Электрические характеристики генераторов постоянного тока

Электрические характеристики генераторов постоянного тока 4.4. Генераторы постоянного тока В зависимости от способа питания обмотки возбуждения различают генераторы: - с независимым

Электрические характеристики генераторов постоянного тока

Электрические характеристики генераторов постоянного тока

4.4. Генераторы постоянного тока

В зависимости от способа питания обмотки возбуждения различают генераторы:

— с независимым возбуждением;

— с параллельным возбуждением;

— с последовательным возбуждением (сериесный);

— со смешанным возбуждением (компаундный); он имеет две обмотки возбуждения; одна включена параллельно обмотке якоря, а другая — последовательно с нею и нагрузкой.

Генераторы малой мощности иногда выполняются с постоянными магнитами. Свойства таких генераторов близки к свойствам генераторов с независимым возбуждением.

В генераторе с независимым возбуждением (рис. 4.8а) ток возбуждения не зависит от тока якоря I а , который равен току нагрузки I н . Обычно ток возбуждения невелик и составляет 1. 3 % от номинального тока якоря.

Основными характеристиками генератора являются характеристики: холостого хода, внешняя, регулировочная и нагрузочная.

Рис. 4.8. Принципиальная схема генератора с независимым возбуждением (а) и его характеристика холостого хода (б)

Характеристика холостого хода U 0 =f(I в ) при I н =0 и n=const (рис. 4.8б). Расхождение входящей и нисходящей ветвей характеристики объясняется наличием гистерезиса в магнитопроводе машины. E ост составляет 2. 4 % от U ном.

Рис. 4.9. Внешняя (а) и регулировочная (б) характеристики генератора с независимым возбуждением

Внешней характеристикой называется зависимость U=f(I н ) при n=const и I н =const (рис. 4.9а). Под нагрузкой напряжение генератора

∑r — сумма сопротивлений всех обмоток, включенных последовательно в цепь якоря (якоря, дополнительных полюсов и компенсационной обмотки).

С увеличением нагрузки напряжение U уменьшается по двум причинам:

— из-за падения напряжения во внутреннем сопротивлении ∑r машины;

— из-за уменьшения ЭДС E в результате размагничивающего действия реакции якоря.

Величина составляет 3. 8 %.

В генераторе с параллельным возбуждением (рис. 4.10а) обмотка возбуждения присоединена через регулировочный реостат параллельно обмотке якоря. Для нормальной работы приемников электроэнергии необходимо поддерживать постоянство напряжения на их зажимах, несмотря на изменение общей нагрузки генератора. Это осуществляется посредством регулирования тока возбуждения.

Регулировочной характеристикой генератора (рис. 4.9б) называется зависимость тока возбуждения I в от тока якоря I а при постоянном напряжении U и скорости n. Такая характеристика показывает, как надо изменять ток возбуждения для того, чтобы при изменениях нагрузки поддерживать постоянство напряжения на зажимах генератора. Эта кривая сначала почти прямолинейна, но затем загибается вверх от оси абсцисс, вследствие влияния насыщения магнитопровода машины. Следовательно, в машине используется принцип самовозбуждения, при котором обмотка возбуждения получает питание непосредственно от самого генератора.

Рис. 4.10. Принципиальная схема генератора с параллельным возбуждением (а); характер изменения ЭДС и тока возбуждения генератора в процессе возбуждения (б)

Самовозбуждение генератора возможно только при наличии гистерезиса в магнитной цепи.

При вращении якоря в его обмотке потоком остаточного магнетизма индуктируется ЭДС Е ост , и по обмотке возбуждения начинает протекать ток. Если обмотка возбуждения включена так, что ее НС F в направлена согласно с НС остаточного магнетизма, то магнитный поток возрастает, увеличивая ЭДС Е, поток Ф и ток возбуждения I в . Машина самовозбуждается и начинает устойчиво работать с I в =const, E=const, зависящими от величины сопротивления R в цепи возбуждения.

Для режима холостого хода генератора:

L — суммарная индуктивность обмоток возбуждения и якоря.

Зависимость e=f(i в ) представляет собой характеристику холостого хода генератора ОА, а прямая ОВ — ВАХ сопротивления R в (tgγ= R в ) (рис. 4.10б).

Пока имеется положительная разность (e-i в R в ) , член >0, т.е. происходит нарастание тока i в . Установившийся режим будет иметь место при =0, т.е. в точке С. При изменении величины сопротивления R в прямая ОВ изменяет свой угол γ, что приводит к изменению установившегося тока возбуждения I в0 , и соответствующего ему напряжения U 0 =E 0 . Параметры цепи подбираются так, чтобы в точке С обеспечивалась устойчивость режима самовозбуждения. При случайном изменении i в возникает соответствующая положительная или отрицательная разность (e-i в R в ) , стремящаяся изменить ток i в так, чтобы он стал снова равен I в0 .

Степень устойчивости рассматриваемого режима будет определяться производной:

β — σγξл пересечения характеристики ОА с прямой ОВ.

При увеличении R в до критического значения R в.кр. , соответствующего γ кр , угол β≈0 и режим самовозбуждения становится неустойчивым, при этом ЭДС генератора уменьшается до Е ост . Таким образом, для нормальной работы генератора с параллельным возбуждением необходимо, чтобы R в в.кр.

Внешняя характеристика генератора с самовозбуждением располагается ниже внешней характеристики генератора с независимым возбуждением (рис. 4.11). Объясняется это тем, что в рассматриваемом генераторе напряжение уменьшается не только с ростом нагрузки и размагничивающего действия реакции якоря, но и вследствие уменьшения тока возбуждения , который зависит от напряжения U, т. е. от тока I н .

Рис. 4.11. Внешние характеристики генераторов с независимым (верхняя кривая) и параллельным (нижняя кривая) возбуждением

Ток короткого замыкания создается только ЭДС от остаточного магнетизма и составляет (0,4. 0,8) I ном .

Работа на участке ab внешней характеристики неустойчива.

Регулировочная характеристика генератора с параллельным возбуждением имеет такой же вид, как и для генератора с независимым возбуждением.

В генераторе с последовательным возбуждением (рис. 4.12а) ток возбуждения I в =I а =I н .

Рис. 4.12. Схема генератора с последовательным возбуждением (а) и его внешняя характеристика (б)

Внешняя характеристика (кривая 1) и характеристика холостого хода (кривая 2) изображены на рис. 4.12б. Ввиду того, что в генераторе с последовательным возбуждением напряжение сильно изменяется при изменении нагрузки, такие генераторы практически не применяются. Их используют лишь при электрическом торможении двигателей с последовательным возбуждением, которые при этом переводятся в генераторный режим.

В генераторе со смешанным возбуждением имеются две обмотки возбуждения: основная (параллельная) и вспомогательная (последовательная). Наличие двух обмоток при их согласном включении позволяет получать приблизительно постоянное напряжение генератора при изменении нагрузки. Подбирая число витков последовательной обмотки так, чтобы при номинальной нагрузке создаваемое ею напряжение ΔU посл компенсировало суммарное падение напряжения ΔU при работе машины с одной только параллельной обмоткой, можно добиться, чтобы напряжение U при изменении тока нагрузки от нуля до I ном оставалось практически неизменным.

Генераторы постоянного тока имеют большей частью параллельное возбуждение. Обычно для улучшения внешней характеристики они снабжаются небольшой последовательной обмоткой (1-3 витка на полюс). При необходимости такие генераторы могут включаться и по схеме с независимым возбуждением.

Генераторы с независимым возбуждением используются только при большой мощности и низком напряжении. В этих машинах независимо от величины напряжения на якоре обмотка возбуждения рассчитывается на стандартное напряжение постоянного тока 110 или 220 В с целью упрощения регулирующей аппаратуры.

Свойства и характеристики генераторов постоянного тока

Свойства генераторов анализируются с помощью характеристик, которые устанавливают зависимости между основными величинами, определяющими работу генераторов. Такими основными величинами являются:

1) напряжение на зажимах U;

2) ток возбуждения IВ;

3) ток якоря IЯ или ток нагрузки I;

4) частота вращения n.

Обычно генераторы работают при n=const. Поэтому основные характеристики определяются при n=nн=const/

Существует пять основных характеристик генераторов:

1) холостого хода;

2) короткого замыкания;

Наиболее важными являются характеристики холостого хода, внешняя и регулировочная.

Характеристика холостого хода представляет собой зависимость напряжения на зажимах генератора от тока возбуждения:

при I=0 и n=const.

и определяет зависимость U или ЭДС якоря от тока возбуждения при холостом ходе (I=0, P2=0).

Регулируя ток возбуждения IВ от 0 до IВ НОМ и от IВ НОМ до 0 при отключенной нагрузке, получают восходящую и нисходящую кривые (рис.8.9). Характеристика снимается экспериментально при отключенном рубильнике.

Несовпадение кривых объясняется явлением гистерезиса в магнитной цепи индуктора. За расчетную характеристику принимают среднюю кривую. Для всех типов генераторов характеристика холостого хода практически одинакова. Она позволяет оценить магнитные свойства машины.

Рис. 8.9 Характеристика холостого хода генератора независимого возбуждения.

Эта кривая состоит из следующих характерных участков:

Читайте также  Трехфазный генератор вращающихся магнитных полей

0 – ЭДС, индуцируемая в якоре остаточным магнитным потоком, сохранившимся от предыдущего намагничивания машины;

Е0а – прямолинейный участок, соответствующий ненасыщенному состоянию машины;

“ав” – средненасыщенный участок или «колено» кривой;

“вс” – участок магнитного насыщения машины.

При нормальных условиях эксплуатации магнитная цепь генератора должна быть в состоянии среднего насыщения, т.е. номинальное значение напряжения UНОМ находится на колене характеристики “ав”. Это условие обеспечивает устойчивую работу генератора.

Характеристика холостого хода позволяет судить о насыщении магнитной цепи машины при номинальном напряжении, проверять соответствие расчетных данных экспериментально и составляет основу исследования эксплутационных свойств машины.

Внешняя характеристика генератора является зависимостью напряжения генератора U от тока нагрузки:

U = f(I) при IВ = const и n = const

и определяет зависимость напряжения генератора от его нагрузки в естественных условиях, когда ток возбуждения не регулируется.

В генераторах с параллельным возбуждением снижение напряжения при увеличении нагрузки обусловлено тремя причинами: падением напряжения в обмотке якоря, реакцией якоря и уменьшением тока возбуждения от первых двух причин (IВ=U/RВ).

Поэтому внешняя характеристика генераторов с параллельным возбуждением более крутая по сравнению с характеристиками генераторов независимого и смешанного возбуждения (рис.8.10, кривая 2).

Рис. 8.10. Внешние характеристики генераторов: 1 – с независимым возбуждением; 2 – с параллельным; 3 – с последовательным; 4 – со смешанным включением при согласном включении обмоток; 5 – то же при встречном включении обмоток.

В генераторах со смешанным возбуждением основной является параллельная обмотка, а вспомогательной — последовательная. Соединение последовательной обмотки может быть: согласным, что позволяет получить увеличение магнитного потока при росте тока нагрузки, а, следовательно, стабилизировать напряжение (рис.8.10, кривая 4); встречным, когда магнитные потоки параллельной и последовательной катушек на каждом полюсе направлены навстречу друг другу. При встречном включении обмоток напряжение генератора при нагрузке резко падает (рис.8.10, кривая 5) и одновременно обеспе­чивается постоянство тока. Поэтому такие генераторы, используются для выполнения высококачественной, электродуговой сварки, т. е. когда необходимо получить крутопадающую внешнюю характеристику.

Наклон внешней характеристики к оси абсцисс (жесткость внешней характеристики) оценивается номинальным изменением напряжения генератора при сбросе нагрузки:

(обычно для генератора независимого возбуждения ΔUном=5-10%, а для генератора параллельного возбуждения ΔUном=10-30%).

Регулировочная характеристика показывает, каким следует поддерживать ток возбуждения Iв при различных нагрузках генератора, чтобы его напряжение было постоянным, т.е.

IB=f(IH) при U=const и n=const

Регулировочные характеристики (рис.8.11.) обратны кривым внешних характеристик генераторов постоянного тока.

С увеличением I ток IВ необходимо несколько увеличивать, чтобы компенсировать влияние падения напряжения IЯRЯ и реакции якоря.

Рис. 8.11. Регулировочные характеристики, генераторов постоянного тока: I — независимого возбуждения; 2 — параллельного; 3 — смешанного

Благодаря обратимости электрических машин генераторный режим машины может быть изменен на .двигательный. Особенно просто такое изменение режима осуществляется в генераторе с параллельным возбуждением, работающем на сеть постоянного тока. Для этого достаточно уменьшить ток возбуждения настолько, чтобы ЭДС якоря стала меньше напряжения сети. Преобладание напряжения сети вызовет изменение направления тока в обмотке якоря IЯ, который в таких условиях будет создаваться разностью напряжения сети и ЭДС якоря, т.е.

Этот ток, взаимодействуя с магнитным полем машины, будет создавать не тормозной, а вращающий электромагнитный момент.

| следующая лекция ==>
Основные понятия. В процессе работы генератора постоянного тока в обмотке якоря индуцируется ЭДС Eя (8.6) | Уравнение напряжения и тока

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

§32. Схемы генераторов и их характеристики

Свойства генератора постоянного тока определяются в основном способом включения обмотки возбуждения. В зависимости от этого различают генераторы:

с независимым возбуждением: обмотка возбуждения получает питание от постороннего источника постоянного тока (аккумуляторной батареи, небольшого вспомогательного генератора, называемого возбудителем, или выпрямителя);

с параллельным возбуждением: обмотка возбуждения подключена параллельно обмотке якоря и нагрузке;

с последовательным возбуждением: обмотка возбуждения включена последовательно с обмоткой якоря и нагрузкой;

со смешанным возбуждением: имеются две обмотки возбуждения — параллельная и последовательная; первая подключена параллельно обмотке якоря, а вторая — последовательно с нею и нагрузкой.

Генераторы с параллельным, последовательным и смешанным возбуждением относятся к машинам с самовозбуждением, так как питание их обмоток возбуждения осуществляется от самого генератора.

Все перечисленные генераторы имеют одинаковое устройство и отличаются лишь выполнением обмоток возбуждения. Обмотки независимого и параллельного возбуждения изготовляют из провода

Рис. 120. Принципиальная схема генератора с независимым возбуждением

малого сечения, они имеют большое число витков, обмотку последовательного возбуждения — из провода большого сечения, она имеет малое число витков.

О свойствах генераторов постоянного тока судят по их характеристикам: холостого хода, внешней и регулировочной. Ниже будут рассмотрены эти характеристики для генераторов различного типа.

Генератор с независимым возбуждением. Характерной особенностью генератора с независимым возбуждением (рис. 120) является то, что его ток возбуждения Iв не зависит от тока якоря Iя, а определяется только напряжением UB, подаваемым на обмотку возбуждения, и сопротивлением RB цепи возбуждения. Обычно ток возбуждения невелик и составляет 2—5 % номинального тока якоря. Для регулирования напряжения генератора в цепь обмотки возбуждения часто включают регулировочный реостат Rрв. На тепловозах ток Iв регулируют путем изменения напряжения UB.

Характеристика холостого хода генератора (рис. 121, а) — зависимость напряжения U0 при холостом ходе от тока возбуждения Iв при отсутствии нагрузки Rн т. е. при Iн = Iя = 0 и при постоянной частоте вращения п. При холостом ходе, когда цепь нагрузки разомкнута, напряжение генератора U0 равно его э. д. с. Е0 = сЕФn. Так как при снятии характеристики холостого хода частота вращения п поддерживается неизменной, то напряжение U0 зависит только от магнитного потока Ф. Поэтому характеристика холостого хода будет подобна зависимости потока Ф от тока возбуждения Iя (магнитной характеристике магнитной цепи генератора). Характеристику холостого хода легко снять экспериментально, постепенно увеличивая ток возбуждения от нуля до значения, при котором U0 ? 1,25Uном, а затем уменьшая ток возбуждения до нуля. При этом получаются восходящая 1 и нисходящая 2 ветви характеристики. Расхождение этих ветвей объясняется наличием гистерезиса в магнитопроводе машины. При Iв = 0 в обмотке якоря потоком остаточного магнетизма индуцируется остаточная э. д. с. Еост которая обычно составляет 2—4 % номинального напряжения Uном.

При малых токах возбуждения магнитный поток машины невелик, поэтому в этой области поток и напряжение U0 изменяются прямо пропорционально току возбуждения и начальная часть этой характеристики представляет собой прямую. При увеличении тока возбуждения магнитная цепь генератора насыщается и нарастание напряжения U0 замедляется. Чем больше становится ток возбуждения, тем сильнее сказывается насыщение магнитной цепи машины и тем медленнее возрастает напряжение U0. При очень больших токах возбуждения напряжение U0 практически перестает возрастать.

Характеристика холостого хода позволяет судить о значении возможного напряжения и о магнитных свойствах машины. Номинальное напряжение (указанное в паспорте) для машин общего применения соответствует насыщенной части характеристики («колену» этой кривой). В тепловозных генераторах, требующих регулирования напряжения в широких пределах, используют как криволинейную, так и прямолинейную ненасыщенную часть характеристики.

Принцип действия и устройство генераторов постоянного тока

Генератор постоянного тока – это электротехническое оборудование, которое продуцирует напряжение постоянной величины. Устройство имеет довольно сложное техническое строение, которое можно назвать совершенством технической мысли.

  1. Принцип действия
  2. Характеристики и строение
  3. Электродвижущая сила
  4. Мощность оборудования и КПД
  5. Разновидности по способу возбуждения
  6. Область применения

Принцип действия

Генератор постоянного тока

Каждый проводник оснащен магнитом, к концам которого подключена нагрузка. При ее подключении по ним непрерывно протекает переменный ток. Природа его происхождения объясняется тем, что во время работы полюса магнита непрерывно меняются местами. На этом принципе основывается работа генератора переменного тока.

Чтобы ток не изменял своего направления, требуется успевать соединять точки коммутации нагрузки со скоростью аналогичной скорости вращения магнита. Справиться с поставленной задачей может только контроллер – небольшое электротехническое устройство, которое состоит из нескольких токопроводящих секторов, разделенных диэлектрическими пластинами. Оно фиксируется на якоре устройства и вращается с ним синхронно.

Читайте также  Чери тигго 2008 генератор

Электрическая энергия с якоря удаляется с помощью щеток. Используются чаще всего кусочки графита, обладающие высокой электропроводностью и низким коэффициентом трения.

Все эти процессы способствуют образованию на выходе электротехнической установки пульсирующего напряжения одной величины. Для сглаживания этой пульсации применяется несколько якорных обмоток. Чем их больше установлено, тем меньше будут броски напряжения на выходе.

Характеристики и строение

Как и абсолютное большинство других электрических агрегатов, генератор постоянного тока в свой состав включает статор и якорь.

Якорь изготавливают из стальных пластин с небольшими углублениями, в них помещаются обмотки. Их концы обязательно коммутируют с коллектором, который изготовлен из медных пластин, разделенных диэлектриками. По окончании сборки вал, якорь с обмотками и коллектор становятся одним целым.

Статор выполняет не только свою непосредственную функцию, но и является корпусом, к внутренней поверхности которого крепятся электрические магниты и постоянные. Предпочтительнее первый вариант, их сердечники могут быть набраны из металлических пластин или отлиты вместе с корпусом. Еще на корпусе предусмотрены специальные отверстия для крепления токосъемных щеток.

Количество графитов будет изменяться в зависимости от количества полюсов магнитов, которыми оснащен статор. Количество щеток равно количеству пар полюсов.

Электродвижущая сила

Электродвижущая сила генератора постоянного тока или ЭДС представляет собой величину, которая прямо пропорциональна потоку магнитов, количеству активных проводников и частоте вращения якоря. При уменьшении или увеличении этих показателей удается управлять величиной электродвижущей силы и напряжением. Установить требуемые параметры можно с помощью регулировки частоты вращения якоря.

Мощность оборудования и КПД

Мощность генератора постоянного тока встречается как полная, так и полезная. При постоянной электродвижущей силе генератора полная мощность пропорциональна силе тока.

Еще одной важной технической характеристикой альтернатора является его коэффициент полезного действия. Это понятие представляет собой отношение полезной мощности к полной.

На холостом ходе КПД равно нулю, максимальные показатели достигаются при номинальных нагрузках. В мощных инновационных моделях генераторов постоянного тока коэффициент полезного действия приближается к 90%.

Разновидности по способу возбуждения

По способу возбуждения генераторы постоянного тока делятся на два вида:

  • с самовозбуждением;
  • с независимым возбуждением обмоток.

Для самовозбуждения оборудования обязательно требуется электричество, которое им же и вырабатывается. По принципу коммутации обмоток самовозбуждающиеся якоря альтернаторов делятся на следующие разновидности:

  • оборудование с параллельным возбуждением;
  • устройства с последовательным возбуждением;
  • генераторы смешанного типа, которые получили название – компудные.

Каждая разновидность имеет свои конструктивные особенности, преимущества и недостатки.

Для обеспечения оптимальных условий для работы оборудования требуется наличие стабильного напряжения на зажимах. Особенность устройства заключается в параллельном возбуждении выводов катушки, которые подсоединены через регулировочный реостат, расположенный параллельно обмотке якоря.

Для оборудования с независимым возбуждением источником питания выступают внешние устройства или аккумуляторные батареи. В маломощных модификациях устанавливаются постоянные магниты, обеспечивающие создание основного магнитного потока. Основное достоинство заключается в том, что на напряжение на зажимах не влияет возбуждающий ток.

Устройства со смешанным возбуждением сочетают положительные качества вышеописанных разновидностей. Конструктивные особенности – две катушки индуктивности, основная и вспомогательная. Цепь параллельной обмотки включает в себя реостат, который используется для регуляции силы тока возбуждения.

Область применения

Система постоянного тока в самолете

Генераторы постоянного тока имеют довольно обширный список применения. Его активно используют практически во всех отраслях промышленности, особенно в автомобилестроении и при сооружении российских локомотивов нового поколения, которые оснащают асинхронные двигатели, характеризующиеся работой на переменном токе.

Также электротехническое оборудование может использовать в быту для портативных сварочных аппаратов с автономной системой питания и для бытовой техники, оснащенной мощными пусковыми двигателями.

Перед покупкой следует проанализировать, с какими целями электротехническое оборудование должно будет справляться. Исходя из этого подбирается наиболее подходящая модификация генераторов постоянного тока.

Приобрести оборудование можно в специализированных магазинах или на интернет-площадках. При покупке важно проверить наличие всей необходимой сопроводительной документации и гарантийного талона. Предварительно также осматривается целостность корпуса и наличие повреждений: если таковые имеются, лучше воздержаться от покупки. При покупке через интернет стоит внимательно ознакомиться с отзывами о магазине на различных форумах.

ЧТО ТАКОЕ ГЕНЕРАТОР ПОСТОЯННОГО ТОКА

Генератор постоянного тока предназначен для преобразования кинетической энергии в электрическую. Используется в качестве источника электроэнергии в тепловозах, автомобилях, промышленных установках и т.д.

Представляет собой обратимую электрическую машину. В зависимости от схемы подключения может работать как генератор или как электродвигатель.

Принцип действия генератора постоянного тока основан на физическом явлении электромагнитной индукции. Заключается в том, что если проводник передвигается в магнитном поле, в нем возникает электрический ток. Такой ток называется индукционным.

Схематично это явление можно описать следующим образом. Если проводник, например, медную проволоку в виде рамки поместить между двумя полюсами подковообразного магнита, он будет находиться в постоянном магнитном поле.

Затем начнем вращать эту рамку. В процессе вращения она будет пересекать магнитный поток. Вследствие этого, внутри проволоки индуцируется электродвижущая сила э.д.с.

Если концы этой рамки соединить, то под воздействием э.д.с., потечет индукционный ток. Если включить в эту цепь амперметр, он покажет наличие в ней тока. Это и есть самый простой макет генератора.

Для того, чтобы подключить рамку к электрической цепи, ее крепят к полукольцам. Две щетки контактируют с вращающимися полукольцами поочередно, и через них индукционный ток поступает далее в электрическую цепь. Полукольца устанавливают на оси, вокруг которой вращается рамка. Это упрощенная схема коллектора.

Когда рамка переходит через горизонтальное положение (нейтраль), щетки одновременно переключаются с одного полукольца на второе. В этот момент стороны рамки магнитных силовых линий не пересекают. В таком положении э.д.с. и, соответственно, ток равны 0. Благодаря этому переключение щеток не сопровождается искрением.

На величину электродвижущей силы влияют следующие факторы:

  • длина проволоки;
  • величина индукции магнитного поля;
  • частота вращения.

Величина э.д.с. (Е) меняется по синусоидальной траектории, с пиками при прохождении рамкой вертикальных положений. В эти моменты она перпендикулярно пересекает максимум силовых линий. Нулевые значения отмечаются при прохождении нейтрали. После ее пересечения э.д.с. меняет свое направление.

В свою очередь, коллектор, чередуя каждые пол оборота полукольца на щетках, выпрямляет переменную э.д.с. На выходе получается пульсирующий, в виде выпрямленной синусоиды, постоянный ток.

КАК НА ВЫХОДЕ ПОЛУЧАЕТСЯ ПОСТОЯННЫЙ ТОК

Для того, чтобы можно было пользоваться генератором, как источником энергии, ток нужно сгладить. Если увеличить количество рамок до двух и расположить их перпендикулярно друг другу. Тогда пиковые значения Е и, соответственно, тока будут возникать уже каждые четверть оборота.

Если их соединить последовательно, индуцируемый ток будет суммироваться. А его выходная характеристика будет иметь вид двух, смещенных между собой на четверть периода выпрямленных синусоид. Пульсация значительно уменьшится.

Если количество последовательных рамок еще увеличивать, тогда значение тока будет все больше приближаться к идеальной прямой. Кроме того, величина электродвижущей силы напрямую зависит от длины проводника. Поэтому количество рамок делают большим, а их совокупность и составляет обмотку вращающейся части генератора — якоря.

Для последовательного соединения витков обмотки, конец предыдущего нужно соединить с началом следующего. Делают это на полукольцах или, как их называют, пластинах. Их количество будет равняться количеству витков.

Другим фактором, влияющим на величину Е, является сила магнитного поля. Индукция магнитного потока обычного магнита слишком маленькая, а потери в среде между двумя полюсами наоборот очень большие.

Для решения первой проблемы вместо постоянного магнита используют гораздо более сильный электромагнит. Для решения второй проблемы сердечник якоря выполняют из стали. Также уменьшают до самого минимума зазор между якорем генератора и полюсами электромагнита.

Читайте также  Фишка для генератора тойота

Ток, протекающий в якоре, образуют своего рода электромагнит, и создает свое магнитное поле. Это явление называется реакция якоря. В нем также возникает реактивная э.д.с. Вместе они искажают магнитное поле. Чтобы это скомпенсировать, устанавливаются добавочные полюса. Они включаются в цепь якоря и полностью перекрывают это негативное воздействие.

По источнику тока возбуждения генераторы бывают:

  • с независимым возбуждением;
  • с самовозбуждением.

Необходимый для работы генератора магнитный поток создается благодаря току, проходящему через обмотки главных полюсов. Этот ток называется током возбуждения. При независимом возбуждении обмотка питается от аккумулятора или другого источника питания. При самовозбуждении питается током якоря.

Благодаря тому, что сердечники полюсов обладают остаточным магнетизмом, они создают небольшой магнитный поток. Если якорь начинает вращаться, этого потока достаточно для появления в витках якоря небольшого индукционного тока.

Этот ток, попадая в обмотку возбуждения полюсов, усиливает рабочий магнитный поток. Это приводит к увеличению тока в якоре и происходит цепная реакция. Таким образом, генератор быстро выходит на расчетную мощность.

По схеме подключения обмотки якоря к обмотке возбуждения генераторы с самовозбуждением делятся на три типа:

  • с параллельным возбуждением;
  • с последовательным возбуждением;
  • со смешанным возбуждением.

Схема возбуждения влияет на характеристики генератора и особенности его применения. Основным его параметром является внешняя характеристика, выражающая зависимость напряжения на выходе от тока нагрузки при заданной частоте вращения и параметрах возбуждения. Также к основным характеристикам относится мощность и КПД, который достигает 90-95%.

УСТРОЙСТВО ГЕНЕРАТОРА ПОСТОЯННОГО ТОКА

Генератор состоит из двух частей:

  • подвижная вращающаяся часть якорь;
  • неподвижная – статор.

Статор состоит из станины, магнитных полюсов, подшипникового щита с подшипниками. Станина — это несущая часть генератора, на которой размещены все его части. Внутри установлены полюсы с сердечниками и обмотками возбуждения. Изготавливается из ферромагнитных материалов.

Ротор или якорь состоит из сердечника, вала, коллектора и вентилятора. В качестве опоры для якоря используются подшипники, установленные на боковых подшипниковых щитах статора.

Преимущества и область применения.

Генераторы постоянного тока обладают следующими достоинствами:

  • простота конструкции, компактность;
  • надежность;
  • экономичность;
  • обратимость, то есть возможность использования в качестве электродвигателя;
  • практически линейная внешняя характеристика.

Недостатки:

  • высокая стоимость;
  • ограниченный срок службы щеточно-коллекторного узла.

Используются в различных отраслях производства, в строительстве, в промышленных установках, сварочном оборудовании, в машиностроении, на предприятиях металлургической промышленности, в автомобильном, железнодорожном, воздушном и морском, транспорте.

© 2014-2021 г.г. Все права защищены.
Материалы сайта имеют ознакомительный характер, могут выражать мнение автора и не подлежат использованию в качестве руководящих и нормативных документов.

Характеристики генератора постоянного тока

Основными величинами, характеризующими работу генераторов постоянного тока, являются: вырабатываемая мощность Р, напряжение на выводахU, ток возбужденияIв,ток якоряIяили ток нагрузкиI, частота вращенияn.

Основными характеристиками, определяющими свойства генераторов, являются:

характеристика холостого хода — зависимость ЭДС генератора от тока возбуждения при постоянной частоте вращения:E =f(Iв) приI= 0 иn=nном=const;

внешняя характеристика — зависимость напряжения на выводах генератора от тока нагрузки при постоянном сопротивлении цепи возбуждения и постоянной частоте вращения:U=f(I) приRв =constиn=const;

регулировочная характеристика— зависимость тока возбужденияIвот тока нагрузкиI:Iв =f(I) при условии поддержания постоянного напряжения на выводах генератора (U=const) иn=nном=const.

Свойства и характеристики генератора постоянного тока зависят главным образом от схемы включения обмотки главных полюсов. По этому признаку генераторы делятся на генераторы независимого, параллельного, последовательного и смешанного возбуждения (рис. 3, а,б,в,гсоответственно). Последние три типа генераторов относятся к генераторам с самовозбуждением.

Рассмотрим процесс самовозбуждения при отключенной нагрузке генератора.

Магнитная цепь машины имеет небольшой остаточный магнитный поток Фост (примерно 2-3 % от номинального). При вращении якоря в поле остаточного магнитного потока в нем наводится небольшая ЭДС, вызывающая некоторый токIвв обмотке возбуждения, а следовательно, возникает некоторая магнитодвижущая сила возбуждения. По отношению к магнитному потокуФостона может быть направлена согласно или встречно. При согласном направлении происходит увеличение остаточного магнитного потока, вследствие чего ЭДС в якоре возрастает, и процесс развивается лавинообразно до тех пор, пока не будет ограничен насыщением магнитной цепи. Если магнитодвижущая сила и магнитный поток будут направлены встречно, то самовозбуждения не будет происходить. Тогда для изменения направления токаIв в обмотке возбуждения следует переключить концы, подсоединяющие ее к якорю.

Однако процесс самовозбуждения генератора может развиваться, что происходит при определенных условиях. Этими условиями являются:

1) наличие остаточного магнитного потока;

2) совпадение направления остаточного магнитного поля и поля, создаваемого обмоткой возбуждения;

3) значение сопротивления цепи возбуждения меньше критического, т.е. когда ток возбуждения способен достигнуть значения, обеспечивающего на характеристике холостого хода заданное значение ЭДС.

Изучение характеристик одного и того же генератора при различных схемах включения его обмоток возбуждения показало, что у генераторов независимого возбуждения можно в широких пределах регулировать напряжение. Поэтому они нашли более широкое практическое применение.

Генераторами независимого возбуждения называют генераторы постоянного тока, обмотка возбуждения которых питается током от постороннего источника электрической энергии.

Далее более подробно рассмотрим основные характеристики генератора постоянного тока с независимым возбуждением.

Характеристика холостого хода (рис. 4) снимается при плавном увеличении тока возбуждения, а затем при плавном его уменьшении при n=nном=сonst. Вторая ветвь характеристики идет несколько выше первой, и при токеIв = 0 в машине есть некоторая ЭДСЕ0, называемая остаточной.

Вид характеристики холостого хода объясняется тем, что приn=const,Е=с1пропорциональна магнитному потокуФ, а последний — индукцииВ, а ток пропорционален напряженности магнитного поля Н, т.е. ее форма такая же, как у кривой гистерезиса. За расчетную принимают характеристику, проходящую между ветвями экспериментальной кривой (штриховая кривая на рис. 4). Остаточная ЭДСЕ0 создается за счет индукции, остающейся в магнитной цепи статора после отключения тока возбуждения. Машина рассчитывается таким образом, чтобы в номинальном режиме рабочая точка (Iв,ном,Еном) находилась на «колене» характеристики холостого хода (рис. 4), этим обеспечивается получение достаточной ЭДС при относительно небольшом токе возбуждения.

Внешняя характеристика генератора с независимым возбуждением

U=f(I) приIв=constиn=nном%=const(рис. 5,а) характеризует влияние тока нагрузки генератора на напряжение на его выводах. НапряжениеU=EIRяпри увеличении нагрузки от нуля до номинальной плавно уменьшается на 5-15 % по двум причинам: из-за падения напряжения на сопротивлении якоряIRя и уменьшении ЭДСЕиз-за размагничивающего влияния реакции якоря. При перегрузке машины ток в якоре становится недопустимо большим и напряжение сильно падает. При коротком замыкании ток в якореIяпримерно в 10 раз больше номинального и, если генератор быстро не отключить, то его коллектор и обмотка выйдут из строя.

Регулировочная характеристика Iв=f(I) приU =constиn =nном=constизображена на рис. 5,б. Начинают снимать ее с холостого хода, когдаI = 0 и Iв =Iв,0.

Эта характеристика показывает, как надо изменять ток возбуждения для того, чтобы при изменениях нагрузки поддерживать постоянным напряжение между выводами генератора. Для поддержания постоянства напряжения на выводах якоря в цепь возбуждения включен регулировочный реостат.

а)б)

Яков Кузнецов/ автор статьи

Приветствую! Я являюсь руководителем данного проекта и занимаюсь его наполнением. Здесь я стараюсь собирать и публиковать максимально полный и интересный контент на темы связанные ремонтом автомобилей и подбором для них запасных частей. Уверен вы найдете для себя немало полезной информации. С уважением, Яков Кузнецов.

Понравилась статья? Поделиться с друзьями:
NEVINKA-INFO.RU
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: