Цитологические основы явления сцепления генов

Основные положения хромосомной теории. Сцепленное наследование, группы сцепление. Полное и неполное сцепление генов. Примеры решения задач со сцепленным наследованием.

Цитологические основы явления сцепления генов

Хромосомная теория

Хромосомная теория наследственности

Концепция данной теории заключается в том, что передача наследственной информации в ряду поколений осуществляется путем передачи хромосом, в которых в определенной линейной последовательности расположены гены.

Данная теория была сформулирована в начале XX века. Значительный вклад в ее развитие внес американский генетик Томас Морган.

Рекомендую осознать и запомнить следующие положения хромосомной теории:

  • Гены расположены в хромосомах в линейном порядке
  • Каждый ген занимает в хромосоме определенное место — локус
  • Гены, расположенные в одной хромосоме, образуют группу сцепления
  • Сцепление генов может нарушаться в результате кроссинговера
  • Частота кроссинговера между генами прямо пропорциональна расстоянию между ними
  • Расстояние между генами измеряется в морганидах (1 морганида — 1% кроссинговера)

Группы сцепления

В предыдущей статье были раскрыты суть и применение в задачах III закона Менделя, закона независимого наследования, в основе которого лежат гены, расположенные в разных хромосомах. Но что если гены лежат в одной хромосоме? Такие гены образуют группу сцепления, в этом случае говорят о сцепленном наследовании.

Группа сцепления — совокупность всех генов, расположенных в одной хромосоме, вследствие чего они наследуются совместно. Число групп сцепления равно гаплоидному набору хромосом: у женщины 23 группы сцепления (23 пара — половые хромосомы XX), а у мужчины — 24 группы сцепления (X и Y представляют собой две отдельные группы).

Сцепление генов

Томас Морган в своих экспериментах изучал наследование признаков плодовых мушек дрозофил: серый (A) — черный (a) цвет тела, длинные (B) — зачаточные (b) крылья. В первом эксперименте Морган скрестил чистые линии плодовых мушек: серых с длинными крыльями (AABB) и черных с зачаточными (aabb).

Только что вы видели первый закон Менделя (единообразия) в действии, правда, в несколько ином варианте — при дигибридном скрещивании. Но суть та же: в первом поколении все особи получаются единообразны по исследуемому признаку, с генотипом AaBb — с серым телом и длинными крыльями.

Далее Морган применил анализирующее скрещивание. Полученную в первом поколении дигетерозиготу (AaBb) он скрестил с черной особью с зачаточными крыльями (aabb). Результат весьма удивил Моргана и его коллег: помимо потомства с ожидаемыми фенотипами (серое тело + длинные крылья, черное тело + зачаточные крылья) были получены особи со смешанными признаками.

Потомство со смешанными признаками подразумевает под собой особи Aabb (серое тело + зачаточные крылья) и aaBb (черные тело + длинные крылья). Но откуда они могли взяться, если гены A и B находятся в одной хромосоме? Значит, образовались еще какие-то дополнительные гаметы, помимо AB и ab?

Объясняя полученные в потомстве фенотипы, которые содержали смешанные признаки, Томас Морган пришел к выводу, что между гомологичными хромосомами произошел кроссинговер, в результате которого образовались гаметы Ab, aB — кроссоверные гаметы.

Очевидно, что в данном случае расстояние между генами A и B было 17 морганид, так как каждой кроссоверной гаметы (соответственно и особей) образовалось по 8.5%. Не забывайте, что процент кроссинговера равен расстоянию между генами. Поскольку расстояние было 17 морганид = 17%, то на каждую из кроссоверных гамет приходится половина — 8.5%

Пример решения генетической задачи №1

«Катаракта и полидактилия у человека обусловлены доминантными аутосомными генами, расположенными в одной хромосоме. Гены полностью сцеплены. Какова вероятность родить здорового ребенка в семье, где муж нормален, жена гетерозиготна по обоим признакам, мать жены также страдала обеими аномалиями, а отец был нормален».

Очень важно обратить внимание на то, что «гены полностью сцеплены» — это говорит об отсутствии кроссинговера, и то, что мы заметили это, обеспечивает верное решение задачи.

Самое главное, что вам следует усвоить: поскольку гены полностью сцеплены (кроссинговер отсутствует), женщина с генотипом AaBb может образовать только два типа гамет — AB, ab. Кроссоверные гаметы (Ab, aB) не образуются. Всего возможных генотипов потомков получается два, из которых здоров только один — aabb. Шанс родить здорового ребенка в такой семье ½ (50%).

Пример решения генетической задачи №2

«Гены доминантных признаков катаракты и эллиптоцитоза локализованы в 1-й аутосоме. Гены неполностью сцеплены. Женщина, болеющая катарактой и эллиптоцитозом, отец которой был здоров, выходит замуж за здорового мужчину. Определите возможные фенотипы потомства и вероятность рождения больного обеими аномалиями ребенка в этой семье».

Ключевые слова в тексте этой задачи, на которые следует обратить внимание: «гены неполностью сцеплены». Это означает, что между ними происходит кроссинговер.

Генотип женщины остается неясен из текста задачи. Раз она больна, то он может быть: AaBb, AABB, AABb, AaBB. Однако в тексте дано то, что развеет сомнения: «отец которой был здоров». Если ее отец был здоров, то его генотип был aabb, значит он передал дочери гамету ab. Теперь становится очевидно, что генотип дочери AaBb — она дигетерозиготна.

В данном случае между генами A и B произошел кроссинговер, их сцепление нарушилось. В результате образовались кроссоверные гаметы Ab, aB — которые привели к образованию особей с со смешанными признаками (Aabb, aaBb). Вероятность рождения в этой семье ребенка, больного обеими аномалиями, составляет ¼ (25%).

Наследование, сцепленное с полом

Половые хромосомы X и Y определяют пол человека. Генотип XX характерен для женщин, а XY — для мужчин. Мужская Y-хромосома не содержит аллелей многих генов, которые есть в X-хромосоме, вследствие этого наследственными заболеваниями, сцепленными с полом, чаще болеют мужчины.

Природа, несомненно, бережет женских особей. Женщины имеют две гомологичные хромосомы XX, и если ген наследственного заболевания попал в одну из X-хромосом, то чаще всего в другой X-хромосоме окажется «здоровый» ген, доминантный, которой подавит действие рецессивного гена. С генетической точки зрения, женщина будет носительницей заболевания, может его передать по поколению, но сама болеть не будет.

У мужчин если ген заболевания оказался в X-хромосоме, то не проявиться он не может. Именно по этой причине мужчины чаще страдают дальтонизмом, гемофилией и т.д.

Не у всех организмов особь мужского пола характеризуется набором хромосом XY, а женского — XX. У пресмыкающихся, птиц, бабочек женские особи имеют гетерогаметный пол- XY, а мужские — XX. То же самое относится к домашним курам: петух — XX, курица — XY.

Решим несколько задач по теме наследования, сцепленного с полом. Речь в них будет идти о сцепленных с полом признаками — признаками, гены которых лежат не в аутосомах, а в гетеросомах (половых хромосомах).

Пример решения генетической задачи №3

«Рецессивный ген дальтонизма располагается в X-хромосоме. Женщина с нормальным зрением (отец был дальтоник) выходит замуж за мужчину с нормальным зрением, отец которого был дальтоником. Определите возможные фенотипы потомства».

Подробности о родословной важны и помогают заполнить белые пятна. Если отец женщины был дальтоником (X d Y), то очевидно, что он передал ей хромосому X d , так как от отца дочери всегда передается X-хромосома. Значит женщина гетерозиготна по данному признаку, а у мужчины возможен лишь один вариант здорового генотипа — X D Y. То, что его отец был дальтоником несущественно, ведь отец всегда передает сыну Y-хромосому.

Возможные фенотипы потомства:

  • X D X D , X D X d — фенотипически здоровые девочки
  • X D Y — здоровый мальчик
  • X d Y — мальчик, который болен дальтонизмом
Пример решения генетической задачи №4

«Гипоплазия зубной эмали наследуется как сцепленный с X-хромосомой доминантный признак, шестипалость — как аутосомно-доминантный. В семье, где мать шестипалая, а у отца гипоплазия, родился пятипалый здоровый мальчик. Напишите генотипы всех членов семьи по данным признакам. Возможно ли у них рождение ребенка с двумя аномалиями одновременно?»

Ответ на вопрос: «Каковы генотипы матери и отца?» — лежат в потомстве. Пятипалый здоровый мальчик имеет генотип aaX b Y. Чтобы сформировался такой генотип, от матери должна прийти гамета aX b , а от отца — aY. Выходит, что единственно возможный генотип матери — AaX b X b , а генотип отца — aaX B Y.

Рождение ребенка с двумя аномалиями возможно — AaX B X b , вероятность такого события ¼ (25%).

Пример решения генетической задачи №5

«Рецессивные гены, кодирующие признаки дальтонизма и гемофилии, сцеплены с X-хромосомой. Мужчина с нормальным цветовым зрением и гемофилией женится на здоровой женщине, отец которой был дальтоником, но не гемофиликом. Известно, что мать женщины была гомозиготна по исследуемым признакам. Какое потомство получится от брака их дочери со здоровым мужчиной?»

Генотип мужчины вопросов не вызывает, так как единственный возможный вариант — X hD Y. Генотип женщины дает возможность узнать ее отец (X Hd Y), который передал ей гамету X Hd (отец всегда передает дочке X хромосому, а сыну — Y), следовательно, ее генотип — X HD X Hd

Как оказалось, возможны два варианта генотипа дочери: X HD X hD , X Hd X hD . Генотип здорового мужчины X HD Y. Следуя логике задачи, мы рассмотрим два возможных варианта брака.

Не забывайте, что на экзамене схема задачи не является ответом. Ответ начинается только после того, как вы напишите слово «Ответ: . «. В ответе должны быть указаны все фенотипы потомства, их описание, что возможно покажется рутинными при большом числе потомков, но весьма приятным, если вы верно решили задачу и получили за нее заслуженные баллы :)

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Сцепленное наследование

Вы будете перенаправлены на Автор24

Явление сцепленного наследования и его цитологические основы

Закон независимого комбинирования генов основывается на тех положениях, что гены, определяющие те или иные черты и признаки, локализованы в гомологических хромосомах, а гены, кодирующие разные черты находятся в разных хромосомах. Но количество признаков намного превышает количество хромосом в живых организмах. Из этого следует логичный вывод, что каждый организм имеет число генов, которые способны независимо комбинироваться в мейозе, но ограничены числом пар хромосом. Вследствие этого на каждую хромосому приходится далеко не по одному гену.

Читайте также  Что то шумит когда отпускаешь сцепление

Хромосомы наследуются как единое целое. Они сохраняют свою целостность при конъюгации и расхождении в мейозе. Поэтому гены, содержащиеся в одной хромосоме, как правило, наследуются совместно.

Гены, которые локализованы в одной хромосоме и способны наследоваться совместно, составляют группу сцепления. А совместное наследование генов соответственно называется сцеплением генов.

У организмов определенного вида количество групп сцепления равно количеству хромосом в гаплоидном наборе.

Хромосомная теория наследственности

Впервые явление сцепленного наследования признаков было описано в $1906$ году В. Бетсоном и Р. Пеннетом в опытах, проводимых с душистым горошком. Но они не смогли объяснить результаты опытов и пришли к выводу об ограниченности правила независимого комбинирования признаков, установленного Г. Менделем.

Экспериментальными исследованиями явления сцепленного наследования успешно занимался выдающийся американский естествоиспытатель и генетик Томас Хант Морган. Он со своими ассистентами и сотрудниками А. Стервантом, Г. Миллером и К. Бриджесом провел основательные исследования. Результаты этих исследований позволили предложить и аргументированно обосновать хромосомную теорию наследственности.

Готовые работы на аналогичную тему

Опыты Т. Х. Моргана

Для проведения исследований Т.Х.Морган избрал в качестве объекта муху-дрозофилу. С тех пор эта муха стала классическим объектом для различных генетических экспериментов. Их легко содержать, они быстро размножаются. А небольшое количество хромосом облегчает наблюдение.

Был проведен следующий опыт. Самцов дрозофилы, которые были гомозиготными по доминантным признакам окраски тела и формы крыльев (а именно — серое тело и нормальные крылья), ученые скрестили с самками, гомозиготными по рецессивным признакам (черное тело и недоразвитые крылья). Генотипы исследуемых особей обозначили соответственно ЕЕVV и ееvv. Всем гибридам первого поколения характерно было серое тело и нормальные крылья. Они были гетерозиготными. Их генотип можно было записать как EeVv. Затем провели анализирующее скрещивание. Для этого гибриды первого поколения скрестили с гомозиготами по рецессивным признакам. Теоретически можно было предположить, что произойдет расщепление признаков и пропорция полученных результатов будет выглядеть так: $1 : 1 : 1 : 1$. Другими словами каждого варианта будет примерно по $25$%. На самом же деле $41,5$% особей имели серое тело и нормальные крылья, $41,5$% — черное тело и недоразвитые крылья, $8,5$% — серое тело и недоразвитые крылья, $8,5$% — черное тело и нормальные крылья. Результаты опытов позволили Моргану сформулировать два важных предположения.

  1. Гены, которые определяют цвет тела и форму крыльев локализованы в одной хромосоме и в дальнейшем наследуются сцеплено.
  2. В процессе мейоза и образования гамет гомологические хромосомы некоторых особей обменялись участками и образовали новую группу сцепления.

Явление кроссинговера

Явление перекреста хромосом во время мейоза и последующий обмен участками хромосом получил название кроссинговера.

Он увеличивает комбинативную изменчивость, способствую появлению новых сочетаний аллелей. Были установлены следующие закономерности кроссинговера:

  1. Сила сцепления между двумя генами, которые расположены в одной хромосоме, обратно пропорциональна расстоянию между ними.
  2. Частота кроссинговера, который происходит между двумя сцепленными генами, это относительно постоянная величина для каждой конкретной пары генов.

Главным выводом моргановской гипотезы было то, что гены расположены в хромосоме по всей ее длине один за другим в линейном порядке.

Биология. 11 класс

§ 34. Хромосомная теория наследственности

Как уже отмечалось, Г. Мендель, установивший важнейшие закономерности наследования, выдвинул предположение о существовании особых наследственных факторов, контролирующих признаки живых организмов. Однако материальная природа этих факторов, впоследствии названных генами, долгое время оставалась невыясненной. Лишь в начале ХХ в., после переоткрытия законов Г. Менделя, цитологи обратили внимание на связь гипотетических наследственных факторов с поведением хромосом при мейозе и оплодотворении. В 1902—1903 гг. немецкий эмбриолог Т. Бовери и американский цитолог У. Саттон (фамилии приведены не для запоминания) независимо друг от друга пришли к выводу, что именно хромосомы и являются носителями менделевских факторов. Однако ученые не смогли предоставить четких доказательств своей правоты, поэтому их предположение в течение нескольких лет так и оставалось «хромосомной гипотезой».

Хромосомная теория наследственности. Сцепленное наследование . Убедительные доказательства того, что гены располагаются в хромосомах, были получены в 1910 г. американским генетиком, будущим лауреатом Нобелевской премии (1933 г.) Т. Морганом. Многочисленные эксперименты Моргана и его сотрудников привели к ряду важнейших открытий, которые легли в основу хромосомной теории наследственности. Одно из положений этой теории можно сформулировать следующим образом: гены расположены в хромосомах в линейном порядке и занимают определенные участки — локусы, причем аллельные гены находятся в одинаковых локусах гомологичных хромосом.

Закон независимого наследования (третий закон Менделя) справедлив только в том случае, если неаллельные гены находятся в разных парах хромосом. Однако количество генов у живых организмов значительно больше числа хромосом. Например, у человека около 25 тыс. генов, а количество хромосом — 23 пары (2n = 46), у плодовой мушки дрозофилы приблизительно 14 тыс. генов и всего 4 пары хромосом (2n = 8). Следовательно, каждая хромосома содержит множество генов. Будут ли гены, локализованные в одной хромосоме, наследоваться независимо? Очевидно, что нет.

Гены, расположенные в одной хромосоме, образуют группу сцепления и наследуются вместе. Такое совместное наследование генов Т. Морган назвал сцепленным наследованием (в отличие от независимого). Гомологичные хромосомы каждой пары содержат гены, контролирующие одни и те же признаки, поэтому количество групп сцепления равно числу пар хромосом. Например, у человека 23 группы сцепления, а у дрозофилы — 4.

Вам известно, что при независимом наследовании дигетерозиготная особь, например , образует четыре типа гамет в равном соотношении, т. е. по 25 %: , , и . Это обусловлено тем, что неаллельные гены находятся в разных парах хромосом. Если же они расположены в гомологичных хромосомах, следовало бы ожидать, что дигетерозигота будет производить лишь два типа гамет: 50 % и 50 % . Обратите внимание на то, что сцепленные гены записываются в одну хромосому.

Однако Т. Морган обнаружил, что в большинстве случаев дигетерозиготные особи образуют не два типа гамет, а четыре. Кроме ожидаемых и , формируются также гаметы с новыми комбинациями генов: и , но в меньшем процентном соотношении, чем при независимом наследовании. Рассмотрим один из опытов, в котором Т. Морган изучал наследование сцепленных генов у дрозофилы.

*Дрозофила обыкновенная, или плодовая, — вид насекомых отряда Двукрылые (рис. 34.1). Особи, как правило, имеют желто-коричневое брюшко с темными поперечными кольцами и глаза красного цвета. В природе эти мушки питаются опавшими фруктами, соком растений, гниющими растительными остатками. В XX в. дрозофила стала одним из самых распространенных объектов исследований в области генетики и биологии индивидуального развития. Удобство ее использования обусловлено рядом причин. Так, дрозофилы имеют множество отчетливо различимых альтернативных признаков, небольшие размеры (обычно около 2—2,5 мм), легко разводятся в лабораторных условиях и обладают высокой плодовитостью — от каждого скрещивания можно получить до нескольких сотен потомков. Важно также и то, что время развития особи от откладки яйца до выхода половозрелой мушки из куколки при 25 °C занимает всего 10 дней.*

Чистую линию дрозофил, имеющих серое тело и нормальные (длинные) крылья, скрестили с чистой линией, особи которой имели черное тело и зачаточные крылья (рис. 34.2). Полученные гибриды первого поколения в соответствии с первым законом Менделя были единообразными — серыми с нормально развитыми крыльями. Следовательно, у дрозофилы серое тело (А) полностью доминирует над черным (а), а нормальные крылья (В) — над зачаточными (b). Все гибриды первого поколения — дигетерозиготы.

Затем было проведено анализирующее скрещивание (рис. 34.3). Дигетерозиготную самку из гибридного поколения скрестили с рецессивным дигомозиготным самцом (черное тело и зачаточные крылья). В потомстве было получено по 41,5 % особей с серым телом, нормальными крыльями и черным телом, зачаточными крыльями, а также по 8,5 % мух с серым телом, зачаточными крыльями и черным телом, нормальными крыльями.

Если бы гены, определяющие цвет тела и развитие крыльев, находились в разных парах хромосом, соотношение фенотипических классов было бы равным — по 25 %. Но этого не наблюдалось, значит, гены находятся в гомологичных хромосомах и наследуются сцепленно.

Несмотря на сцепление генов, самка производила не два, а четыре типа гамет. Однако гамет с исходными сочетаниями сцепленных генов формировалось намного больше ( и вместе составили 83 %), чем с новыми их комбинациями (сумма и равна 17 %).

Было выяснено, что причиной появления хромосом с новыми комбинациями родительских генов является кроссинговер. Вы знаете, что этот процесс происходит в профазе I мейоза и представляет собой обмен соответствующими участками между гомологичными хромосомами. Таким образом, кроссинговер препятствует полному (абсолютному) сцеплению генов. Гаметы , которые образуются в результате кроссинговера, и особи, которые развиваются при участии таких гамет, называются кроссоверными или рекомбинантными. В рассмотренном эксперименте гаметы и являлись кроссоверными, а гаметы и — некроссоверными (см. рис. 34.3).

*Т. Морган подвергал анализирующему скрещиванию не только дигетерозиготных самок дрозофилы, но и самцов, т. е. проводил реципрóкные скрещивания. Так называют пару скрещиваний, в одном из которых организмы с исследуемыми признаками (или признаком) используются в качестве материнских, а в другом — в качестве отцовских. Оказалось, что реципрокные анализирующие скрещивания дигетерозиготных особей дрозофилы дают разные результаты.

В потомстве дигетерозиготного самца наблюдалось лишь два фенотипических класса (рис. 34.4). Половину потомков составляли особи с серым телом и нормальными крыльями, вторую половину — особи с черным телом и зачаточными крыльями. Это свидетельствовало об отсутствии кроссинговера между сцепленными генами или, иначе говоря, о полном (абсолютном) сцеплении генов. Выяснилось, что у самцов дрозофилы в ходе мейоза действительно не происходит кроссинговер между гомологичными хромосомами. Впоследствии подобное явление было обнаружено у самцов некоторых других видов двукрылых, а также у самок тутового шелкопряда. Однако полное сцепление генов наблюдается в природе очень редко, как исключение из общего правила.*

Читайте также  Что может быть при выжиме сцепления стук

Кроссинговер между сцепленными генами происходит с определенной вероятностью (частотой). Для расчета частоты кроссинговера (rf, от англ. recombination frequency — частота рекомбинации) можно пользоваться следующей формулой:

Таким образом, между генами А и В, контролирующими цвет тела и длину крыльев дрозофилы, кроссинговер происходит с частотой: rfAB = 17 %.

Дальнейшие исследования, проведенные Т. Морганом и сотрудниками его лаборатории, показали, что частота кроссинговера пропорциональна расстоянию между генами, расположенными в одной хромосоме. Чем больше расстояние между сцепленными генами, тем чаще между ними происходит кроссинговер. И наоборот, чем ближе друг к другу расположены гены, тем меньше частота кроссинговера между ними. Чем объясняется эта закономерность?

В профазе I мейоза при конъюгации гомологичных хромосом взаимный обмен участками между хроматидами осуществляется произвольно, в любой их точке. Рассмотрим рисунок 34.5.

Гены А и В (или а и b) находятся сравнительно близко друг к другу. Вероятность того, что обмен произойдет именно на участке, разделяющем эти гены, невелика. Гены А и D (или а и d) располагаются на значительном расстоянии друг от друга. Поэтому вероятность того, что хроматиды совершат обмен в какой-либо точке между этими генами, намного выше. Значит, чем больше расстояние между генами, тем чаще они разделяются при кроссинговере.

Таким образом, частота кроссинговера позволяет судить о расстоянии между генами. В честь Т. Моргана единица измерения расстояния между генами получила название морганида или, что то же самое, сантиморган (сМ).

Морганида (сантиморган, сМ) — это генетическое расстояние, на котором кроссинговер происходит с вероятностью 1 %.

Кроссинговер играет очень важную биологическую роль. В результате этого процесса у потомков возникают новые комбинации родительских генов, что повышает генетическое разнообразие организмов и расширяет возможности их адаптации к различным условиям окружающей среды.

Биология. 10 класс

Хромосомная теория наследственности

Сцепленное наследование генов

Необходимо запомнить

Сцепление генов – это совместное наследование генов, расположенных в одной и той же хромосоме. Количество групп сцепления соответствует гаплоидному числу хромосом, то есть у дрозофилы 4. Природу сцепленного наследования объяснил Морган с сотрудниками. В качестве объекта исследования они избрали плодовую муху дрозофилу, которая оказалась очень удобной моделью для изучения данного феномена, так в клетках её тела находится только 4 пары хромосом и имеет место высокая скорость размножения (в течение года можно исследовать более 20-ти поколений). Итак, сцепленными признаками называются признаки, которые контролируются генами, расположенными в одной хромосоме. Естественно, что они передаются вместе в случаях полного сцепления (закон Моргана). Полное сцепление встречается редко, обычно – неполное, из-за влияния кроссинговера (перекрещивания и обмена участками гомологичных хромосом в процессе мейоза). То есть, гены одной хромосомы переходят в другую, гомологичную ей.

Частота кроссинговера зависит от расстояния между генами. Чем ближе друг к другу расположены гены в хромосоме, тем сильнее между ними сцепление и тем реже происходит их расхождение при кроссинговере, и, наоборот, чем дальше друг от друга отстоят гены, тем слабее сцепление между ними и тем чаще возможно его нарушение.

На рисунке 1 слева : расстояние между генами А и В маленькое, вероятность разрыва хроматиды именно между А и В невелика, поэтому сцепление полное, хромосомы в гаметах идентичны родительским (два типа), других вариантов не появляется.

На рисунке 1 справа: расстояние между генами А и В большое, повышается вероятность разрыва хроматиды и последующего воссоединения крест-накрест именно между А и В , поэтому сцепление неполное, хромосомы в гаметах образуются четырёх типов – 2 идентичные родительским (некроссоверные) + 2 кроссоверных варианта.

Количество разных типов гамет будет зависеть от частоты кроссинговера или расстояния между анализируемыми генами. Расстояние между генами исчисляется в морганидах – единицах расстояния между генами, находящимися в одной хромосоме. 1 морганида соответствует 1 % кроссинговера. Такая зависимость между расстояниями и частотой кроссинговера прослеживается только до 50 морганид. Частота кроссинговера между определенной парой генов – довольно постоянная величина (хотя радиация, химические вещества, гормоны, лекарства влияют на нее; например, высокая температура стимулирует кроссинговер).

Пример, основанный на опытах Моргана

Гены, расположенные в одной хромосоме, наследуются совместно. Фенотипы А – серое тело, нормальные крылья (повторяет материнскую форму). Б – тёмное тело, короткие крылья (повторяет отцовскую форму). В – серое тело, короткие крылья (отличается от родителей). Г – тёмное тело, нормальные крылья (отличается от родителей). В и Г получены в результате кроссинговера в мейозе.

Если скрестить мушку дрозофилу, имеющую серое тело и нормальные крылья (на рисунке самка), с мушкой, обладающей тёмной окраской и зачаточными (короткими) крыльями (на рисунке самец), то в первом поколении гибридов все мухи будут серыми с нормальными крыльями (А). Это гетерозиготы по двум парам аллельных генов, причём ген, определяющий серую окраску брюшка, доминирует над тёмной окраской, а ген, обусловливающий развитие нормальных крыльев, — доминирует над геном недоразвитых крыльев.

При анализирующем скрещивании гибрида F 1 с гомозиготной рецессивной дрозофилой (Б) подавляющее большинство потомков F 2 будет сходно с родительскими формами.

Это происходит потому, что гены, отвечающие за серое тело и нормальные крылья– сцепленные гены, также как и гены, отвечающие за тёмное тело и короткие крылья, т. е. они находятся в одной хромосоме. наследование сцепленных генов называют сцепленным наследованием.

Сцепление может нарушаться. Это доказывает наличие особей В и Г на рисунке, т. е. если бы сцепление не нарушалось, то этих особей бы не существовало, однако они есть. Это происходит в результате кроссинговера, который и нарушает сцепленность этих генов.

На рисунке 3 опыт Моргана отображен подробно. Несцепленное наследование: два гена находятся в разных хромосомах, гетерозигота с равной вероятностью дает четыре типа гамет:

Сцепленное наследование : два гена находятся в одной хромосоме.

а) При полном сцеплении гетерозигота дает только два типа гамет.

б) При неполном сцеплении гетрозигота дает четыре типа гамет, но не с равной вероятностью.

На вышесказанном строится хромосомная теория наследственности Моргана:

1. Гены находятся в хромосомах и расположены в линейной последовательности на определенных расстояниях друг от друга.

2. Гены, расположенные в одной хромосоме, составляют группу сцепления. Число групп сцепления равно гаплоидному числу хромосом. Признаки, гены которых находятся в одной хромосоме, наследуются сцепленно (т. е. в тех же сочетаниях, в которых они были в хромосомах исходных родительских форм).

3. Новые сочетания генов, расположенных в одной паре хромосом, могут возникать в результате кроссинговера в процессе мейоза. Частота кроссинговера зависит от расстояния между генами.

4. Учитывая линейное расположение генов в хромосоме и частоту кроссинговера как показателя расстояния между генами, можно построить карты хромосом. За единицу расстояния между генами принята частота кроссинговера равная 1 % (морганида, сантиморган, сМ).

Задачи на нахождение расстояния между генами

Решение задачи на определение вероятности рождения здоровый и больных детей

Наследование признаков, сцепленных с полом

Сцепленными с полом называются признаки, гены которых расположены не в аутосоме (неполовой хромосоме), а в гетеросоме (половой хромосоме). Схема решения задач на наследование признаков, сцепленных с полом, иная, чем на аутосомное моногибридное скрещивание. В случае, если ген сцеплен с Ххромосомой, он может передаваться от отца только дочерям, а от матери в равной степени и дочерям, и сыновьям. Если ген сцеплен с Ххромосомой и является рецессивным, то у самки он проявляется только в гомозиготном состоянии. У самцов второй Х-хромосомы нет, поэтому такой ген проявляется всегда.

При решении задач этого типа используются не символы генов (А, а, В, b), как при аутосомном наследовании, а символы половых хромосом X, Y с указанием локализованных в них генов (X А , X а ).

Аномалии, сцепленные с полом, чаще контролируются рецессивными генами, локализованы в Х-хромосоме и проявляются при генотипе ХY (т. е. у самцов млекопитающих и самок птиц).

Выше были рассмотрены примеры, где ген, сцепленный с полом, располагался в Х-хромосоме, но есть гены, локализованные в Y-хромосоме. У видов, у которых мужской пол гетерогаметен, этот ген может передаваться только самцам. У человека ген одного из видов синдактилии, выражающейся в образовании перепонки между 2 и 3 пальцами на ноге, локализован на Y-хромосоме, поэтому синдактилия возникает только у мужчин. Известна еще одна аномалия – гипертрихоз края ушной раковины (ряды волос на ухе), передающиеся по такому же механизму. В изучаемой семье с этой аномалией она передавалась в пяти поколениях по мужской линии.

Многоцелевая лекция «Сцепленное наследование генов»

План — конспект

Тема: «Сцепленное наследование генов»

Цель: формирование представлений о сцепленном наследовании генов и хромосомной теории наследственности

Тип урока: многоцелевая проблемная лекция

Формы работы: фронтальная, групповая, индивидуальная

Словесные: лекция

Наглядные: демонстрация схем, таблиц

Практические: решение практических заданий

Ход экспериментов Моргана

Основной материал лекции: «Ход экспериментов Моргана. Их цитологические основы»

Обобщающий этап лекции

Генетические карты определение взаимного расположения генов

Заключительный этап лекции

Организационный момент: приветствие, отсутствующие, создание рабочей обстановки.

Актуализация знаний :мобилизация интеллектуального ресурса

Базовая терминология : закончить определения понятий.

Наука, изучающая основные закономерности явлений наследственности и изменчивости — … .

Свойство организмов передавать из поколения в поколение особенности своего строения, функционирования и развития — … .

Способность приобретать в процессе развития новые признаки и свойства — … .

Читайте также  Шток рабочего цилиндра сцепления е34

Метод изучения наследования признаков и свойств путем гибридизации — … .

Последовательный ряд поколений растений гомозиготных по анализируемой паре признаков (потомство одной самоопыляющейся особи) — … .

Преобладание одного альтернативного признака над другим в фенотипе гетерозигот — … .

Отсутствие проявления одного альтернативного признака в фенотипе гетерозигот вследствие доминирования другого — … .

Участок молекулы ДНК, определяющий первичную структуру одного определенного белка — … .

Совокупность генов, полученных организмом от родителей — … .

Генотип, включающий одинаковые аллели одного и того же гена — … .

Генотип, включающий разные аллели одного и того же гена — … .

Гены, локализованные в идентичных участках гомологичных хромосом и отвечающие за альтернативное развитие одного и того же признака — … .

Совокупность признаков организма, внешних и внутренних — … .

Тип взаимодействия аллельных генов, при котором в фенотипе гетерозигот проявляется только один из двух аллелей — … .

Тип взаимодействия аллельных генов, при котором в фенотипе гетерозигот проявляется промежуточный характер наследования признака — … .

Тип взаимодействия аллельных генов, при котором в фенотипе гетерозигот проявляются оба аллеля одновременно — … .

Тип взаимодействия аллельных генов, при котором степень проявления доминантного аллеля в фенотипе гетерозигот выше, чем у гомозиготы по доминантному признаку — … .

Явление существования множества аллельных вариантов одного и того же гена в популяции организмов — … .

Генетическая символика: назвать генетические символы

Основные типы скрещивания: определить тип скрещивания.

Скрещивание родительских форм, наследственно различающихся по одному признаку (одной паре альтернативныхвзаимоисключающих признаков — …

Скрещивание особи имеющей неизвестный генотип с особью гомозиготной по рецессивному признаку с целью установления генотипа- … .

Скрещивание родительских форм наследственно различающихся по двум признакам (двум парам альтернативных взаимоисключающих признаков) — … .

Скрещивание родительских форм наследственно различающихся по нескольким признакам (нескольким парам альтернативных взаимоисключающих признаков) — … .

Базовые генетические закономерности: установите соответствие.

Формулировка закона

Закон независимого комбинирования

Закон единообразия гибридов первого поколения

Наследование по каждой паре признаков идет независимо от других пар признаков.

При скрещивании гибридов первого поколения моногибридного скрещивания, во втором поколении происходит расщепление по фенотипу в соотношении: три части гибридов несут доминантный признак, одна часть – рецессивный.

Гибриды первого поколения, полученные в результате скрещивания гомозиготных родительских форм, наследственно различающихся по одной паре альтернативных признаков, единообразны.

Определение фенотипа (доминантный, рецессивный, промежуточный) по генотипу:

Определение сортов гамет у различных генотипов (при моно-, ди-, три-, полигибридном скрещивании):

Установление типа скрещивания по характеру расщепления: установите соответствие

Тип скрещивания

По генотипу: 1:2:2:1:4:1:2:2:1

По фенотипу нет расщепления

По фенотипу: 1:2:1

По генотипу: 1:2:1

По фенотипу: 9:3:3:1

Моногибридное скрещивание в F 1

Моногибридное скрещивание в F 2 при полном доминировании

Моногибридное скрещивание в F 2 при неполном доминировании

Дигибридное скрещиваниев F 1

Дигибридное скрещивание в F 2

Составление схем различных типов скрещивания Решение:

Р: ♀ А a Вв × ♂ аавв

F 1 : решетка Пеннета

Красные плоды (к.п.)

Желтые плоды (ж.п.)

Округлые плоды (о.п.)

Грушевидные плоды (г.п.)

Р: ♀ А a Вв × ♂ аавв

1 (AaBb): 1 (аАвв):1(аавВ):1(аавв)

1( к . п ., о . п .):1( к . п ., г . п .):1( ж . п ., о . п .):1( ж . п ., г . п .)

Красным цветом выделены ответы к заданиям

Базовые генетические закономерности объясняют элементарный механизм наследования признаков и свойств.

Изучение нового материала:

Пример: наследование формы семян и наличия усиков у гороха посевного.

растение с усиками(В)

растение без усиков(в)

растения с усиками (100%)

растение с усиками

растение с усиками

9 (гл. с., рас.с ус.): 3 (гл. с., рас. без ус.): 3 (морщ. с., с ус.): 1 (морщ. с., рас. без ус.)

3 (гл. с., рас.с ус.): 1 (морщ. с., рас. без ус.)

Вывод: независимое комбинирование признаков не произошло!

При некоторых ди- и поли- гибридных скрещиваниях результаты отличаются от менделевских!

Нарушение независимого комбинирования признаков может происходить по причине совместного расположения генов в одной паре гомологичных хромосом!

Нарушения независимого комбинирования признаков.

Сцепленное наследование генов

История открытия

1902-1903 гг . американский цитолог У. Сэттон при изучениисперматогенеза у кобылки (саранчовые) и немецкий эмбриолог Т. Бовери на основании опытов на морских ежах независимо друг от друга выявили параллелизм в поведении генов в ходе формирования гамет и оплодотворения, т.е. заложили основу для признания того, что менделевские наследственные факторы (гены) расположены в хромосомах.

В 1909 г. В.Л. Иоганнсен заменил термин «наследственный фактор», термином ген.

В 1906 г . У. Бэтсон и Р. Пеннет провели опыт по скрещиванию душистого горошка ( Lathyrusodoratus). Классы с сочетанием родительского типа P-L- и ppll появлялись в потомстве с большей частотой, чем с перекомбинацией признаков,т.е. признаки P и L наследуются не независимо друг от друга и в гаметы с более высокой частотой попадают совместно. Они выдвинули гипотезу «притяжения – отталкивания» генов от одной и разных родительских форм.

1909-1912г –работы Т. Моргана по сцепленному наследованию признаков ( совместно с А. Стёртевантом, Г. Мёллером и К. Бриджесом)

1911г – сформулирована хромосомная теория наследственности.

1932 г –Т. Морган почётный член АН СССР

1933г – вручена Нобелевская премия Т. Моргану за создание, развитие и доказательство хромосомной теории наследственности

Формы взаимодействия неаллельных генов (межаллельное взаимодействие)

Эти гены могут располагаться в разных локусах гомологичных хромосом или в негомологичных хромосомах, обычно отвечают за развитие разных признаков.

Комплементарность (лат. комплементум – дополнение) — присутствие в одном генотипе двух доминантных (рецессивных) генов, которые дополняют действие друг друга, и признак формируется лишь при одновременном действии обоих генов.

Пример: развитие слуха у человека. Для нормального слуха в генотипе человека должны присутствовать доминантные гены из разных аллельных пар –D и E. Ген D отвечает за нормальное развитие улитки, а ген E – за развитие слухового нерва. У рецессивных гомозигот (dd) будет недоразвита улитка, а при генотипе (ее) недоразвит слуховой нерв. Люди с генотипами D..ee, ddE.. и ddee будут глухими.

Эпистаз – такой вид взаимодействия, при котором доминантный (рецессивный) ген из одной аллельной пары подавляет действие доминантного (рецессивного) гена из другой аллельной пары. Соответственно эпистаз может быть как доминантным таки рецессивным. Это явление противоположно комплементарности. Подавляющий ген называется супрессором, ингибитором, эпистатичным. Подавляемый ген – гипостатичным. У человека описан «бомбейский феномен» в наследовании групп крови по АВО системе. У женщины получившей от матери аллель J B фенотипически определялась I(О) группа крови. При детальном исследовании было установлено, что действие гена J B было подавлено редким рецессивным геном, который в гомозиготном состоянии оказал эпистатическое действие.

Полимерия – доминантные гены из разных аллельных пар влияют на степеньпроявления одного и тогоже признака. Полимерные гены принято обозначать одной буквой латинского алфавита с цифровыми индексами. Так у человека количество пигмента меланина в коже (и, следовательно, цвет кожи) определяется четырьмя неаллельными генами: Р1— Р4. Соответственно темно-коричневый цвет кожи будут иметь люди с генотипом Р1 Р1 Р2Р2 Р3 Р3Р4Р4. Самому светлому цвету кожи соответствует генотип р1р1— р4 р4. Промежуточные варианты будут определять различную интенсивность пигментации: Например, человек с большим количеством доминантных генов в генотипе будет иметь более темную кожу. Признаки, детерминируемые полимерными генами, называются полигенными, для них свойственен большой диапазон изменчивости, т.е. широкая норма реакции. Таким образом, наследуются многие количественные и некоторые качественные признаки – рост, масса тела, величина артериального давления.

Основные закономерности наследо­вания признаков по Менделю реализуются благодаря сущест­вованию закона (гипотезы) чистоты гамет, выдвинутого Г. Менделем в 1865г.

Суть последнего состоит в том, что пара ал­лельных генов, определяющая тот или иной признак: а) никогда не смешива­ется; б) в процессе гаметогенеза расхо­дится в разные гаметы, то есть в каж­дую из них попадает один ген из аллельной пары. Цитологически это обеспечивается мейозом: аллельные гены лежат в гомологичных хромосо­мах, которые в анафазе мейоза расхо­дятся к разным полюсам и попадают в разные гаметы.

II. Дигибридное скрещивание

Ранее мы изучали закономерности наследования 1 признака (моногибридное скрещивание)

В общей и медицинской генетике часто возникает необходимость в изучении одновременного наследования двух или более признаков (ди- и полигибридное скрещивание). Если каждый их этих признаков контролируются парой аллельных генов, то можно предположить существование двух форм наследования: независимого и сцепленного. Принципиальные отличия будут определяться расположением генов в хромосомах. При сцепленном наследовании обе пары аллельных генов располагаются в одной паре гомологичных хромосом (т.е. в одной группе сцепления). При независимом наследовании пары аллельных генов располагаются в разных парах гомологичных хромосом.

Закономерности и механизмы независимого наследования были выявлены и сформулированы Г.Менделем в 3-м законе «Закон независимого комбинирования признаков»: при скрещивании гомозиготных организмов, отличающихся по двум (или более) парам альтернативных признаков, в первом поколении наблюдается единообразие по гено- и фенотипу, а при скрещивании гибридов первого поколения – во втором наблюдается расщепление по фенотипу 9:3:3:1, и при этом возникают организмы с комбинациями признаков, не свойственных родительским формам».

Для этой цели Мендель использовал гомозиготные растения гороха, отличающиеся по двум парам альтернативных признаков: семена желтые, гладкие и зеленые, морщинистые. В первом скрещивании он получил АаВb растения с желтыми, гладкими семенами, т.е закон единообразия гибридов первого поколения проявляется не только при моногибридном, но и полигибридном скрещивании, если родительские формы гомозиготны.

P: ААВВ х ааbb

G: АВ, АВ аb, ab

F1: АаВb

P (F1): АаВb х АаВb

Яков Кузнецов/ автор статьи

Приветствую! Я являюсь руководителем данного проекта и занимаюсь его наполнением. Здесь я стараюсь собирать и публиковать максимально полный и интересный контент на темы связанные ремонтом автомобилей и подбором для них запасных частей. Уверен вы найдете для себя немало полезной информации. С уважением, Яков Кузнецов.

Понравилась статья? Поделиться с друзьями:
NEVINKA-INFO.RU
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: