепловое реле постоянного тока на 10А.

3_ электросхема Huter DY3000L _выключатель работы

На третьей фото – выключатель двигателя. Провода к нему я буду использовать для автоматической остановки генератора в случае поступления напряжения из города.

А включается (запускается) генератор вручную, с помощью вон той дёргалки, по правильному говоря – троса ручного стартера.

В рассматриваемой модели нет автозапуска. У модели Huter DY3000LX есть электрический стартер, запускаемый от аккумулятора, там возможен автоматический запуск.

Схема бензогенератора Huter

Рассмотрим электрическую схему бензинового генератора Huter DY 3000L, которую я взял из инструкции:

Электрическая схема однофазного бензогенератора Huter

Вкратце, как работает схема бензогенератора. Альтернатор А2 раскручивается тросом вручную, катушка зажигания А5 вырабатывает на свече F1 искру, которая запускает бензиновый двигатель внутреннего сгорания. Искры не будет, если замкнут выключатель SB1 – искра будет замыкаться на корпус.

Вырабатывается два выходных напряжения альтернатора – катушкой L1 220В (поступает через QF1 на выход 220VAC) и катушкой L2 – 12В (поступает на выход через диодный мост и QF2). От КЗ защиты по постоянному току нет, вся надежда при КЗ на большое падение напряжения.

За уровнем масла можно следить по индикатору HL1, за уровнем напряжения – по стрелочному прибору PV1.

За правильную работу альтернатора и стабильность частоты и напряжения отвечают катушки L3 и L4.

Правильная схема генератора Huter

Читатель прислал правильную схему, в которой исправлено подключение датчика уровня масла А6. Получается, что F1 – никакая не свеча, а датчик уровня масла!

Правильная схема генератора Hyter 3000 и 4000

Установка

А вот бензиновый генератор Huter dy3000l на своём рабочем месте:

7_генератор Хутер, красавчик, подключен и установлен

Справа два провода ПВС – выход генератора и провод к выключателю генератора. Слева – заземление.

Яков Кузнецов/ автор статьи

Приветствую! Я являюсь руководителем данного проекта и занимаюсь его наполнением. Здесь я стараюсь собирать и публиковать максимально полный и интересный контент на темы связанные ремонтом автомобилей и подбором для них запасных частей. Уверен вы найдете для себя немало полезной информации. С уважением, Яков Кузнецов.

Понравилась статья? Поделиться с друзьями:
NEVINKA-INFO.RU
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: