Число групп сцепления генов у представителей гетерогаметного пола равно количеству
Хромосомная теория
Хромосомная теория наследственности
Концепция данной теории заключается в том, что передача наследственной информации в ряду поколений осуществляется путем передачи хромосом, в которых в определенной линейной последовательности расположены гены.
Данная теория была сформулирована в начале XX века. Значительный вклад в ее развитие внес американский генетик Томас Морган.
Рекомендую осознать и запомнить следующие положения хромосомной теории:
- Гены расположены в хромосомах в линейном порядке
- Каждый ген занимает в хромосоме определенное место — локус
- Гены, расположенные в одной хромосоме, образуют группу сцепления
- Сцепление генов может нарушаться в результате кроссинговера
- Частота кроссинговера между генами прямо пропорциональна расстоянию между ними
- Расстояние между генами измеряется в морганидах (1 морганида — 1% кроссинговера)
Группы сцепления
В предыдущей статье были раскрыты суть и применение в задачах III закона Менделя, закона независимого наследования, в основе которого лежат гены, расположенные в разных хромосомах. Но что если гены лежат в одной хромосоме? Такие гены образуют группу сцепления, в этом случае говорят о сцепленном наследовании.
Группа сцепления — совокупность всех генов, расположенных в одной хромосоме, вследствие чего они наследуются совместно. Число групп сцепления равно гаплоидному набору хромосом: у женщины 23 группы сцепления (23 пара — половые хромосомы XX), а у мужчины — 24 группы сцепления (X и Y представляют собой две отдельные группы).
Сцепление генов
Томас Морган в своих экспериментах изучал наследование признаков плодовых мушек дрозофил: серый (A) — черный (a) цвет тела, длинные (B) — зачаточные (b) крылья. В первом эксперименте Морган скрестил чистые линии плодовых мушек: серых с длинными крыльями (AABB) и черных с зачаточными (aabb).
Только что вы видели первый закон Менделя (единообразия) в действии, правда, в несколько ином варианте — при дигибридном скрещивании. Но суть та же: в первом поколении все особи получаются единообразны по исследуемому признаку, с генотипом AaBb — с серым телом и длинными крыльями.
Далее Морган применил анализирующее скрещивание. Полученную в первом поколении дигетерозиготу (AaBb) он скрестил с черной особью с зачаточными крыльями (aabb). Результат весьма удивил Моргана и его коллег: помимо потомства с ожидаемыми фенотипами (серое тело + длинные крылья, черное тело + зачаточные крылья) были получены особи со смешанными признаками.
Потомство со смешанными признаками подразумевает под собой особи Aabb (серое тело + зачаточные крылья) и aaBb (черные тело + длинные крылья). Но откуда они могли взяться, если гены A и B находятся в одной хромосоме? Значит, образовались еще какие-то дополнительные гаметы, помимо AB и ab?
Объясняя полученные в потомстве фенотипы, которые содержали смешанные признаки, Томас Морган пришел к выводу, что между гомологичными хромосомами произошел кроссинговер, в результате которого образовались гаметы Ab, aB — кроссоверные гаметы.
Очевидно, что в данном случае расстояние между генами A и B было 17 морганид, так как каждой кроссоверной гаметы (соответственно и особей) образовалось по 8.5%. Не забывайте, что процент кроссинговера равен расстоянию между генами. Поскольку расстояние было 17 морганид = 17%, то на каждую из кроссоверных гамет приходится половина — 8.5%
Пример решения генетической задачи №1
«Катаракта и полидактилия у человека обусловлены доминантными аутосомными генами, расположенными в одной хромосоме. Гены полностью сцеплены. Какова вероятность родить здорового ребенка в семье, где муж нормален, жена гетерозиготна по обоим признакам, мать жены также страдала обеими аномалиями, а отец был нормален».
Очень важно обратить внимание на то, что «гены полностью сцеплены» — это говорит об отсутствии кроссинговера, и то, что мы заметили это, обеспечивает верное решение задачи.
Самое главное, что вам следует усвоить: поскольку гены полностью сцеплены (кроссинговер отсутствует), женщина с генотипом AaBb может образовать только два типа гамет — AB, ab. Кроссоверные гаметы (Ab, aB) не образуются. Всего возможных генотипов потомков получается два, из которых здоров только один — aabb. Шанс родить здорового ребенка в такой семье ½ (50%).
Пример решения генетической задачи №2
«Гены доминантных признаков катаракты и эллиптоцитоза локализованы в 1-й аутосоме. Гены неполностью сцеплены. Женщина, болеющая катарактой и эллиптоцитозом, отец которой был здоров, выходит замуж за здорового мужчину. Определите возможные фенотипы потомства и вероятность рождения больного обеими аномалиями ребенка в этой семье».
Ключевые слова в тексте этой задачи, на которые следует обратить внимание: «гены неполностью сцеплены». Это означает, что между ними происходит кроссинговер.
Генотип женщины остается неясен из текста задачи. Раз она больна, то он может быть: AaBb, AABB, AABb, AaBB. Однако в тексте дано то, что развеет сомнения: «отец которой был здоров». Если ее отец был здоров, то его генотип был aabb, значит он передал дочери гамету ab. Теперь становится очевидно, что генотип дочери AaBb — она дигетерозиготна.
В данном случае между генами A и B произошел кроссинговер, их сцепление нарушилось. В результате образовались кроссоверные гаметы Ab, aB — которые привели к образованию особей с со смешанными признаками (Aabb, aaBb). Вероятность рождения в этой семье ребенка, больного обеими аномалиями, составляет ¼ (25%).
Наследование, сцепленное с полом
Половые хромосомы X и Y определяют пол человека. Генотип XX характерен для женщин, а XY — для мужчин. Мужская Y-хромосома не содержит аллелей многих генов, которые есть в X-хромосоме, вследствие этого наследственными заболеваниями, сцепленными с полом, чаще болеют мужчины.
Природа, несомненно, бережет женских особей. Женщины имеют две гомологичные хромосомы XX, и если ген наследственного заболевания попал в одну из X-хромосом, то чаще всего в другой X-хромосоме окажется «здоровый» ген, доминантный, которой подавит действие рецессивного гена. С генетической точки зрения, женщина будет носительницей заболевания, может его передать по поколению, но сама болеть не будет.
У мужчин если ген заболевания оказался в X-хромосоме, то не проявиться он не может. Именно по этой причине мужчины чаще страдают дальтонизмом, гемофилией и т.д.
Не у всех организмов особь мужского пола характеризуется набором хромосом XY, а женского — XX. У пресмыкающихся, птиц, бабочек женские особи имеют гетерогаметный пол- XY, а мужские — XX. То же самое относится к домашним курам: петух — XX, курица — XY.
Решим несколько задач по теме наследования, сцепленного с полом. Речь в них будет идти о сцепленных с полом признаками — признаками, гены которых лежат не в аутосомах, а в гетеросомах (половых хромосомах).
Пример решения генетической задачи №3
«Рецессивный ген дальтонизма располагается в X-хромосоме. Женщина с нормальным зрением (отец был дальтоник) выходит замуж за мужчину с нормальным зрением, отец которого был дальтоником. Определите возможные фенотипы потомства».
Подробности о родословной важны и помогают заполнить белые пятна. Если отец женщины был дальтоником (X d Y), то очевидно, что он передал ей хромосому X d , так как от отца дочери всегда передается X-хромосома. Значит женщина гетерозиготна по данному признаку, а у мужчины возможен лишь один вариант здорового генотипа — X D Y. То, что его отец был дальтоником несущественно, ведь отец всегда передает сыну Y-хромосому.
Возможные фенотипы потомства:
- X D X D , X D X d — фенотипически здоровые девочки
- X D Y — здоровый мальчик
- X d Y — мальчик, который болен дальтонизмом
Пример решения генетической задачи №4
«Гипоплазия зубной эмали наследуется как сцепленный с X-хромосомой доминантный признак, шестипалость — как аутосомно-доминантный. В семье, где мать шестипалая, а у отца гипоплазия, родился пятипалый здоровый мальчик. Напишите генотипы всех членов семьи по данным признакам. Возможно ли у них рождение ребенка с двумя аномалиями одновременно?»
Ответ на вопрос: «Каковы генотипы матери и отца?» — лежат в потомстве. Пятипалый здоровый мальчик имеет генотип aaX b Y. Чтобы сформировался такой генотип, от матери должна прийти гамета aX b , а от отца — aY. Выходит, что единственно возможный генотип матери — AaX b X b , а генотип отца — aaX B Y.
Рождение ребенка с двумя аномалиями возможно — AaX B X b , вероятность такого события ¼ (25%).
Пример решения генетической задачи №5
«Рецессивные гены, кодирующие признаки дальтонизма и гемофилии, сцеплены с X-хромосомой. Мужчина с нормальным цветовым зрением и гемофилией женится на здоровой женщине, отец которой был дальтоником, но не гемофиликом. Известно, что мать женщины была гомозиготна по исследуемым признакам. Какое потомство получится от брака их дочери со здоровым мужчиной?»
Генотип мужчины вопросов не вызывает, так как единственный возможный вариант — X hD Y. Генотип женщины дает возможность узнать ее отец (X Hd Y), который передал ей гамету X Hd (отец всегда передает дочке X хромосому, а сыну — Y), следовательно, ее генотип — X HD X Hd
Как оказалось, возможны два варианта генотипа дочери: X HD X hD , X Hd X hD . Генотип здорового мужчины X HD Y. Следуя логике задачи, мы рассмотрим два возможных варианта брака.
Не забывайте, что на экзамене схема задачи не является ответом. Ответ начинается только после того, как вы напишите слово «Ответ: . «. В ответе должны быть указаны все фенотипы потомства, их описание, что возможно покажется рутинными при большом числе потомков, но весьма приятным, если вы верно решили задачу и получили за нее заслуженные баллы
© Беллевич Юрий Сергеевич 2018-2021
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.
Число групп сцепления генов у представителей гетерогаметного пола равно количеству
Сцепленное наследование. Хромосомная теория наследственности. Тесты
1. Утверждение: «гены находятся в хромосоме и располагаются в определённой последовательности по её длине в линейном порядке, друг за другом» принадлежит
б) С. Четверикову
г) Т. Моргану
2. Сцепление генов было описано
в) Т. Морганом
3. Две гомологичные хромосомы образуют количество групп сцепления
4. Генетический объект исследования в опытах Т. Моргана
а) осенняя жигалка
б) вольфартовая муха
в) плодовая мушка
5. Явление сцепления наблюдается между генами
а) одной хромосомы
б) разных хромосом
в) только аутосом
г) только Х-хромосомы
6. Кроссинговер не характерен
в) самцов мухи дрозофилы
г) самки мухи дрозофилы.
7. Конъюгация хромосом
а) обмен гомологичными участками хромосом
б) обмен негомологичными участками хромосом
в) обмен целыми хромосомами
г) соединение гомологичных хромосом с образованием бивалентов.
8. Расщепление по фенотипу для дигибридного скрещивания при неполном сцеплении генов в опытах Моргана на дрозофиле
9. Частота кроссинговера прямо пропорциональна расстоянию между генами поэтому, чем меньше расстояние между ними, тем частота кроссинговера
б) уменьшается
в) вначале уменьшается, затем возрастает
г) не изменяется
10. Число аутосомных групп сцепления у человека
11. Неаллельные гены, в ряде случаев наследуются преимущественно вместе это связано тем, что они находятся
а) в негомологичных аутосомах
б) в одинаковых участках гомологичных хромосом
в) в разных участках гомологичных хромосом
г) в гомологичных участках гетерохромосом
12. Чем больше расстояние между генами, тем частота кроссинговера
б) не изменяется
в) увеличивается
г) не изменяется
13. Генетическое явление, которое позволяет построить генетические карты хромосом, показывающие последовательность генов в хромосомах и относительное расстояние между ними
а) конъюгация гомологичных хромосом
б) перекрёст гомологичных хромосом
в) независимое расхождение хромосом
г) независимое расхождение хроматид
14. Экспериментальным путём устанавливают частоту кроссинговера между признаками для
а) изучения частоты встречаемости генов в популяциях
б) изучения частоты встречаемости генотипов в популяциях
в) составления карт хромосом различных видов организмов
г) составления географических карт распространения генов
15. Сколько групп сцепления у гетерогаметного пола человека:
16. Аллели разных генов, расположенные в одной хромосоме не всегда наследуются совместно, причиной этого процесса является
а) редупликация ДНК
б) конъюгация гомологичных хромосом
в) расхождение хроматид
г) кроссинговер
17. Гены, расположенные в одной хромосоме наследуются
б) преимущественно вместе
в) никогда вместе
г) только на 50% вместе
18. Закономерности исследования сцепленных признаков используют для
а) составления хромосомных карт
б) изучения кариотипа
в) изучения генома
г) составления идеограмм хромосом
19. Число кроссоверного потомства зависит от
а) расстояния между аллельными генами
б) расстояния между генами в разных группах сцепления
в) расстояния между генами одной группы сцепления
г) расстояния между генами Х и Y хромосом
20. Нарушение сцепления генов Т. Морган объяснил
а) случайным сочетанием генов негомологичных хромосом
б) кроссинговером между гомологичными хромосомами
в) случайным сочетанием гамет во время оплодотворения
г) расхождением гомологичных хромосом
21. Гены, локализованные в одной хромосоме, определяют
а) независимое наследование
б) сцепленное наследование
в) плейотропное наследование
г) множественное действие гена
22. Основные положения хромосомной теории наследственности
а) аллельные гены занимают одинаковые локусы гомологичных хромосом; неаллельные гены расположены в разных локусах хромосом
б) гены одной хромосомы образуют группу сцепления, число групп сцепления равно гаплоидному набору хромосом; между гомологичными хромосомами возможен кроссинговер, сила сцепления генов обратно пропорциональна расстоянию между генами
в) число групп сцепления равно диплоидному набору хромосом, гены одной группы сцепления всегда наследуются совместно;
г) расстояние между генами пропорционально силе сцепления генов, чем ближе гены тем чаще кроссинговер
23. Неполное сцепление генов наблюдается
а) между генами одной хромосомы; если происходит кроссинговер, у самки мухи дрозофилы и самца тутового шелкопряда
б) между генами разных аутосом и между половыми Х и У хромосомами
в) если кроссинговер не происходит
г) между генами аутосом и половых хромосом
24. Полное сцепление генов наблюдается
а) между генами одной хромосомы, если не происходит кроссинговер, у самца мухи дрозофилы и самки тутового шелкопряда
б) между генами негомологичных хромосом у различных видов организмов
в) если кроссинговер не происходит между аллельными генами
г) между генами половых «Х» хромосом
25. Расщепление по фенотипу при дигибридном скрещивании при полном сцеплении генов в опытах Моргана
1) 41, 5 : 8,5 : 8,5 : 41, 5
26. Если гамет Ав и аВ образуется в 9 раз больше, чем АВ и ав, то расстояние между генами А и В
в) 10 морганид
27. При неполном сцеплении генов организм с генотипом АаВВ образует типов гамет
28. Если организм образует по 10% гамет АВ и ав, то на долю гамет Ав и аВ приходится
29. При полном сцеплении генов у особи с генотипом АаВв образуется типов гамет
30. При полном сцеплении генов А и В образуется организмом гамет «ав»
31. Организм образует по 3% гамет АВ и ав, укажите генотип особи
а)
б)
в)
г)
32. При неполном сцеплении генов у организма с генотипом АаВв образуется типов гамет
33. Гамет Ав и аВ образуется в 4 раза больше, чем АВ и ав, то расстояние между генами А и В
а) 20 морганид
34. Расстояние между генами В и С равно 30 морганидам, между генами А и В – 20 морганид, между генами В и Д – 5 морганид, между генами А и Д – 15 морганид. Расстояние между генами А и С
а) 10 морганид
35. В анализирующем скрещивании от дигетерозигот АаВв получены гаметы: АВ – 260, Ав – 742, аВ – 750, ав – 272. Расстояние между генами А и В
б) 26 морганид
36. Если у дигибрида АаВв кроссинговер между генами А и В не произойдет, то в результате мейоза образуется два типа некроссоверных гамет
37. Пол у человека определяется
а) количеством половых хромосом
б) сочетанием половых хромосом
в) соотношением половых хромосом с учетом полового индекса
г) количеством аутосом
38. Пол у мушки дрозофилы определяется
а) количеством половых хромосом
б) соотношением половых хромосом
в) соотношением половых хромосом с учетом полового индекса
г) количеством аутосом
39. Наследование, сцепленное с полом наблюдается в том случае, когда гены расположены
а) в гомологичных локусах Х и У хромосом
б) в гомологичных локусах аутосом
в) в негомологичных локусах Х и У хромосом
г) в негомологичных локусах аутосом
40. Гены локализованные в У – хромосоме определяют
а) аутосомный тип наследования,
б) голандрический тип наследования
в) «бисс-кросс» наследование
г) соотносительный тип наследования
41. Голандрические признаки
а) гипертрихоз, ихтиоз, развитие плавательной перепонки между пальцами
б) альбинизм, праворукость, курчавые волосы
в) дальтонизм, гемофилия, ихтиоз г) отсутствие верхних резцов и клыков.
42. Генов дальтонизма в диплоидном наборе соматических клеток мужчины содержится
43. Почему дальтонизм среди женщин составляет 0,5%, а среди мужчин 7%
а) мужчины гемизиготны по генам Х хромосомы
б) имеют голандрические гены
в) имеют высокий процент мутантного аллеля
г) носители аутосомного рецессивного гена
44. Организм, образующий гаметы одного сорта по половым хромосомам
г) гомогаметный
45. Гемизиготный организм – это диплоидный организм, у которого
а) одна доза определённого гена
б) две дозы определённого гена
в) аллельные гены кодоминантны
г) множество доз определённого гена
46. Гемизиготный организм, имеющий
а) два доминантных гена одного аллеля
б) два рецессивных гена одного аллеля
в) один аллель из пары
г) три аллеля из пары
47. Наследственные болезни, передающиеся с полом
а) близорукость, полидактилия
б) цветовая слепота, гемофилия
в) арахнодактилия, синдактилия
г) отсутствие малых коренных зубов, положительный резус фактор
48. У мужчин в Х – хромосоме чаще встречается ген
б) рецессивный
49. Анализируя наследование доминантного признака — гипоплазия эмали зубов было обнаружено наследование признака «крест — накрест» от отца дочерям, а от матери сыновьям. Тип наследования
в) сцепленный с Х хромосомой
50. Отец – гемофилик, больная гемофилией дочь может родиться
а) если ген гемофилии расположен в аутосомах
б) если ген гемофилии расположен в У — хромосоме
в) если мать гомозиготна по доминантному гену
г) если мать — носительница гена гемофилии
51. В некоторых семьях наблюдается недостаток фосфора в крови. В потомстве от брака больных мужчин и здоровых женщин рождаются больные дочери и здоровые сыновья Генотипы родителей
б) Х А Х А х Х а У
в) Х а Х а х Х А У
52. Дальтонизм среди женщин составляет 0,5%, а среди мужчин 7% потому что мужчины
а) гемизиготны по генам Х хромосомы
б) имеют голандрические гены
в) имеют высокий процент мутантного аллеля
г) носители аутосомного рецессивного гена
53. Задачи генетики
а) изучение материальных носителей генетической ин формации, способов хранения и передачи генетической информации; механизмов и закономерностей изменчи вости
б) изучение типов раздражимости, возбудимости, сократимости
в) изучение химического состава клеток, содержание неорганических и органических соединений
Биология. 10 класс
Хромосомная теория наследственности
Сцепленное наследование генов
Необходимо запомнить
Сцепление генов – это совместное наследование генов, расположенных в одной и той же хромосоме. Количество групп сцепления соответствует гаплоидному числу хромосом, то есть у дрозофилы 4. Природу сцепленного наследования объяснил Морган с сотрудниками. В качестве объекта исследования они избрали плодовую муху дрозофилу, которая оказалась очень удобной моделью для изучения данного феномена, так в клетках её тела находится только 4 пары хромосом и имеет место высокая скорость размножения (в течение года можно исследовать более 20-ти поколений). Итак, сцепленными признаками называются признаки, которые контролируются генами, расположенными в одной хромосоме. Естественно, что они передаются вместе в случаях полного сцепления (закон Моргана). Полное сцепление встречается редко, обычно – неполное, из-за влияния кроссинговера (перекрещивания и обмена участками гомологичных хромосом в процессе мейоза). То есть, гены одной хромосомы переходят в другую, гомологичную ей.
Частота кроссинговера зависит от расстояния между генами. Чем ближе друг к другу расположены гены в хромосоме, тем сильнее между ними сцепление и тем реже происходит их расхождение при кроссинговере, и, наоборот, чем дальше друг от друга отстоят гены, тем слабее сцепление между ними и тем чаще возможно его нарушение.
На рисунке 1 слева : расстояние между генами А и В маленькое, вероятность разрыва хроматиды именно между А и В невелика, поэтому сцепление полное, хромосомы в гаметах идентичны родительским (два типа), других вариантов не появляется.
На рисунке 1 справа: расстояние между генами А и В большое, повышается вероятность разрыва хроматиды и последующего воссоединения крест-накрест именно между А и В , поэтому сцепление неполное, хромосомы в гаметах образуются четырёх типов – 2 идентичные родительским (некроссоверные) + 2 кроссоверных варианта.
Количество разных типов гамет будет зависеть от частоты кроссинговера или расстояния между анализируемыми генами. Расстояние между генами исчисляется в морганидах – единицах расстояния между генами, находящимися в одной хромосоме. 1 морганида соответствует 1 % кроссинговера. Такая зависимость между расстояниями и частотой кроссинговера прослеживается только до 50 морганид. Частота кроссинговера между определенной парой генов – довольно постоянная величина (хотя радиация, химические вещества, гормоны, лекарства влияют на нее; например, высокая температура стимулирует кроссинговер).
Пример, основанный на опытах Моргана
Гены, расположенные в одной хромосоме, наследуются совместно. Фенотипы А – серое тело, нормальные крылья (повторяет материнскую форму). Б – тёмное тело, короткие крылья (повторяет отцовскую форму). В – серое тело, короткие крылья (отличается от родителей). Г – тёмное тело, нормальные крылья (отличается от родителей). В и Г получены в результате кроссинговера в мейозе.
Если скрестить мушку дрозофилу, имеющую серое тело и нормальные крылья (на рисунке самка), с мушкой, обладающей тёмной окраской и зачаточными (короткими) крыльями (на рисунке самец), то в первом поколении гибридов все мухи будут серыми с нормальными крыльями (А). Это гетерозиготы по двум парам аллельных генов, причём ген, определяющий серую окраску брюшка, доминирует над тёмной окраской, а ген, обусловливающий развитие нормальных крыльев, — доминирует над геном недоразвитых крыльев.
При анализирующем скрещивании гибрида F 1 с гомозиготной рецессивной дрозофилой (Б) подавляющее большинство потомков F 2 будет сходно с родительскими формами.
Это происходит потому, что гены, отвечающие за серое тело и нормальные крылья– сцепленные гены, также как и гены, отвечающие за тёмное тело и короткие крылья, т. е. они находятся в одной хромосоме. наследование сцепленных генов называют сцепленным наследованием.
Сцепление может нарушаться. Это доказывает наличие особей В и Г на рисунке, т. е. если бы сцепление не нарушалось, то этих особей бы не существовало, однако они есть. Это происходит в результате кроссинговера, который и нарушает сцепленность этих генов.
На рисунке 3 опыт Моргана отображен подробно. Несцепленное наследование: два гена находятся в разных хромосомах, гетерозигота с равной вероятностью дает четыре типа гамет:
Сцепленное наследование : два гена находятся в одной хромосоме.
а) При полном сцеплении гетерозигота дает только два типа гамет.
б) При неполном сцеплении гетрозигота дает четыре типа гамет, но не с равной вероятностью.
На вышесказанном строится хромосомная теория наследственности Моргана:
1. Гены находятся в хромосомах и расположены в линейной последовательности на определенных расстояниях друг от друга.
2. Гены, расположенные в одной хромосоме, составляют группу сцепления. Число групп сцепления равно гаплоидному числу хромосом. Признаки, гены которых находятся в одной хромосоме, наследуются сцепленно (т. е. в тех же сочетаниях, в которых они были в хромосомах исходных родительских форм).
3. Новые сочетания генов, расположенных в одной паре хромосом, могут возникать в результате кроссинговера в процессе мейоза. Частота кроссинговера зависит от расстояния между генами.
4. Учитывая линейное расположение генов в хромосоме и частоту кроссинговера как показателя расстояния между генами, можно построить карты хромосом. За единицу расстояния между генами принята частота кроссинговера равная 1 % (морганида, сантиморган, сМ).
Задачи на нахождение расстояния между генами
Решение задачи на определение вероятности рождения здоровый и больных детей
Наследование признаков, сцепленных с полом
Сцепленными с полом называются признаки, гены которых расположены не в аутосоме (неполовой хромосоме), а в гетеросоме (половой хромосоме). Схема решения задач на наследование признаков, сцепленных с полом, иная, чем на аутосомное моногибридное скрещивание. В случае, если ген сцеплен с Х—хромосомой, он может передаваться от отца только дочерям, а от матери в равной степени и дочерям, и сыновьям. Если ген сцеплен с Х—хромосомой и является рецессивным, то у самки он проявляется только в гомозиготном состоянии. У самцов второй Х-хромосомы нет, поэтому такой ген проявляется всегда.
При решении задач этого типа используются не символы генов (А, а, В, b), как при аутосомном наследовании, а символы половых хромосом X, Y с указанием локализованных в них генов (X А , X а ).
Аномалии, сцепленные с полом, чаще контролируются рецессивными генами, локализованы в Х-хромосоме и проявляются при генотипе ХY (т. е. у самцов млекопитающих и самок птиц).
Выше были рассмотрены примеры, где ген, сцепленный с полом, располагался в Х-хромосоме, но есть гены, локализованные в Y-хромосоме. У видов, у которых мужской пол гетерогаметен, этот ген может передаваться только самцам. У человека ген одного из видов синдактилии, выражающейся в образовании перепонки между 2 и 3 пальцами на ноге, локализован на Y-хромосоме, поэтому синдактилия возникает только у мужчин. Известна еще одна аномалия – гипертрихоз края ушной раковины (ряды волос на ухе), передающиеся по такому же механизму. В изучаемой семье с этой аномалией она передавалась в пяти поколениях по мужской линии.
Число групп сцепления генов у представителей гетерогаметного пола равно количеству
Анализ результатов нарушения сцепленного наследования генов позволяет определить последовательность расположения генов в хромосоме и составить генетические карты. Результаты многочисленных скрещиваниймух
дрозофил показали, что частота нарушения сцепления между генами А и В составляет 6%, между генами А и С – 18%, между генами С и В – 24%.
Перерисуйте предложенную схему хромосомы на лист ответа, отметьте на ней взаимное расположение генов А, В, С и укажите расстояние между ними. Что называют группой сцепления?
2) Все гены, находящиеся в одной хромосоме, образуют группу сцепления.
Если гены находятся в одной хромосоме, то они не могут разойтись независимо друг от друга, поэтому наследуются вместе (сцеплено) – это закон сцепления (закон Моргана).
За единицу расстояния между генами принят 1% кроссинговера, эта величина названа морганидой
Анализ результатов нарушения сцепленного наследования генов позволяет определить последовательность расположения геноа в хромосоме и составить генетические карты. Результаты многочисленных скрещиваний мух дрозофил показали, что частота нарушения сцепливания между генами А и В составляет 7% , между генами А и С — 14%, между генами С и В — 21%. Перерисуйте предложенную схему хромосомы на лист ответа, отметьте на ней взаимное расположение А, В, С и укажите расстояние между ними. Что ученые называют группой сцепления?
2. группой сцепления называют гены, расположенные в одной хромосоме
Количество групп сцепления генов у организмов зависит от числа
Согласно закону Моргана группы сцепления образуют гены, находящиеся в одной хромосоме.
Частота нарушения сцепления между генами зависит от
Сцепленное наследование — наследование признаков, гены которых локализованы в одной хромосоме. Сила сцепления между генами зависит от расстояния между ними: чем дальше гены располагаются друг от друга, тем выше частота кроссинговера и наоборот.
Найдите три ошибки в приведенном тексте «Закономерности наследственности». Укажите номера предложений, в которых сделаны ошибки, исправьте их. Дайте правильную формулировку.
(1)Объектом, с которым работал Т. Морган, была плодовая мушка дрозофила. (2)Эксперименты показали, что гены, находящиеся в одной хромосоме, наследуются сцепленно и составляют одну группу сцепления. (3)Среди гибридов второго поколения может находиться небольшое число особей с перекомбинированными признаками. (4)Одна из причин перекомбинации признаков — конъюгация хромосом. (5)Этот процесс осуществляется во втором делении мейоза. (6)Чем ближе друг к другу расположены гены в хромосоме, тем чаще будет нарушаться сцепление. (7)Явление неполного сцепления признаков легло в основу построения генетических карт.
Ошибки допущены в предложениях:
1. 4 — одна из причин перекомбинации признаков — кроссинговер (обмен гомологичными участками хромосом);
2. 5 — этот процесспроисходит в первом делении мейоза;
3. 6 — чем дальше друг от друга расположены гены в хромосоме, тем чаще будет нарушаться
Сколько видов гамет образуется у дигетерозиготных растений гороха при дигибридном скрещивании (гены не образуют группу сцепления)?
Согласно закону независимого наследования — четыре: АВ, аВ, Ab, ab. Закон независимого наследования определяет независимость расхождения пар аллелей одного признака от аллелей гена другого признака.
При скрещивании дигетрозиготных растений гороха (генотипы будут Аа и Аа) будет происходить расщепление 1:3 по генотипы и 3:1 по фенотипу( АА, Аа, Аа, аа). Другими словами, образуется 3 вид гамет, а не 4 как в вашем ответе.
Все правильно, 4 вида гамет: вы написали про гетерозиготу, а в задании — ДИгетерозигота, гаметы АВ, аВ, Аb, ab
Дигетерозигота это АаВв, а не Аа (это гетерозигота). В ответе все правильно — 4 вида гамет.
Сколько видов гамет образуется у дигетерозиготных растений гороха при дигибридном скрещивании (гены не образуют группу сцепления)? В ответ запишите цифру.
Образуется гамет: AaBb — AB; Ab; aB; ab.
Г. Мендель установил, что при дигибридном скрещивании расщепление по каждой паре признаков
Г. Мендель установил, что при дигибридном скрещивании расщепление по каждой паре признаков происходит независимо от других пар признаков
Значение хромосомной теории Т. Моргана заключается в том, что она впервые
1) установила правило единообразия гибридов
2) объяснила причины независимого наследования признаков
3) установила закономерности локализации и сцепления генов в хромосомах
4) выявила типы хромосомных мутаций
Хромосомная теория Т. Моргана установила закономерности локализации и сцепления генов в хромосомах
Хромосомная теория Т. Моргана, основные положения:
Материальные носители наследственности – гены находятся в хромосомах, распологаются в них линейно на определенном расстоянии друг от друга.
Гены, расположенные в одной хромосоме, относятся к одной группе сцепления. Число групп сцепления соответствует гаплоидному числу хромосом.
Признаки, гены которых находятьс в одной хромосоме, наследуются сцеплено.
В потомстве гетерозиготных родителей новые сочетания генов, расположенных в дной паре хромосом, могут возникать в результате кроссинговера в процессе мейоза.
Частота кроссинговера, определяемая по проценту кроссоверных особей, зависит от расстояния между генами.
На основании линейного расположения генов в хромосоме и частоты кроссинговера как показателя расстояния между генами можно построить карты хромосом.
Каковы причины сцепленного наследования генов?
1) Расположение генов в одной хромосоме.
2) Гены расположены на близком расстоянии.
Если гены находятся в одной хромосоме, то они не могут разойтись независимо друг от друга, поэтому наследуются вместе (сцеплено) – это закон сцепления (закон Моргана). Все гены, находящиеся в одной хромосоме, образуют группу сцепления.
Полное сцепление генов встречается редко. Если гены располагаются близко друг к другу, то вероятность перекреста хромосом мала и они могут долго оставаться в одной хромосоме, а потому будут передаваться по наследству вместе.
Если же расстояние между двумя генами на хромосоме велико, то существует большая доля вероятности, что они могут разойтись по разным гомологичным хромосомам.Такое явление называют неполным сцеплением генов.
Сцепление может нарушаться в результате кроссинговера, происходящего во время мейоза при образовании половых клеток.
Доля рекомбинантных гамет зависит от расстояния между генами в хромосоме, измеряется в условных единицах морганидах. 1М = 1% кроссинговера
Фраза «расстояние между генами А и В равняется 10 морганид» означает, что рекомбинантных гамет получится в сумме 10% (5%+5%), а нормальных – 90% (45% и 45%).
Сцепленное наследование. Группы сцепления. Хромосомная теория наследственности.
Сцепленное наследование — наследование признаков, гены которых локализованы в одной хромосоме. Сила сцепления между генами зависит от расстояния между ними: чем дальше гены располагаются друг от друга, тем выше частота кроссинговера и наоборот. Вместе с признаками, которые наследуются независимо, должны существовать и такие, которые наследуются сцеплено друг с другом, так как они определяются генами, расположенными в одной хромосоме. Такие гены образуют группу сцепления. Количество групп сцепления в организмах определенного вида равно количеству хромосом в гаплоидном наборе (например, у дрозофилы 1пара = 4, у человека 1пара = 23).
Полное сцепление — разновидность сцепленного наследования, при которой гены анализируемых признаков располагаются так близко друг к другу, что кроссинговер между ними становится невозможным.
Неполное сцепление — разновидность сцепленного наследования, при которой гены анализируемых признаков располагаются на некотором расстоянии друг от друга, что делает возможным кроссинговер между ними.
(Кроссоверные гаметы — гаметы, в процессе образования которых произошел кроссинговер. Как правило кроссоверные гаметы составляют небольшую часть от всего количества гамет.
Кроссинговер — обмен участками гомологичных хромосом в процессе клеточного деления, преимущественно в профазе первого мейотического разделения, иногда в митозе. Опытами Т. Моргана, К. Бриджеса и А. Стертеванта было показано, что нет абсолютно полного сцепления генов, при котором гены передавались бы всегда вместе. Вероятность того, что два гена, локализованные в одной хромосоме, не разойдутся в процессе мейоза, колеблется в пределах 1-0,5. В природе преобладает неполное сцепление, обусловленное перекрёстком гомологичных хромосом и рекомбинацией генов. Цитологическая картина кроссинговера была впервые описана датским ученым Ф. Янсенсом .
Кроссинговер проявляется только тогда, когда гены находятся в гетерозиготном состоянии (АВ / ав). Если гены находятся в гомозиготном состоянии (АВ / АВ или аВ/аВ), обмен идентичными участками не дает новых комбинаций генов в гаметах и в поколении. Частота (процент) перекрёстка между генами зависит от расстояния между ними: чем дальше они располагаются друг от друга, тем чаще происходит кроссинговер. Т. Морган предложил расстояние между генами измерять кроссинговером в процентах, по формуле:
N1/N2 X 100 = % кроссинговера,
где N1 — общее число особей в F;
N2 — суммарное число кроссоверных особей.
Отрезок хромосомы, на котором осуществляется 1% кроссинговера, равна одной морганиде (условная мера расстояния между генами). Частоту кроссинговера используют для того, чтобы определить взаимное расположение генов и расстояние между ними. Для построения генетической карты человека пользуются новыми технологиями, кроме того построены цитогенетические карты хромосом.
Различают несколько типов кроссинговера: двойной, множественный (сложный), неправильный, неровный.
Кроссинговер приводит к новому сочетанию генов, вызывает изменение фенотипа. Кроме того, он наряду с мутациями является важным фактором эволюции организмов.)
Результатом исследований Т. Моргана стало создание им хромосомной теории наследственности:
· гены располагаются в хромосомах; различные хромосомы содержат неодинаковое число генов; набор генов каждой из негомологичных хромосом уникален;
· каждый ген имеет определенное место (локус) в хромосоме; в идентичных локусах гомологичных хромосом находятся аллельные гены;
· гены расположены в хромосомах в определенной линейной последовательности;
· гены, локализованные в одной хромосоме, наследуются совместно, образуя группу сцепления; число групп сцепления равно гаплоидному набору хромосом и постоянно для каждого вида организмов;
· сцепление генов может нарушаться в процессе кроссинговера, что приводит к образованию рекомбинантных хромосом; частота кроссинговера зависит от расстояния между генами: чем больше расстояние, тем больше величина кроссинговера;
· каждый вид имеет характерный только для него набор хромосом — кариотип.
Наследование пола и признаков, сцепленных с полом. Половые хромосомы и их роль в детерминации пола.Наследование пола. Пол особи — это сложный признак, формируемый как действием генов, так и условиями развития. У человека одна из 23 пар хромосом — половые хромосомы, обозначаемые как X и Y. Женщины — гомогаметный пол, т.е. имеют две X-хромосомы, одну — полученную от матери, а другую — от отца. Мужчины — гетерогаметный пол, имеют одну X- одну Y-хромосому, причем X передается от матери, а Y — от отца. Заметим, что гетерогаметный пол не всегда обязательно мужской; например, у птиц это самки, в то время как самцы гомогаметны. Имеются и другие механизмы детерминации пола. Так, у ряда насекомых Y-хромосома отсутствует. При этом один из полов развивается при наличии двух X-хромосом, а другой — при наличии одной X-хромосомы. У некоторых насекомых пол определяется соотношением числа аутосом и половых хромосом. У ряда животных может происходить т.н. переопределение пола, когда в зависимости от факторов внешней среды зигота развивается либо в самку, либо в самца. Развитие пола у растений имеет столь же разнообразные генетические механизмы, как и у животных.
Признаки, сцепленные с X-хромосомой. Если ген находится в половой хромосоме (его называют сцепленным с полом), то проявление его у потомков следует иным, чем для аутосомых генов, правилам. Рассмотрим гены, находящиеся в X-хромосоме. Дочь наследует две X-хромосомы: одну — от матери, а другую — от отца. Сын же имеет только одну X-хромосому — от матери; от отца же он получает Y-хромосому. Поэтому отец передает гены, имеющиеся в его X-хромосоме, только своей дочери, сын же их получить не может. Поскольку X-хромосома более «богата» генами по сравнению с Y-хромосомой, то в этом смысле дочь генетически более схожа с отцом, чем сын; сын же более схож с матерью, чем с отцом.
Один из исторически наиболее известных сцепленных с полом признаков у человека — это гемофилия, приводящая к тяжелым кровотечениям при малейших порезах и обширным гематомам при ушибах. Она вызывается рецессивным дефектным аллелем 0, блокирующим синтез белка, необходимого для свертывания крови. Ген этого белка локализован в Х-хромосоме. Гетерозиготная женщина +0 (+ означает нормальный активный аллель, доминантный по отношению к аллелю гемофилии 0) не заболевает гемофилией, и ее дочери тоже, если у отца нет этой патологии. Однако ее сын может получить аллель 0, и тогда у него развивается гемофилия. Рецессивные заболевания, вызываемые генами X-хромосомы, намного реже поражают женщин, чем мужчин, поскольку у них заболевание проявляется только при гомозиготности — наличии рецессивного аллеля в каждой из двух гомологичных X-хромосом; мужчины заболевают во всех случаях, когда их единственная X-хромосома несет дефектный аллель.
Сцепление с Y-хромосомой. Сведения о генах, находящихся в Y-хромосоме, весьма скудны. Предполагается, что она практически не несет генов, обусловливающих синтез белков, необходимых для функционирования клетки. Но она играет ключевую роль в развитии мужского фенотипа. Отсутствие Y-хромосомы при наличии только одной X-хромосомы приводит к т.н. синдрому Тернера: развитию женского фенотипа с плохо развитыми первичными и вторичными половыми признаками и другими отклонениями от нормы. Встречаются мужчины с добавочной Y-хромосомой (XYY); они высокого роста, агрессивны и нередко аномального поведения. В Y-хромосоме выявлено несколько генов, ответственных за регуляцию синтеза специфических ферментов и гормонов, и нарушения в них приводят к патологиям полового развития. Имеется ряд морфологических признаков, которые, как полагают, определяются генами Y-хромосомы; среди них — развитие волосяного покрова ушей. Подобного рода признаки передаются только по мужской линии: от отца к сыну.
Генетическая детерминация пола, определяемая набором половых хромосом, поддерживает равное воспроизводство самок и самцов. Действительно, женские яйцеклетки содержат только X-хромосому, поскольку женщины имеют генотип XX по половым хромосомам. Генотип же мужчин — XY, и потому рождение девочки или мальчика в каждом конкретном случае определяется тем, несет ли спермий X- или Y-хромосому. Поскольку же в процессе мейоза хромосомы имеют равные шансы попасть в гамету, то половина гамет, производимых индивидами мужского пола, содержит X-, а половина — Y-хромосому. Поэтому половина потомков ожидается одного пола, а половина — другого.
Следует подчеркнуть, что предсказать заранее рождение мальчика или девочки невозможно, поскольку невозможно предугадать, какая мужская половая клетка будет участвовать в оплодотворении яйцеклетки: несущая X- или Y-хромосому. Поэтому наличие большего или меньшего числа мальчиков в семье — дело случая.
Независимое комбинирование и сцепленное наследование, их цитологические основы. Сцепление генов и кроссинговер. Основные положения хромосомной теории.
Независимое комбинирование признаков осуществляется при условии, что гены, определяющие эти признаки, находятся в разных парах гомологичных хромосом. Следовательно, у каждого организма число генов, способных независимо комбинироваться в мейозе, ограничено числом хромосом. Однако в организме число генов значительно превышает количество хромосом. Например, у кукурузы до эры молекулярной биологии было изучено более 500 генов, у мухи дрозофилы — более 1 тыс., а у человека — около 2 тыс. генов, тогда как хромосом у них 10, 4 и 23 пары соответственно. То, что число генов у высших организмов составляет несколько тысяч, было ясно уже У. Сэттону в начале XX века. Это дало основание предположить, что в каждой хромосоме локализовано множество генов. Гены, локализованные в одной хромосоме, образуют группу сцепления и наследуются вместе.
Совместное наследование генов Т. Морган предложил назвать сцепленным наследованием. Число групп сцепления соответствует гаплоидному числу хромосом, поскольку группу сцепления составляют две гомологичные хромосомы, в которых локализованы одинаковые гены..
Способ наследования сцепленных генов отличается от наследования генов, локализованных в разных парах гомологичных хромосом. Так, если при независимом комбинировании дигетерозиготная особь образует четыре типа гамет в равных количествах, то при сцепленном наследовании такая же дигетерозигота образует только два типа гамет: тоже в равных количествах. Последние повторяют комбинацию генов в хромосоме родителя.
Было установлено, однако, что кроме обычных гамет возникают и другие гаметы с новыми комбинациями генов — Ab и аВ, отличающимися от комбинаций генов в хромосомах родителя. Причиной возникновения таких гамет является обмен участками гомологичных хромосом, или кроссинговер.
Кроссинговер происходит в профазе I мейоза во время конъюгации гомологичных хромосом. В это время части двух хромосом могут перекрещиваться и обмениваться своими участками. В результате возникают качественно новые хромосомы, содержащие участки как материнских, так и отцовских хромосом. Особи, которые получаются из таких гамет с новым сочетанием аллелей, получили название кроссинговерных или рекомбинантных.
Частота перекреста между двумя генами, расположенными в одной хромосоме, пропорциональна расстоянию между ними. Кроссинговер между двумя генами происходит тем реже, чем ближе друг к другу они расположены. По мере увеличения расстояния между генами все более возрастает вероятность того, что кроссинговер разведет их по двум разным гомологичным хромосомам.
Расстояние между генами характеризует силу их сцепления. Имеются гены с высоким процентом сцепления и такие, где сцепление почти не обнаруживается. Однако при сцепленном наследовании максимальная частота кроссинговера не превышает 50 %. Если же она выше, то наблюдается свободное комбинирование между парами аллелей, не отличимое от независимого наследования.
Биологическое значение кроссинговера чрезвычайно велико, поскольку генетическая рекомбинация позволяет создавать новые, ранее не существовавшие комбинации генов и тем самым повышать наследственную изменчивость, которая дает широкие возможности адаптации организма в различных условиях среды. Человек специально проводит гибридизацию с целью получения необходимых вариантов комбинаций для использования в селекционной работе.
24. Аутосомные и сцепленные с полом признаки, закономерности их наследования. Рас-смотреть на примерах.
Аутосомное наследование. Характерные черты аутосомного наследования признаков обусловлены тем, что соответствующие гены, расположенные в аутосомах, представлены у всех особей вида в двойном наборе. Это означает, что любой организм получает такие гены от обоих родителей.
Ввиду того что развитие признака у особи зависит в первую очередь от взаимодействия аллельных генов, разные его варианты, определяемые разными аллелями соответствующего гена, могут наследоваться по аутосомно-доминантному или аутосомно-рецессивному типу, если имеет место доминирование. Возможен также промежуточный тип наследования признаков при других видах взаимодействия аллелей
При доминировании признака, описанном Г. Менделем в его опытах на горохе, потомки от скрещивания двух гомозиготных родителей, различающихся по доминантному и рецессивному вариантам данного признака, одинаковы и похожи на одного из них (закон единообразия F1). Описанное Менделем расщепление по фенотипу в F2 в отношении 3:1 в действительности имеет место лишь при полном доминировании одного аллеля над другим, когда гетерозиготы фенотипически сходны с доминантными гомозиготами (закон расщепления в F2).
I — полное доминирование (наследование цвета лепестков у гороха); II — неполное доминирование (наследование цвета лепестков у ночной красавицы)
Наследование рецессивного варианта признака характеризуется тем, что он не проявляется у гибридов F1, а в F2 проявляется у четверти потомков
Закон единообразия: при моногибридном скрещивании у гибридов первого поколения проявляются только доминантные признаки – оно фенотипически единообразно.
Закон расщепления:при самоопылении гибридов первого поколения в потомстве происходит расщепление признаков 3:1,при этом образуются две фенотипические группы-доминантная и рецессивная.
Характер наследования сцепленных с полом признаков в ряду поколений зависит от того, в какой хромосоме находится соответствующий ген. В связи с этим различают Х-сцепленное и Y-сцепленное (голандрическое) наследование.
Х-сцепленное наследование. Х-хромосома присутствует в кариотипе каждой особи, поэтому признаки, определяемые генами этой хромосомы, формируются у представителей как женского, так и мужского пола. Особи гомогаметного пола получают эти гены от обоих родителей и через свои гаметы передают их всем потомкам. Представители гетерогаметного пола получают единственную Х-хромосому от гомогаметного родителя и передают ее своему гомогаметному потомству.
У млекопитающих (в том числе и человека) мужской пол получает Х-сцепленные гены от матери и передает их дочерям. При этом мужской пол никогда не наследует отцовского Х-сцепленного признака и не передает его своим сыновьям
Так как у гомогаметного пола признак развивается в результате взаимодействия аллельных генов, различают Х-сцепленное доминантное и Х-сцепленное рецессивное наследование. Х-сцепленный доминантный признак (красный цвет глаз у дрозофилы) передается самкой всему потомству. Самец передает свой Х-сцепленный доминантный признак лишь самкам следующего поколения. Самки могут наследовать такой признак от обоих родителей, а самцы — только от матери.
Х-сцепленный рецессивный признак, (белый цвет глаз у дрозофилы) у самок проявляется только при получении ими соответствующего аллеля от обоих родителей (XaXa). У самцов XaY он развивается при получении рецессивного аллеля от матери. Рецессивные самки передают рецессивный аллель потомкам любого пола, а рецессивные самцы —только «дочерям».
Голандрическое наследование. Активно функционирующие гены Y-хромосомы, не имеющие аллелей в Х-хромосоме, присутствуют в генотипе только гетерогаметного пола, причем в гемизиготном состоянии. Поэтому они проявляются фенотипически и передаются из поколения в поколение лишь у представителей гетерогаметного пола. Так, у человека признак гипертрихоза ушной раковины («волосатые уши») наблюдается исключительно у мужчин и наследуется от отца к сыну.