Число оборотов электрических генераторов

Число оборотов электрических генераторов Текущее время: Сб окт 09, 2021 11:17:45 Часовой пояс: UTC + 3 часа какая частота у автомобильного генератора

Число оборотов электрических генераторов

Число оборотов электрических генераторов

Текущее время: Сб окт 09, 2021 11:17:45

Часовой пояс: UTC + 3 часа

какая частота у автомобильного генератора

Страница 1 из 2 [ Сообщений: 21 ] На страницу 1 , 2 След.

у вас что-газотурбинный.
13000
http://carinfo.kiev.ua/cars/speed-rpm
там цифры вдвое меньша

а автогенетратор точно ПЕРЕМЕННЫЙ ТОК вырабатывает?
ведь если так- частота будет зависеть от оборотов

_________________
+7911 200 -2820 11-17 мск
» Можно я лягу?»(C)

JLCPCB, всего $2 за прототип печатной платы! Цвет — любой!

Зарегистрируйтесь и получите два купона по 5$ каждый:https://jlcpcb.com/cwc

Сборка печатных плат от $30 + БЕСПЛАТНАЯ доставка по всему миру + трафарет

Приглашаем всех желающих 13 октября 2021 г. посетить вебинар, посвященный искусственному интеллекту, машинному обучению и решениям для их реализации от Microchip. Современные среды для глубинного обучения нейронных сетей позволяют без детального изучения предмета развернуть искусственную нейронную сеть (ANN) не только на производительных микропроцессорах и ПЛИС, но и на 32-битных микроконтроллерах. А благодаря широкому портфолио Microchip, включающему в себя диапазон компонентов от микроконтроллеров и датчиков до ПЛИС, средств скоростной передачи и хранения информации, возможно решить весь спектр задач, возникающий при обучении, верификации и развёртывании модели ANN.

Компания TRACO представила ультракомпактные ИП, монтируемые на печатную плату. В семейство входят три серии с выходной мощностью 3, 5 и 10 Вт. Особенность серий – малогабаритность; серии на 3 и 5 Вт имеют посадочный размер 1″x1″ (25,4×25,4 мм), а модели на 10 Вт имеют размер 1,5″х1″ (38,5х25,4 мм). При этом эти серии ИП обладают усиленной изоляцией и предназначены для широкого применения в различных приложениях.

_________________
Лечу лечить WWW ашу покалеченную технику.

Для тех кто сильно путаются и хотят формулы.

Обороты у нас считаются в минуту, а Герцы это такты в секунду.
Давайте приведем все одному временному интервалу — секунду.
13000 оборотов в минуту = 216,7 оборотов в секунду.

А теперь давайте считать частоту.

Если двигатель(генератор) 2 полюсной, тогда за одно вращение получим один такт и частота будет равна оборотам, то есть 216,7Гц
Если же двигатель 4 или 6 полюсной то частота будет кратна 216,7 * 2 или 216,7 * 3
Но это не все.
После выпрямления полуволны синусоиды выпрямляются и если генератор однофазный тогда частота удваивается(2 полуволны), а если 3х фазный тогда растет в 6 раз(6 полуволн).

Вот и считайте частоту.

Хочу заметить что не первая часть расчетов не правильна и не вторая, зато результат розеткина верный

вы сами написали пар полюсов p:

6 полюсной это и значит 3 пары полюсов.

Пара в русском языке значит 2, а не один.

Вы приводите правильную формулу, а вводите фиктивные данные, а потом вопросы все ли верно?

Последний раз редактировалось amd9800 Сб фев 27, 2016 01:28:39, всего редактировалось 1 раз.

Часовой пояс: UTC + 3 часа

Кто сейчас на форуме

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 6

Режимы работы синхронных генераторов, рабочие характеристики генераторов

Основными величинами, характеризующими синхронный генератор, являются: напряжение на зажимах U , нагрузка I , полная мощность P (кВа), число оборотов ротора в минуту n , коэффициент мощности cos φ .

Важнейшие рабочие характеристики синхронного генератора следующие:

характеристика холостого хода,

Характеристика холостого хода синхронного генератора

Электродвижущая сила генератора пропорциональна величине магнитного потока Ф, создаваемого током возбуждения i в, и числу оборотов n ротора генератора в минуту:

где с — коэффициент пропорциональности.

Хотя величина электродвижущей силы синхронного генератора зависит от числа оборотов n ротора, регулировать ее путем изменения скорости вращения ротора невозможно, так как с числом оборотов ротора генератора связана частота электродвижущей силы, которая должна быть сохранена постоянной.

Следовательно, остается единственный способ регулировки величины электродвижущей силы синхронного генератора — это изменение основного магнитного потока Ф. Последнее обычно достигается путем регулирования тока возбуждения iв с помощью реостата, введенного в цепь возбуждения генератора. В том случае когда обмотка возбуждения питается током от генератора постоянного тока, сидящего на одном валу с данным синхронным генератором, ток возбуждения синхронного генератора регулируется изменением напряжения на зажимах генератора постоянного тока.

Зависимость электродвижущей силы Е синхронного генератора от тока возбуждения iв при постоянстве номинальной скорости вращения ротора ( n = const) и нагрузке, равной нулю ( 1 = 0), называется характеристикой холостого хода генератора.

На рисунке 1 приведена характеристика холостого хода генератора. Здесь восходящая ветвь 1 кривой снята при возрастании тока i в от нуля до i в m , а нисходящая ветвь 2 кривой — при изменении iв от iвm до iв = 0.

Рис. 1. Характеристика холостого хода синхронного генератора

Несовпадение восходящей 1 и нисходящей 2 ветвей объясняется остаточным магнетизмом. Чем больше площадь, ограниченная этими ветвями, тем больше потерь энергии в стали синхронного генератора на перемагничивание.

Крутизна подъема кривой холостого хода на ее начальном прямолинейном участке характеризует магнитную цепь синхронного генератора. Чем меньше расход ампер-витков в воздушных зазорах генератора, тем при прочих одинаковых условиях будет круче характеристика холостого хода генератора.

Внешняя характеристика генератора

Напряжение на зажимах нагруженного синхронного генератора зависит от электродвижущей силы Е генератора, от падения напряжения в активном сопротивлении его статорной обмотки, падения напряжения, обусловленного электродвижущей силой самоиндукции рассеяния Es, и падения напряжения, обусловленного реакцией якоря.

Электродвижущая сила рассеяния Es, как известно, зависит от магнитного потока рассеяния Ф s , который не проникает в магнитные полюса ротора генератора и, следовательно, не изменяет степени намагничивания генератора. Электродвижущая сила самоиндукции рассеяния Es генератора относительно мала, а поэтому практически ею можно пренебречь. В соответствии с этим ту часть электродвижущей силы генератора, которая компенсирует электродвижущую силу самоиндукции рассеяния Es, можно считать практически равной нулю.

Реакция якоря оказывает более заметное влияние на режим работы синхронного генератора и, в частности, на величину напряжения на его зажимах. Степень этого влияния зависит не только от величины нагрузки генератора, но и от характера нагрузки.

Рассмотрим вначале влияние реакции якоря синхронного генератора для случая, когда нагрузка генератора носит чисто активный характер. Для этой цели возьмем часть схемы работающего синхронного генератора, изображенную на рис. 2 ,а. Здесь показаны часть статора с одним активным проводником якорной обмотки и часть ротора с несколькими его магнитными полюсами.

Рис. 2. Влияние реакции якоря для нагрузок: а — активного, б — индуктивного, в — емкостного характера

В рассматриваемый момент времени северный полюс одного из электромагнитов, вращающихся вместе с ротором против часовой стрелки, как раз проходит под активным проводником статорной обмотки.

Электродвижущая сила, индуктированная в этом проводнике, направлена к нам из-за плоскости рисунка. А так как нагрузка генератора носит чисто активный характер, то ток I в якорной обмотке совпадает по фазе с электродвижущей силой. Следовательно, в активном проводнике статорной обмотки ток течет к нам из-за плоскости рисунка.

Магнитные линии поля, создаваемого электромагнитами, показаны здесь сплошными линиями, а магнитные линии поля, создаваемого током провода якорной обмотки, — пунктирной линией.

Внизу на рис. 2 ,а показана векторная диаграмма магнитной индукции результирующего магнитного поля, находящегося над северным полюсом электромагнита. Здесь мы видим, что магнитная индукция В основного магнитного поля, создаваемого электромагнитом, имеет радиальное направление, а магнитная индукция В я магнитного поля тока якорной обмотки направлена вправо и перпендикулярно вектору В .

Результирующая магнитная индукция Врез направлена вверх и вправо. Это значит, что в результате сложения магнитных полей произошло некоторое искажение основного магнитного поля. Слева от северного полюса оно несколько ослабилось, а справа — несколько усилилось.

Нетрудно видеть, что радиальная составляющая вектора результирующей магнитной индукции, от которой по сути дела зависит величина индуктированной электродвижущей силы генератора, не изменилась. Следовательно, реакция якоря при чисто активной нагрузке генератора не влияет на величину электродвижущей силы генератора. Это значит, что и падение напряжения в генераторе при чисто активной нагрузке обусловлено только падением напряжения в активном сопротивлении генератора, если пренебречь электродвижущей силой самоиндукции рассеяния.

Теперь допустим, что нагрузка синхронного генератора носит чисто индуктивный характер. В этом случае ток I отстает по фазе от электродвижущей силы Е на угол π/2 . Это значит, что максимум тока возникает в проводе несколько позднее, чем максимум электродвижущей силы. Следовательно, когда в проводе якорной обмотки ток достигнет максимального значения, северный полюс N будет уже не под этим проводом, а сместится несколько дальше в направлении вращения ротора, как это показано на рис. 2 ,б.

В этом случае магнитные линии (пунктирные линии) магнитного потока якорной обмотки замыкаются через два соседних разноименных полюса N и S и направлены навстречу магнитным линиям основного магнитного поля генератора, создаваемого магнитными полюсами. Это приводит к тому, что основное магнитное пате не только искажается, но и делается несколько слабее.

На рис. 2,6 приведена векторная диаграмма магнитных индукций: основного магнитного поля В, магнитного поля, обусловленного реакцией якоря В я, и результирующего магнитного поля В рез.

Здесь мы видим, что радиальная составляющая магнитной индукции результирующего магнитного поля стала меньше магнитной индукции В основного магнитного поля на величину Δ В. Следовательно, стала меньше и индуктированная электродвижущая сила, так как она обусловлена радиальной составляющей магнитной индукции. А это значит, что напряжение на зажимах генератора при всех прочих равных условиях будет меньше, чем напряжение при чисто активной нагрузке генератора.

Если генератор имеет нагрузку чисто емкостного характера, то ток в нем опережает по фазе электродвижущую силу на угол π/2 . Ток в проводниках якорной обмотки генератора теперь достигает максимума раньше, чем электродвижущая сила Е. Следовательно, когда в проводе якорной обмотки (рис. 2,в) ток достигнет максимального значения, северный полюс N еще не подойдет под этот провод.

В этом случае магнитные линии (пунктирные линии) магнитного потока якорной обмотки замыкаются через два соседних разноименных полюса N и S и направлены попутно с магнитными линиями основного магнитного поля генератора. Это приводит к тому, что основное магнитное поле генератора не только искажается, но и несколько усиливается.

На рис. 2,в приведена векторная диаграмма магнитной индукции: основного магнитного поля В , магнитного поля, обусловленного реакцией якоря Вя, и результирующего магнитного поля B рез. Мы видим, что радиальная составляющая магнитной индукции результирующего магнитного поля стала больше магнитной индукции В основного магнитного поля на величину Δ В. Следовательно, увеличилась и индуктированная электродвижущая сила генератора.А это значит, что напряжение на зажимах генератора при всех прочих одинаковых условиях станет больше, чем напряжение при чисто индуктивной нагрузке генератора.

Выяснив влияние реакции якоря на электродвижущую силу синхронного генератора при различных по своему характеру нагрузках, перейдем к выяснению внешней характеристики генератора. Внешней характеристикой синхронного генератора называется зависимость напряжения U на его зажимах от нагрузки I при постоянной скорости вращения ротора (n = const), постоянстве тока возбуждения (i в = const) и постоянстве коэффициента мощности (cos φ = const).

На рис. 3 приведены внешние характеристики синхронного генератора для различных по своему характеру нагрузок. Кривая 1 выражает внешнюю характеристику при активной нагрузке (cos φ = 1,0). В этом случае напряжение на зажимах генератора падает при изменении нагрузки от холостого хода до номинальной в пределах 10 — 20% напряжения при холостом ходе генератора.

Кривая 2 выражает внешнюю характеристику при активно-индуктивной нагрузке (cos φ = 0 ,8). В этом случае напряжение на зажимах генератора падает быстрее из-за размагничивающего действия реакции якоря. При изменении нагрузки генератора от холостого хода до номинальной напряжение уменьшается в пределах 20 — 30% напряжения при холостом ходе.

Кривая 3 выражает внешнюю характеристику синхронного генератора при активно-емкостной нагрузке (cos φ = 0,8). В этом случае напряжение на зажимах генератора несколько растет из-за намагничивающего действия реакции якоря.

Рис. 3. Внешние характеристики генератора переменного тока для различных нагрузок: 1 — активной, 2 — индуктивной, 3 емкостной

Регулировочная характеристика синхронного генератора

Регулировочная характеристика синхронного генератора выражает зависимость тока возбуждения i в генератора от нагрузки I при постоянстве действующего значения напряжения на зажимах генератора (U = const), постоянстве числа оборотов ротора генератора в минуту ( n = const) и постоянстве коэффициента мощности (cos φ = const).

На рис. 4 приведены три регулировочные характеристики синхронного генератора. Кривая 1 относится к случаю активной нагрузки (cos φ = 1 ) .

Рис. 4. Регулировочные характеристики генератора переменного тока для различных нагрузок: 1 — активной, 2 — индуктивной, 3 — емкостной

Здесь мы видим, что с ростом нагрузки I генератора ток возбуждения растет. Это понятно, так как с ростом нагрузки I увеличивается падение напряжения в активном сопротивлении якорной обмотки генератора и требуется увеличить электродвижущую силу Е генератора путем увеличения тока возбуждения i в , чтобы сохранить постоянство напряжения U.

Кривая 2 относится к случаю активно-индуктивной нагрузки при cos φ = 0 ,8 . Эта кривая поднимается круче, чем кривая 1, вследствие размагничивающего действия реакции якоря, снижающего величину электродвижущей силы Е, и, следовательно, напряжение U на зажимах генератора.

Кривая 3 относится к случаю активно-емкостной нагрузки при cos φ = 0,8. Эта кривая показывает, что с ростом нагрузки генератора требуется меньший ток возбуждения iв генератора для поддержания постоянства напряжения на его зажимах. Это понятно, так как в этом случае реакция якоря усиливает основной магнитный поток и, следовательно, способствует увеличению электродвижущей силы генератора и напряжения на его зажимах.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Автомобильный генератор и его особенности

В рамках данной статьи поговорим об особенностях принципиального устройства автомобильных генераторов. Для владельцев автомобилей, разбирающихся в предмете, данная статья не будет интересна. Но для тех, кому автомобильные генераторы интересны в прикладном плане, эта информация может оказаться полезной.

В современных автомобилях в качестве генераторов применяются синхронные трёхфазные электрические машины переменного тока, у которых в выпрямителе применяется схема Ларионова.

Чтобы генератор после пуска двигателя отдавал ток в нагрузку, необходимо обеспечить питание обмотке возбуждения. Это происходит при повороте ключа замка зажигания в рабочее положение.

Ток в обмотке возбуждения управляется стабилизатором напряжения, который может быть выполнен в виде отдельного узла или встроен в щёточный узел генератора. В подавляющем большинстве современных генераторов стабилизатор напряжения (СН) питается от отдельной секции выпрямителя.

Среди прочих генераторов переменного тока, генератор автомобильный выделяется несколькими особенностями. Прежде всего, автомобильный генератор хотя и выдает постоянный ток, на деле он является генератором тока переменного, который затем выпрямляется диодным мостом и превращается в постоянный ток.

Такое решение весьма популярно, тот же генератор переменного тока из асинхронного двигателя можно превратить в генератор постоянного тока, достаточно лишь добавить диодный выпрямитель.

Генераторы с выпрямлением переменного тока называются вентильными генераторами постоянного тока. К таким генераторам и относится автомобильный генератор.

Выходное напряжение автомобильного генератора постоянно

Одна из отличительных черт автомобильного генератора — напряжение на его выходных клеммах поддерживается в узком диапазоне при помощи специального стабилизатора, называемого регулятором напряжения. Но и это не является чем-то исключительным для электрических машин.

Стабилизаторы напряжения можно встретить в комплектации многих источников бесперебойного питания, в том числе среди тех, которые берут энергию для своих аккумуляторов от механических генераторов тех же домашних ГЭС или от солнечных батарей.

Главная же отличительная черта именно автомобильного генератора — то что он получает механическую энергию через ремень от коленвала двигателя внутреннего сгорания, у которого частота вращения совсем не постоянна, зависит она от режима работы транспортного средства в текущий момент, и никак не связана с нуждами потребителей постоянного тока.

Вот и получается, что задача генератора и его электроники — суметь заряжать автомобильный аккумулятор и питать потребители стабилизированным напряжением, независимо от того, каковы текущие обороты якоря — напряжение обязано оставаться в узком коридоре в районе 14 вольт.

Если напряжение по какой-то причине выйдет за пределы диапазона стабилизации, зарядный ток аккумулятора может стать чрезвычайно высоким, и электролит попросту выкипит.

Такое явление не является чем-то невиданным, многие автолюбители сталкивались с ним, когда регулятор напряжения на генераторе выходил вдруг из строя — электролит в аккумуляторе в таком случае быстро выкипает.

Если же напряжение с генератора окажется слишком низким, то аккумулятор преждевременно разрядится. С данной проблемой также сталкивались многие автомобилисты.

Итак, стабильное выходное напряжение — обязательное условие правильной работы автомобильного генератора. Но этого достичь не так уж и просто. Диапазон варьирования частоты вращения ротора генератора в автомобиле довольно широк. На холостых оборотах это порядка 800 — 1200 оборотов в минуту, а в момент хорошего разгона — до 5000 и даже до 6000 оборотов в минуту, в зависимости от того, что это за автомобиль.

Токоскоростная характеристика автомобильного генератора

Таким образом, поскольку напряжение автомобильного генератора поддерживается почти постоянным благодаря регулятору напряжения, он имеет собственную токоскоростную характеристику (ТСХ), ведь при разных скоростях вращения ротора, ток нагрузки получается разным. Напряжение постоянное, но чем выше обороты — тем выше ток, и чем ниже обороты — тем ток с силовых клемм генератора меньше.

Примечательно кстати то, что автомобильный генератор имеет предел по току, и поэтому обладает свойством самоограничения. Это значит, что когда ток достигнет определенной предельной величины, как бы ни повышались обороты дальше, ток нарастать уже больше не будет, просто не сможет.

Токоскоростаня характеристика (ТСХ) автомобильного генератора снимается по методике, принятой в качестве международного стандарта. Она (характеристика) снимается в процессе испытания работы генератора на стенде в паре с полностью заряженным аккумулятором такой номинальной емкости, которая в ампер-часах составляет половину (50%) номинального тока генератора в амперах. На характеристике находят характерные важные точки: n0, nrg, nн, nmax.

Начальная частота вращения ротора n0 – это теоретическая частота вращения ротора без нагрузки. Так как характеристику начинают снимать начиная с тока в 2 ампера, то эту точку находят путем экстраполяции характеристики до пересечения с горизонтальной осью оборотов.

Минимальную рабочую частоту генератора nrg принимают соответствующей оборотам коленвала на холостом ходу. Это примерно от 1500 до 1800 оборотов в минуту для ротора генератора. Ток при данной частоте, как правило, составляет от 40 до 50% от номинала для данного генератора. Этого тока должно хватить для питания минимального количество жизненно важных потребителей в автомобиле.

Номинальные обороты ротора генератора nн — это как раз та частота, при которой генерируется номинальный ток Iн, он не должен быть меньше номинала по паспорту.

Максимальные обороты ротора генератора nmax – это та частота вращения ротора, при которой генератором отдается максимальный ток, величина которого не сильно отличается от номинала испытываемого генератора.

Для генераторов отечественного производства раньше было принято указывать номинальный ток при 5000 оборотах в минуту. Указывалась и расчетная частота nр для расчетного тока генератора Iр, равного двум третьим от номинального тока. Этот расчетный режим соответствовал такому режиму работы генератора, когда его узлы не сильно нагревались. Все характеристики снимались при напряжении 14 или 13 вольт.

Самовозбуждение автомобильного генератора и КПД

Автомобильный генератор обязан самовозбуждаться на частоте вращения его ротора ниже частоты при оборотах коленвала на холостом ходу. Проверка проводится на стенде, где самовозбуждение должно произойти при подключении генератора к аккумулятору с контрольной лампой.

Возможности автомобильного генератора с энергетической точки зрения характеризуются величиной его КПД. Чем больше КПД — тем меньшая мощность отбирается от двигателя внутреннего сгорания для получения той же полезной отдачи в форме электрической мощности.

КПД генератора зависит главным образом от конструктивных особенностей конкретного изделия: какова толщина пластин в статоре и толщина набора, насколько качественно пластины друг от друга изолированы (насколько малы токи Фуко), каково сопротивление обмоток статора и ротора, насколько широки контактные кольца ротора, каково качество щеток и подшипников? И т. д.

Но одно сказать можно точно — чем выше номинальная мощность генератора — тем выше и КПД. Между тем, типичный КПД автомобильных генераторов, да и вообще вентильных генераторов, не превышает 60%.

Главный показатель возможностей генератора — это его токоскоростная характеристика, она показывает наглядно, чего можно ожидать от того или иного генератора, на что можно рассчитывать. По характерным точкам составляют таблицу для генератора.

Для примера приведем таблицу характеристик генераторов отечественного производства:

Диапазон выходного напряжения на разных оборотах и в зависимости от температуры и нагрузки, отражает возможности регулятора напряжения автомобильного генератора.

Принцип работы и устройство синхронного генератора переменного тока

Электричество – единственный вид энергии, которую легко можно передать на большие расстояния, а затем преобразовать её в механическую, тепловую или превратить в световое излучение. Саму же электроэнергию также можно получить разными способами: химическим, тепловым, механическим, фотоэлектрическим и др. Но именно механический способ, который основан на применении генераторов, оказался самым эффективным. Среди этих источников электроэнергии широкое применение нашёл синхронный генератор переменного тока.

Практически вся электроэнергия, используемая в быту и на производстве, вырабатывается генераторами этого типа. Они заслуживают того, чтобы более подробно рассмотреть их устройство и разобраться в принципе работы этих удивительных синхронных машин.

Устройство

В конструкции синхронных генераторов используются две основные рабочие детали – вращающийся ротор и неподвижный статор. На валу ротора располагаются постоянные магниты либо обмотки возбуждения. Магниты имеют зубчатую форму, с противоположно направленными полюсами.

Бесщёточные генераторы.

Обмотки статора размещают таким образом, чтобы их сердечники совпадали с выступами магнитных полюсов ротора, или с сердечниками катушек ротора. Количество зубцов магнита, обычно, не превышает 6. При такой конструкции вырабатываемый ток снимается непосредственно с обмоток статоров. Другими словами, статор выступает в роли якоря.

В принципе, постоянные магниты можно расположить на статоре, а рабочие обмотки, в которых будет индуцироваться ЭДС, — на роторе. Работоспособность генератора от этого не изменится, однако потребуются кольца и щётки для снятия напряжения с обмоток якоря, а это, чаще всего, не рационально.

Схематическое изображение бесщеточного генератора без обмоток возбуждения изображено на рис. 1.

Рис. 1. Модель генератора с магнитным ротором

Пояснение:

  • схема устройства;
  • схема расположения магнитных полюсов на якоре. Здесь буквами NS обозначено коаксиальный магнит с полюсами, а литерой R – стальной магнитопровод ротора в виде когтеобразных наконечников.
  • модель генератора в разрезе. Выводы фазных обмоток статора соединены «звездой».

Синхронные машины с индукторами.

Заметим, что постоянные магниты в качестве ротора используются в альтернаторах небольшой мощности. В мощных электрических машинах всегда применяются обмотки индуктора с независимым возбуждением. Независимым источником питания является маломощный генератор постоянного тока, смонтированный на валу синхронного двигателя.

Существуют конструкции синхронных генераторов малой и средней мощности, с самовозбуждающимися обмотками. Для возбуждения индуктора выпрямленный ток фазных обмоток подаётся через щётки на кольца, расположенные на валу статора. Строение такого альтернатора показано на рис. 2.

Рис. 2. Строение синхронного генератора средней мощности

Обратите внимание на наличие щёток, на которые подаётся питания от независимого источника.

По количеству фаз синхронные генераторы делятся на:

  • однофазные;
  • двухфазные;
  • трёхфазные.

По конструкции ротора можно выделить генераторы с явновыраженными полюсами и с неявновыраженными. В неявнополюсном роторе отсутствуют выступы, а катушки провода якоря спрятаны в пазы статора.

По способу соединения фазных обмоток различают трёхфазные генераторы:

  • соединённые по шестипроводной системе Тесла (не нашли практического применения);
  • «звезда»;
  • «треугольник»;
  • сочетание шести обмоток, соединённых в виде одной «звезды» и «треугольника». Это соединение ещё называют «Славянка».

Самое распространённое соединение – «звезда» с нейтральным проводом.

Принцип работы

Рассмотрим принцип генерации тока на примере контурной рамки, помещённой между магнитными полюсами. (Рис. 3)

Рис. 3. Схема, объясняющая принцип работы генератора

Если заставить рамку вращаться (по направлению стрелок), то она будет пересекать магнитные силовые линии. При этом, по закону электромагнитной индукции, в рамке индуцируется электрический ток, который проявляется при подключении нагрузки к щёткам. Его направление можно определить по правилу буравчика. На схеме направление тока показано чёрными стрелками.

Обратите внимание на то, что на участках рамки ab и cd ток движется в противоположных направлениях. Эти направления меняются при переходе участков рамки от одного полюса к другому полюсу магнита. Если каждый вывод рамки подключить к отдельному кольцу (на рисунке они подключены к коллектору!), то на выходе мы получим переменный ток.

Величина тока пропорциональна скорости вращения ротора. Кроме того, переменный ток характеризуется ещё одним параметром – частотой. Эта величина напрямую зависит от частоты вращения вала.

Частота тока в электросетях строго соблюдается. В России и в ряде других стран она составляет 50 Гц, то есть 50 колебаний в секунду.

Этот параметр довольно легко вычислить из таких соображений: за один оборот рамки (или двухполюсного магнита) происходит одно изменение направления тока. Если вал синхронного генератора делает 1 оборот в секунду, то частота переменного тока составит 1 Гц. Для получения частоты 50 Гц необходимо обеспечить 50 оборотов статора в секунду или 3000 об./мин.

При возрастании числа полюсов заданная частота удерживается путём снижения скорости вращения статора. (обратно пропорциональная зависимость). Так, для четерёхполюсного статора (число полюсов в два раза больше) для поддержания частоты 50 Гц скорость вращения вала необходимо снизить в два раза. Соответственно если используется 6 полюсов, то частота вращения вала должна уменьшиться в три раза – до 1000 об./мин.

Заметим, что в некоторых странах, таких как США, Япония и др. существуют другие стандарты – 60 Гц, а переменный 400 Гц используется, например, в бортовой сети современных самолётов.

Регулирование частоты

Достигнуть требуемых параметров частоты можно 2 путями:

  1. Сконструировать генератор с определённым количеством полюсов электромагнитов.
  2. Обеспечить соответствующую расчётную частоту вращения вала.

Например, в тихоходных гидротурбинах, вращающихся со скоростью 150 об./мин. для регулирования частоты число полюсов синхронных генераторов увеличивают до 40. На дизельных электростанциях, при скоростях вращения 750 об./мин., оптимальное число полюсов – 8.

Регулирование ЭДС

В связи с изменениями параметров активных нагрузок возникает необходимость в выравнивании номинальных напряжений. Несмотря на то, что ЭДС индукции синхронного генератора связана со скоростью вращения ротора, однако, из-за требований по соблюдению стабильной частоты, этим способом нельзя изменять указанный параметр. Но параметры магнитной индукции можно изменить путём снижения или увеличения магнитного потока, который зависит от количества витков обмотки индуктора и величины тока возбуждения.

Регулирование осуществляется путём включения в цепь катушек возбуждения дополнительных реостатов, электронных схем или регулировкой тока генератора-возбудителя (Рис. 4). В случае использования альтернаторов с постоянными магнитами, в таких устройствах напряжение регулируется внешними стабилизаторами.

Рис. 4. Схема регулировки напряжения

Благодаря малому весу и отличным токовым характеристикам синхронные генераторы переменного тока нашли применение во всех современных автомобилях. Поскольку бортовая сеть авто использует постоянный ток, конструкции автомобильных генераторов оборудованы трехфазным выпрямителем. Для выпрямляемых переменных токов частота не имеет значения, а вот напряжение должно быть стабильно. Этого добиваются с помощью внешних электронных устройств. На рисунке 5 представлена электрическая схема подключения генератора к бортовой сети современного автомобиля.

Рис. 5. Схема подключения генератора к бортовой сети авто

Применение

У синхронных генераторов переменного тока есть одна важная особенность: они поддаются синхронизации с другими подобными электрическими машинами. При этом синхронные скорости и ЭДС параллельно включенных альтернаторов совпадают, а фазовый сдвиг равен нулю. Данное обстоятельство позволяет применять устройства в промышленной энергетике и подключать резервные генераторы при превышении номинальных мощностей в часы пиковых нагрузок.

Трёхфазные тяговые генераторы применяют на тепловозах. Переменные токи для питания двигателей выпрямляются полупроводниковыми устройствами. Сегодня в России уже выпускаются тепловозы на базе асинхронных электродвигателей, не требующих выпрямления тока. В режиме торможения они работают в качестве асинхронных генераторов.

Синхронные генераторы устанавливают на гибридных автомобилях с целью совмещения тяги ДВС и мощности тяговых электродвигателей. Развивая активную мощность при номинальных нагрузках, они позволяют экономить дорогое топливо.

Существует много других сфер применения. Например, мобильные мини-электростанции, бытовые генераторы тока, как однофазный двигатель и т. п.

Асинхронный генератор. Частота

Частота асинхронного генератора при холостом ходе и нагрузке

Разница между частотой вращения магнитного поля и ротора в асинхронных генераторах определяется коэффициентом s, называемым скольжением, который выражается соотношением:

Здесь:
n — частота вращения магнитного поля.
nr — частота вращения ротора.

Связь между угловой частотой вращения магнитного поля ω и угловой частотой вращения ротора ωr асинхронной машины можно выразить следующим образом:

что следует из определения скольжения.
В общем случае угловая частота вращения магнитного поля

Так как частота генерируемых колебаний

где р — число пар полюсов, то

Аналогично угловая частота вращения ротора

где fr = pnr — электрическая частота вращения ротора.
Электрическая угловая частота вращения ротора

В режиме автономного асинхронного генератора частота вращения магнитного поля, определяющая частоту генерируемых колебаний, зависит от частоты вращения ротора и от нагрузки, характеризуемой скольжением. Если нагрузка отсутствует, а включенная емкость и частота вращения ротора остаются постоянными, т.е. C = cоnst и ωr = cоnst, то частоту генерируемых колебаний можно выразить через параметры колебательного контура, который образуется собственной индуктивностью статорной обмотки и емкостью конденсатора.

При отмеченных условиях уравнение электрического равновесия, выраженное через мгновенные значения напряжений на синхронном индуктивном сопротивлении XL = ωL и на конденсаторе XC = ωC, принимает вид:

uL = Ldi/dt и di/dt = C d 2 u/dt 2

и преобразований, уравнение примет вид

Примем, что напряжение на конденсаторе изменяется по синусоидальному закону:

d 2 uC /dt 2 = -ω 2 UC sinωt ,

С учетом последних соотношений из дифференциального уравнения находим:

ω = 1/√LC ,

f = 1/2π√LC

Таким образом, частота генерируемых колебаний при холостом ходе автономного асинхронного генератора определяется из условия резонанса емкости конденсатора и собственной индуктивности обмотки статора.
Если принять, что при холостом ходе скольжение s = 0, то получим

Последнее выражение можно представить в виде

Следовательно, при холостом ходе асинхронного самовозбуждающегося генератора параметры колебательного контура автоматически настраиваются на частоту, равную электрической частоте вращения ротора.

Изменение значения включенной емкости при ωr = cоnst или частоты вращения ротора при С = cоnst не нарушает вышеописанных равенств, если генератор остается в области устойчивой работы. В первом случае мы имеем одну характеристику намагничивания машины, соответствующую данному значению частоты вращения и семейство вольтамперных характеристик возбуждающей емкости, причем каждая из характеристик составляет с положительным направлением оси абсцисс угол

где k = 1, 2, 3 . Произведение собственных индуктивностей статорной обмотки и емкости конденсаторов остается практически постоянным, т.е.

так как вследствие нелинейности кривой намагничивания происходит соответствующее изменение индуктивности. Так с увеличением емкости ток холостого хода и степень насыщения магнитной цепи возрастают, а индуктивность уменьшается. Значение установившегося напряжения определяется точкой пересечения кривой намагничивания и вольтамперной характеристики конденсаторов.

Во втором случае, т.е. при переходе к новым значениям установившихся частот вращения с емкостью С = cоnst, мы имеем семейство кривых намагничивания и семейство вольтамперных характеристик возбуждающей емкости. Углы наклона последних к положительному направлению оси абсцисс находятся теперь по соотношению

Значение установившегося напряжения в каждом случае определяется точкой пересечения кривой намагничивания и вольтампер ной характеристики конденсаторов для данной угловой частоты ωk .

Получим теперь выражение для частоты генерируемых колебаний при нагрузке, полагая, что емкость конденсаторов и частота вращения ротора не изменяются. Выполнив необходимые преобразования из вышеописанных формул, получим:

f = pnr /(1 — s ) ,

Заметим, что частота вращения ротора в большинстве случаев выражается в об/мин а не в сек/мин, тогда запишем

f = pnr /60(1 — s ) ,

Частота генерируемых колебаний при постоянной частоте вращения ротора и возрастающей нагрузке несколько уменьшается, так как на устойчивой части механической характеристики асинхронной машины скольжение пропорционально нагрузке. С другой стороны, уменьшение частоты f при С = cоnst объясняется увеличением собственной индуктивности фазы статора вследствие возрастания коэффициента взаимоиндукции. Последнее вызывается размагничивающим действием тока ротора.

Замечания и предложения принимаются и приветствуются!

Технические характеристики и конструкции современных генераторов

Синхронные генераторы

Для выработки электроэнергии на электростанциях применяют синхронные генераторы трехфазного переменного тока. Различают турбогенераторы (первичный двигатель — паровая или газовая турбина) и гидрогенераторы (первичный двигатель — гидротурбина).

Для синхронных электрических машин в установившемся режиме работы имеется строгое соответствие между частотой вращения агрегата n, об/мин, и частотой сети f, Гц:

n = 60f/p, (1)

где р — число пар полюсов обмотки статора генератора.

Паровые и газовые турбины выпускают на большие частоты вращения (3000 и 1500 об/мин), так как при этом турбоагрегаты имеют наилучшие технико-экономические показатели. На тепловых электростанциях (ТЭС), сжигающих обычное топливо, частота вращения агрегатов, как правило, составляет 3000 об/мин, а синхронные турбогенераторы имеют два полюса. На АЭС применяют агрегаты с частотой вращения 1500 и 3000 об/мин.

Быстроходность турбогенератора определяет особенности его конструкции. Эти генераторы выполняются с горизонтальным валом. Ротор турбогенератора, работающий при больших механических и тепловых нагрузках, изготовляется из цельной поковки специальной стали (хромоникелевой или хромоникельмолибденовой), обладающей высокими магнитными и механическими свойствами.

Ротор выполняется неявнополюсным. Вследствие значительной частоты вращения диаметр ротора ограничивается по соображениям механической прочности 1,1-1,2 м при 3000 об/мин. Длина бочки ротора также имеет предельное значение, равное 6-6,5 м. Определяется оно из условий допустимого статического прогиба вала и получения приемлемых вибрационных характеристик.

Рис.1. Общий вид современного турбогенератора
1 — обмотка статора; 2 — ротор; 3,4 — соединительные муфты;
5 — корпус статора; 6 — сердечник статора; 7 — возбудитель;
8 — контактные кольца ротора и щетки; 9 — подшипники генератора;
10 — подшипники возбудителя

В активной части ротора, по которой проходит основной магнитный поток, фрезеруются пазы, заполняемые катушками обмотки возбуждения (рис.1). В пазовой части обмотки закрепляются немагнитными легкими, но прочными клиньями из дюралюминия. Лобовая часть обмотки, не лежащая в пазах, предохраняется от смещения под действием центробежных сил с помощью бандажа. Бандажи являются наиболее напряженными в механическом отношении частями ротора и обычно выполняются из немагнитной высокопрочной стали. По обеим сторонам ротора на его валу устанавливаются вентиляторы (чаще всего пропеллерного типа), обеспечивающие циркуляцию охлаждающего газа в машине.

Статор турбогенератора состоит из корпуса и сердечника. Корпус изготовляется сварным, с торцов он закрывается щитами с уплотнениями в местах стыка с другими частями (рис.1). Сердечник статора набирается из изолированных листов электротехнической стали толщиной 0,5 мм. Листы набирают пакетами, между которыми оставляют вентиляционные каналы. В пазы, имеющиеся во внутренней расточке сердечника, укладывается трехфазная обмотка, обычно двухслойная.

Гидравлические турбины имеют обычно относительно малую частоту вращения (60-600 об/мин). Частота вращения тем меньше, чем меньше напор воды и чем больше мощность турбины. Гидрогенераторы поэтому являются тихоходными машинами и имеют большие размеры и массы, а также большое число полюсов.

Гидрогенераторы выполняют с явнополюсными роторами и преимущественно с вертикальным расположением вала. Диаметры роторов мощных гидрогенераторов достигают 14-16 м, а диаметры статоров — 20-22 м.

Рис.2. Общий вид современного вертикального гидрогенератора

В машинах с большим диаметром ротора сердечником служит обод, собираемый на спицах, которые крепятся на втулке ротора. Полюсы, как и обод, делают наборными из стальных листов и монтируют на ободе ротора с помощью Т-образных выступов (рис.2). На полюсах помимо обмотки возбуждения размещается еще так называемая демпферная обмотка, которая образуется из медных стержней, закладываемых в пазы на полюсных наконечниках и замыкаемых с торцов ротора кольцами. Эта обмотка предназначена для успокоения колебаний ротора агрегата, которые возникают при всяком возмущении, связанном с резким изменением нагрузки генератора.

В турбогенераторах роль успокоительной обмотки выполняют массивная бочка ротора и металлические клинья, закрывающие обмотку возбуждения в пазах.

Статор гидрогенератора имеет принципиально такую же конструкцию, как и статор турбогенератора, но в отличие от последнего выполняется разъемным. Он делится по окружности на две-шесть равных частей, что значительно облегчает его транспортировку и монтаж.

В последние годы начинают находить применение так называемые капсульные гидрогенераторы, имеющие горизонтальный вал. Такие генераторы заключаются в водонепроницаемую оболочку (капсулу), которая с внешней стороны обтекается потоком воды, проходящим через турбину. Капсульные генераторы изготовляют на мощность несколько десятков мегавольт-ампер. Это сравнительно тихоходные генераторы (n = 60-150 об/мин) с явнополюсным ротором.

Среди других типов синхронных генераторов, применяемых на электростанциях, надо отметить так называемые дизель-генераторы, соединяемые с дизельным двигателем внутреннего сгорания. Это явнополюсные машины с горизонтальным валом. Дизель как поршневая машина имеет неравномерный крутящий момент, поэтому дизель-генератop снабжается маховиком или его ротор выполняется с повышенным маховым моментом.

Номинальные параметры генераторов

Завод-изготовитель предназначает генератор для определенного длительно допустимого режима работы, который называют номинальным. Этот режим работы характеризуется параметрами, которые носят название номинальных данных генератора и указываются на его табличке, а также в паспорте машины.

Номинальное напряжение генератора — это линейное (междуфазное) напряжение обмотки статора в номинальном режиме.

Номинальным током статора генератора называется то значение тока, при котором допускается длительная нормальная работа генератора при нормальных параметрах охлаждения (температура, давление и расход охлаждающего газа и жидкости) и номинальных значениях мощности и напряжения, указанных в паспорте генератора.

Номинальная полная мощность генератора определяется по следующей формуле, кВА:

Номинальная активная мощность генератора — это наибольшая активная мощность, для длительной работы с которой он предназначен в комплекте с турбиной.

Номинальная активная мощность генератора определяется следующим выражением:

Номинальные мощности турбогенераторов должны соответствовать ряду мощностей согласно ГОСТ 533-85Е. Шкала номинальных мощностей крупных гидрогенераторов не стандартизирована.

Номинальный ток ротора — это наибольший ток возбуждения генератора, при котором обеспечивается отдача генератором его номинальной мощности при отклонении напряжения статора в пределах ±5% номинального значения и при номинальном коэффициенте мощности.

Номинальный коэффициент мощности согласно ГОСТ принимается равным 0,8 для генераторов мощностью до 125 MBА, 0,85 для турбогенераторов мощностью до 588 MBА и гидрогенераторов до 360 MBА, 0,9 для более мощных машин. Для капсульных гидрогенераторов обычно cosφном ≈ 1.

Каждый генератор характеризуется также КПД при номинальной нагрузке и номинальном коэффициенте мощности. Для современных генераторов номинальный коэффициент полезного действия колеблется в пределах 96,3-98,8%.

Яков Кузнецов/ автор статьи

Приветствую! Я являюсь руководителем данного проекта и занимаюсь его наполнением. Здесь я стараюсь собирать и публиковать максимально полный и интересный контент на темы связанные ремонтом автомобилей и подбором для них запасных частей. Уверен вы найдете для себя немало полезной информации. С уважением, Яков Кузнецов.

Понравилась статья? Поделиться с друзьями:
NEVINKA-INFO.RU
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: