Электромеханические трансмиссии заменят гидромеханику

Блог пользователя korporativ-slave на DRIVE2. С появлением роботизированных коробок передач с двумя сцеплениями начало казаться, что дни гидромеханической АКПП сочтены — более простые, дешевые и эффективные «роботы» должны были вытеснить классический автомат. Но время шло, а автоматы никуда не исчезали – напротив, за последние годы они стали г…

Электромеханические трансмиссии заменят гидромеханику

Гидромеханический автомат

С появлением роботизированных коробок передач с двумя сцеплениями начало казаться, что дни гидромеханической АКПП сочтены — более простые, дешевые и эффективные «роботы» должны были вытеснить классический автомат. Но время шло, а автоматы никуда не исчезали – напротив, за последние годы они стали гораздо совершеннее.

Основа гидромеханического автомата (впрочем, слегка пошатнувшаяся в последнее время, о чем чуть ниже) – это гидротрансформатор. Аналогично сцеплению в механической трансмиссии роль гидротрансформатора – передача крутящего момента от двигателя к коробке передач с возможностью проскальзывания, дабы автомобиль мог плавно тронуться с места. Однако на этом сходство с фрикционным сцеплением заканчивается – внутри гидротрансформатор устроен совсем иначе.

Принцип его работы легко проиллюстрировать на следующем примере. Представим два вентилятора, установленные друг напротив друга. Если мы включаем один из них, то создаваемый им воздушный поток приводит в движения и второй вентилятор. Эта же идея реализована в гидротрансформаторе. В нем есть насосное колесо, вращаемое двигателем и создающее поток масла, и турбинное, связанное с валом коробки и воспринимающее давление потока. Разница с вентиляторами лишь в том, что насосное колесо осуществляет забор масла не с обратной стороны, а с передней центральной части, то есть является центробежным насосом. Отброшенное им вперед по внешнему контуру масло попадает на лопатки турбинного колеса, перенаправляется к центру и возвращается обратно. То есть циркуляция жидкости происходит фактически в замкнутом объеме между двух колес, что позволяет максимально их сблизить, уменьшив рассеяние потока и увеличив эффективность передачи крутящего момента.

Но самые интересные свойства гидротрансформатора связаны с наличием третьего колеса – реактора. Служит оно для воздействия на возвращающийся к насосному колесу поток и, соответственно, располагается в середине гидротрансформатора. Закреплено оно неподвижно, а потому попадающий на его лопатки поток создает направленную в обратную сторону силу реакции, которая дополнительно подкручивает турбинное колесо. Получается, что гидротрансформатор увеличивает крутящий момент на выходе! И чем больше разница в скорости вращения турбинного и насосного колеса, тем больше эта сила реакции потока, и тем значительнее увеличивается момент – в пределе он может умножаться в три раза. То, что нужно для уверенного старта с места, когда двигатель работает на оборотах холостого хода, а вал трансмиссии неподвижен.

Эти свойства гидротрансформатора – увеличивать крутящий момент и допускать долгое проскальзывание – вообще говоря, позволяют и вовсе обойтись без коробки передач. Например, BMW 750i 1986-го модельного года спокойно трогался с третьей передачи и на ней же достигал 250 км/ч! Но, конечно, такое под силу лишь избранным, да и то ценой ухудшения динамики и расхода топлива. Всем же остальным обойтись без механизма переключения трудновато.

В гидромеханическом автомате для изменения передаточного числа используются планетарные передачи. Это принципиально отличает его от механической трансмиссии с параллельными валами. В чем же преимущества такой конструкции? С планетарной передачей проще организовать автоматическую смену скоростей – для этого нужно лишь замыкать между собой отдельные её шестерни. Гораздо компактнее и сама передача – теоретически эта сборка из всего лишь пяти шестерен позволяет реализовать пять скоростей: 4 передних и 1 заднюю. И хотя на практике, вследствие конструктивных ограничений, приходится применять большее количество планетарный рядов, тем не менее, этот узел все равно остается очень небольшим.

Как он работает? В планетарной передаче есть три элемента: первый – центральная солнечная шестерня; второй — вращающиеся вокруг неё сателлиты – шестерни, чьи оси жестко связаны друг с другом; и третий — большое эпициклическое зубчатое колесо, обхватывающее сателлиты. Соответственно, процесс переключения здесь осуществляется установлением жесткой связи между двумя элементами из этой тройки или их блокировкой на корпус. Например, жесткое соединение солнечной шестерни и осей сателлитов дает прямую передачу – эпицикл уже не может проворовываться относительно них, и вся планетарная передача вращается как единое целое. Если же затормозить на корпус коробки оси сателлитов, то солнечная и эпициклическая шестерни начнут вращаться в разные сторону – получаем заднюю передач. И так далее.

Все эти торможения и блокировки осуществляются с помощью фрикционов и тормозных лент, а управляет ими сложная гидросистема, включающая в себя множество каналов, клапанов, гидроаккумуляторов и, конечно, насос, создающий давление масла. Эта гидравлика первоначально и реализовывала всю управляющую логику, причем опираясь всего на два параметра: нагрузку на двигатель и скорость автомобиля.

С распространением электроники в конце 80-ых годов автомат стал точнее оценивать условия движения. Например, он уже не будет нагружать слишком ранними переключениями еще непрогретый двигатель, а при смене передач учтет температуру собственного масла, то есть сделает поправку на его вязкость. Это особенно важно для обеспечения плавности переключения. Дело в том, что избежать провалов тяги позволяет так называемое перекрытие передач: включение следующей скорости, еще до выключения текущей передачи. Такой процесс требует точности: слишком малое перекрытие ведет к провалу тяги, а слишком большое – и вовсе резко затормозит автомобиль. Разумеется, электроника тут позволяет гораздо аккуратнее выдерживать необходимые моменты переключений. Увеличивает она и ресурс трансмиссии, корректируя работу в зависимости от степени износа. Но главное – она помогает улучшить экономичность.

Изначально гидромеханический автомат – далеко не самый эффективный способ передачи крутящего момента. Основные потери в нем связаны с гидротрансформатором – даже в установившемся режиме движения насосное и турбинное колесо проскальзывают относительно друг друга.Тратится энергия и на удерживание фрикционов и тормозных лент – масленый насос поддерживает давление в десятки атмосфер. В результате КПД автомата не превышает 85%, в то время как КПД механической коробки близок к 98%!

Чтобы улучшить этот показатель стали применять блокировку гидротрансформатора – на повышенной передаче, при достижении определенной скорости, встроенный фрикцион, похожий на обычное сцепление, жестко связывает турбинное и насосное колесо. Кстати, этот момент легко отследить по тахометру – обороты мотора слегка падают, будто включилась еще одна передача. В таком режиме КПД уже поднимается до 94%.

С развитием электронного управления блокировка гидротрансформатора стала производиться на всех передачах – фрикцион разжат лишь в момент старта и переключения скорости. При этом, правда, иногда страдает плавность переключений. Как показывает опыт наших замеров, многие современные автоматы уступают в этом плане старым моделям. Особенно это заметно на 6-ступенчатых моделях ZF – на их графике продольного ускорения отчетливо видно, как за одним провалом тяги в момент переключения следует второй рывок, вызванный уже блокировкой гидротрансформатора.

Некоторые пошли еще дальше. Инженеры Mercedes и вовсе отказались от гидротрансформатора – вместо него они стали применять сцепление. Правда, не сухое, как в механических трансмиссиях, а мокрое, выдерживающее более длительную пробуксовку. Замыкается оно в момент старта, и, соответственно, все переключения передач происходят при наличии жесткой связи коробки с двигателем. Это существенно поднимает требования к синхронизации процессов включения-выключения скоростей, но КПД возрастает до 97%, то есть сравнивается с показателями роботизированных механических коробок. Постоянное жесткое соединение с валом мотора означает и более линейные отклики на педаль газа, что востребовано в мощных спортивных моделях AMG.

Последняя же тенденция, которую уже нельзя не заметить – это рост числа передач. В середине прошлого десятилетия, когда появились 7-скоростные «роботы» с двумя сцеплениями, гидромеханический автомат явно отставал – 6-ступенчатые модели только начинали появляться. Но затем быстро последовали семи-, восьми скоростные, на подходе уже и 10-скоростные коробки. Разумеется, столь сложные агрегаты уже не отличаются надежностью и ресурсом – детали приходится сильно уменьшать в размерах, но зато по экономичности и разгонной динамике они обыгрывают механическую трансмиссию. Уступая последним в КПД, многоскоростные автоматы позволяют точнее удерживать мотор в оптимальном диапазоне оборотов, что и определяет, в конечном счете, динамические свойства автомобиля.

Многоступенчатость позволяет без ущерба для плавности ускорить и процесс смены передач, ведь перепад оборотов двигателя становится меньше. Впрочем, и раньше у автоматов не было проблем с быстродействием: например, 4-скоростная коробка ZF, устанавливаемая на BMW конца 80-ых годов, перещелкивала передачи за 0,3 с – среди протестированных нами автомобилей подобным быстродействием обладал только «робот» Porsche 911! Обычные же преселективные трансмиссии работают примерно в два раза медленнее.

Таким образом, у современного автомата практически нет слабых мест. Сохранив свои главные качества – плавность переключений и способность долгое время работать в режиме пробуксовки при движении на малых скоростях, он стал гораздо эффективнее и интеллектуальнее. Правда, пока все эти достижения доступны лишь на дорогих автомобилях – сложные, многоступенчатые автоматы, разумеется, и стоят немало, а потому сегмент недорогих моделей все-таки постепенно переходит на роботизированные коробки – в условиях борьбы за экономичность старые 4-, 5-скоростные автоматы уступают позиции. Но это лишь локальное поражение – в будущем гидромеханических коробок сомневаться не приходится.

Электромеханические трансмиссии заменят гидромеханику

Раз в четыре года в Лас-Вегасе собираются специалисты, тесно связанные с горнодобывающей промышленностью. Станислава Флоренцева, главного конструктора электропривода транспортных средств ООО «Русэлпром» интересовали на отраслевой выставке MINExpo новинки в области электромеханической трансмиссии и гибридных силовых установок. Своими впечатлениями от увиденного он поделился с читателями КМ.

Карьерные самосвалы

В сегменте карьерных самосвалов были представлены новинки компаний Caterpillar, Komatsu, Libher и Hitachi, а также «БелАЗ» грузоподъемностью от 90 до 420 тонн. Все машины оснащены электромеханической трансмиссией переменно-переменного тока. Caterpillar, Komatsu и Libher применяет собственные разработки и производство всех компонентов комплекта тягового электрооборудования (КТОЭ) ЭМТ. Komatsu использует продукцию фирмы General Electric.

Во всех силовых преобразователей применяется жидкостное охлаждение шкафов силовых преобразователей и принудительное воздушное охлаждение радиаторов этих систем охлаждения, синхронных генераторов и тяговых электродвигателей.

Компания Komatsu, разрабатывающая и производящая широкую линейку горнодобывающей техники — карьерные экскаваторы и самосвалы, фронтальные погрузчики — встраивает их в единую цепочку автоматизированного управления карьером. Цель – повышение производительности, экономия топлива, сокращение затрат на обслуживание и ремонт.

Читайте также  Трансмиссия ходовая часть трактора

Применившая уже на практике автономное вождение самосвалов в карьерах, Komatsu представила на MINExpo новый концепт робота – карьерный самосвал грузоподъемностью до 400 тонн. Машина не имеет кабины для водителя, обладает приводом 4х4 и всеми поворачивающимися колесами. Момент на колеса передается от тяговых электродвигателей через кардан, с расположением дизеля и КТЭО ЭМТ в раме между передними и задними ведущими колесами (рис. 1).

Рис. 1

Компания Libher продемонстрировала новое поколение карьерных самосвалов грузоподъемностью 100 тонн с электромеханической трансмиссией переменно-переменного тока (рис. 2-4). Ее особенности: асинхронный мотор-генератор, три инвертора с жидкостным охлаждением, два тяговых асинхронных двигателя, отсутствие тормознго чоппера и резисторов электродинамического торможения (аналогичную идею мы предлагали для реализации «БелАЗу» в 2009 году).

Рис. 2

Особенностью собственной разработки КТЭО для самосвалов компании Hitachi является применение силовых полумостовых сборок на IGBT транзисторах Hitachi America с интегрированным жидкостным охлаждением, встроенными схемами драйверов с опторазвязкой, снабберами, ламинарными быстро коммутируемыми шинами (подобными серии таких же сборок фирмы Siemens).

Никто из перечисленных фирм тяговым электрооборудованием концерна «Русэлпром» не заинтересовался, в отличии от китайской CRRC. Компания из Поднебесной проявила серьезный интерес к возможным поставкам наших КТЭО для производимых ею карьерных самосвалов.

Компоненты и КТЭО

В этом сегменте показали свои новые разработки компании Siemens, John Deere, TM4 и STW. Siemens представил набор компонентов КТЭО, который планирует в следующем году реализовать в составе ЭМТ переменно-переменного тока карьерного самосвала грузоподъемностью 30-40 тонн (рис. 5-6). Причем рассматривает возможность применения гибридной силовой установки: наряду с ДВС и накопителем энергии.

Рис. 5.

Рис. 6.

Американское подразделение John Deere продемонстрировало набор компонентов КТЭО, интегрированных с насосами гидросистем (для генераторов), согласующими редукторами для тяговых двигателей (рис. 7), ведущими мостами с большими коэффициентами редукции для транспортных средств, а также серию интегральных интеллектуальных силовых преобразователей с жидкостным охлаждением (рис. 8).

Рис. 7

Семейство таких компонентов КТЭО, как «Лего», легко встраивается в различные транспортные средства в концепции «центрального привода» (реализованного нами в проектах «КТЭО ЭТ-300ЦП», «Гибрид-12» и пр.). John Deere использовал ее во фронтальном погрузчике 240 л.с. и серии с/х тракторов 240-350 л.с. Компания также адаптирует ее для другой строительно-дорожной и лесной техники.

Рис. 8.

Подобную идеологию внедряют фирмы STW и TM4, предлагая набор генераторов, тяговых электродвигателей,силовых преобразователей, вспомогательных преобразователей и зарядных устройств. В отличие от John Deere эти фирмы пока не интегрируют свои компоненты с другими системами транспортных средств (насосами, редукторами и пр.).

Транспортные средства на электрическом приводе

Отдельным сегментом следует выделить транспортные средства для подземных работ с чисто электрическим (батарейным) приводом. Причем фирмы, представившие эти транспортные средства, являются и разработчиками и производителями КТЭО, иногда в кооперации. На рис. 9–14 представлены батарейные транспортные средства GE, Artisan, Aramine, Sandvik.

Рис. 9

Рис. 10

Рис. 11

Рис. 12

Рис. 13

Из увиденного можно сделать вывод, что в области карьерных самосвалов следует ожидать внедрение электромеханических трансмиссий взамен гидромеханических в самосвалы грузоподъемностью 35 – 75 тонн. Широкое внедрение получат карьерные самосвалы с автоматическим или дистанционным управлением. Появление более энергоэффективных, надежных и менее дорогих накопителей энергии приведет к активному внедрению гибридных силовых установок в транспортные средства для горнодобывающей промышленности с выраженным циклическим режимом работы – бульдозеры, скреперы, погрузчики, экскаваторы.

Устройство автомобилей

Бесступенчатые трансмиссии

Электрические и электромеханические трансмиссии

В электрической трансмиссии механическая энергия двигателя преобразуется в генераторе в электрическую энергию, и затем снова преобразуется в механическую в тяговых электродвигателях.

Очевидно, что двойное преобразование энергии из одного вида в другой связано с определенными потерями, однако, эти потери зачастую ниже потерь в механической трансмиссии, а кроме того, применение электрической трансмиссии имеет ряд существенных достоинств.

В первую очередь – это, конечно же, провода. Безусловно, электрическую проводку для подвода энергии к электродвигателю, установленному в колесе автомобиля, подвести значительно проще, чем от силовой установки к ведущему колесу посредством различного рода механических передач.
Во-вторых, электрические двигатели имеют приближенную к идеальной характеристику изменения крутящего момента в зависимости от частоты вращения вала (якоря). При увеличении частоты вращения крутящий момент на валу уменьшается, а при уменьшении частоты вращения – крутящий момент увеличивается, при этом произведение частоты вращения вала на крутящий момент в каждый момент времени остается постоянным (в идеале), равным мощности двигателя.

Исходя из приведенных выше доводов, становится очевидным, что электродвигатель является почти идеальной автоматической трансмиссией, самостоятельно подстраивающей величину крутящего момента на колесах автомобиля в зависимости от условий движения – возросла нагрузка, скорость снизилась – крутящий момент автоматически вырос.

Однако широко применять электродвигатели в качестве силовой установки современных автомобилей пока не удается, поскольку нет возможности запасаться электроэнергией в достаточном количестве впрок. Привязав автомобиль проводами к какому-нибудь источнику электрической энергии, мы лишим его автономности, а значит, и название «автомобиль» для такого транспортного средства потеряет смысл.
Современные аккумуляторные батареи тоже не способны обеспечить электромобиль достаточным запасом энергии для передвижения.

Многократное преобразование: тепловая энергия топлива – механическая энергия ДВС – электрическая энергия генератора – механическая энергия трансмиссии – электрическая энергия тягового электродвигателя – механическая энергия движителя (колеса) сопряжено со значительными потерями энергии и снижением КПД. Кроме того, чтобы обеспечить движение автомобиля с электрической силовой установкой в широком интервале тяговых усилий без применения дополнительной механической трансмиссии, необходим очень мощный, дорогой и тяжелый электрический двигатель, который сведет на нет все достоинства электропривода с экономической точки зрения.

Тем не менее, электрическая трансмиссия в совокупности с механической нашла применение на современных грузовых автомобилях повышенной грузоподъемности.

Основными элементами электрической трансмиссии (рис. 1, а) являются генератор 2, приводимый в действие двигателем внутреннего сгорания 1, и электрические двигатели 3, расположенные непосредственно в ведущих колесах автомобиля.
Достоинством данного вида трансмиссии является то, что генератор и тяговые электродвигатели могут устанавливаться в любом месте, диктуемом компоновкой автомобиля, при этом связь между ними поддерживается с помощью электрических проводов, которые можно проложить как угодно и где угодно, без ущерба внутреннему объему автомобиля.

Тем не менее, в таком упрощенном виде электрическая трансмиссия применяется редко. Чаще для увеличения крутящего момента в трансмиссию вводятся элементы механической трансмиссии. В таких случаях применяется один тяговый двигатель, а мощность к ведущим колесам передается посредством механических элементов – карданных передач и ведущих мостов (рис. 1, б).

При установке тяговых электродвигателей непосредственно в колесах автомобиля используют планетарные зубчатые редукторы с передаточным числом от 15 до 20. Колесо с электродвигателем и колесным редуктором называется электромотор-колесо .

Электромотор-колесо (рис. 2) является наиболее сложным элементом электромеханической трансмиссии, состоящим из следующих элементов: тягового электродвигателя 4, планетарного редуктора 1, ступицы 2 колеса с подшипниковыми узлами, фрикционного тормозного механизма 3, шины с ободом.
К конструкции электромотор-колесо могут также относиться отдельные узлы подвески, механизм переключения передач (при двухступенчатом редукторе) и некоторые другие элементы.

Электромеханические передачи нашли применение на автомобилях-самосвалах большой грузоподъемности. В частности, все самосвалы марки «БелАЗ» грузоподъемностью свыше 75 тонн оснащаются электромеханическими трансмиссиями.
В зарубежном автомобилестроении электромеханические трансмиссии также применяют на самосвалах большой грузоподъемности и на многозвенных автопоездах высокой проходимости. Перспективным считается применение электромеханических трансмиссий на многоприводных автомобилях высокой проходимости и автобусах большой вместимости.

Робот? Вариатор? Гидромеханика? — какая АКП подойдет вам

Гидромеханика

Гидромеханический автомат — самый распространенный тип автоматических коробок, который встречается практически у всех автопроизводителей. В силу конструктивных особенностей эти автоматы лучше других переваривают большой крутящий момент, поэтому именно их чаще всего устанавливают на тяжелые кроссоверы и внедорожники, а также на полноразмерные седаны. По сути это планетарная коробка передач, соединяемая с мотором через гидротрансформатор. Переключение планетарных рядов в ранних моделях происходило гидромеханически, а теперь — по командам электроники.

На бюджетные модели устанавливают простенькие «четырехступки», хотя их осталось уже мало. Например, популярная коробка DP0/DP2 работает на многих недорогих моделях Peugeot-Citroen и Renault. Характеристика у этой коробки не лучшая, как, впрочем, и надежность: выхаживает она, как правило, не более 120 000 км. Гораздо лучше по надежности (около 200 000 км), да и по алгоритму переключения японские четырехступки Jatco. Их устанавливают на Гранты и Датсуны.

Постоянно ужесточающиеся нормы выбросов заставляют производителей увеличивать число передач в автоматах. Но выигрывает от этого не только природа, но и владельцы автомобилей: многоступенчатые коробки позволяют оптимальнее реализовать возможности двигателя и таким образом снизить расход топлива. Даже на относительно недорогих автомобилях, например, Кia Rio или Hyundai Solaris, нынче применяют шестиступенчатые автоматы. Столько же передач и у коробки 09G Tiptronic, устанавливаемой на модели Volkswagen Polo и Skoda Rapid. Средний ресурс при бережной эксплуатации и своевременной замене рабочей жидкости (не реже чем каждые 60–80 тысяч км) составляет 250 000 км.

На более мощных и тяжелых автомобилях количество ступеней в автоматах может доходить до десяти (например, у купе Chevrolet Camaro ZL1 и пикапа Ford F‑150). Но «многоступенчатость» сказывается на надежности. Ведь чем больше передач, тем чаще коробка переключается, а значит больше изнашиваются фрикционы. Кроме того, жесткие ограничения по габаритам приводят к тому, что каждая ступень становится миниатюрнее (без основательного запаса надежности).

Универсальное (и лучшее) решение для города и бездорожья — гидромеханика

Вариаторы

Вариатор — казалось бы, идеальный агрегат для передачи крутящего момента от мотора к колесам. Нет никаких ступеней: передаточное число изменяется плавно. На ведущем и ведомом валах вместо шестерен установлены конусообразные элементы. Смещая их относительно друг друга, можно плавно изменять передаточное число. Момент передает пластинчатый ремень или штифтовой (еще его называют цепью).

Читайте также  Шестиступенчатая автоматическая трансмиссия что это

На большинстве автомобилей работают вариаторы Jatco. Наиболее надежные и менее затратные при ремонте — модели старого поколения JF010E (идут в паре с атмосферными бензиновыми моторами 2.0 и 2.5) и JF011E (с двигателями 3.5), которые устанавливали на Ниссаны, Renault и Mitsubishi предыдущих генераций. Средний ресурс этих вариаторов — 150–200 тысяч км.

Новое поколение — JF016E и JF017E — более капризное. А самым нежным вариатором из гаммы Jatco является агрегат JF015E, который встречается на машинах концерна Renault-Nissan — часто они не выхаживают и 100 тысяч км. Некоторые автопроизводители разрабатывают и выпускают ­вариаторы самостоятельно — в частности, Kia, Subaru и Аudi.

Если сравнивать с классическими гидромеханическими автоматами, то в целом вариаторы уступают им в надежности. И часто обходятся дороже в ремонте. Кроме того, вариаторы на бездорожье зачастую склонны к перегреву. Зато отлично подходят для эксплуатации в городе.

Роботы

Роботы можно разделить на две группы. Робот с одним сцеплением — это обычная «механика», у которой сцеплением и переключением передач управляет не водитель, а автоматика. Надежность такого агрегата в теории должна быть самой высокой среди АКП. Но практика это не подтверждает. Например, на редакционной Весте с роботом стояли уже три сцепления при пробеге меньше 45 тыс.км. Коробка Easytronic, которую устанавливали на Опели, мучили владельцев отказами по электронике. По скорости и комфорту переключения робот с одним сцеплением — худшая автоматическая коробка. Основное его преимущество — невысокая цена. Поэтому его ставят в основном на небольшие и недорогие автомобили.

Робот с двумя сцеплениями — более сложный и дорогой. За четные и нечетные передачи в такой коробке отвечают отдельные первичные валы и, соответственно, отдельные сцепления. Если вы, к примеру, двигаетесь на первой передаче, то на другом валу уже включена вторая! Благодаря этому переключение происходит за миллисекунды и рывки при этом не ощущаются.

В подобных коробках могут использоваться как сухие, так и мокрые сцепления. Сухие — менее надежные — иногда их приходится менять при пробеге 30 000 км, редко они дотягивают до 100 тысяч. «Мокрые» DSG, которые выпускает концерн Volkswagen, имеют сносный ресурс — около 150 тысяч км и даже больше при аккуратной манере езды.

Фордовские роботы Powershift с сухими сцеплениями не отличаются ни плавной работой, ни большим ресурсом. Поэтому Ford постепенно отказывается от коробок такого типа, предпочитая классические автоматы.

А вот корейцы, похоже, наоборот, готовы продвигать роботов — коробка 7DCT все активнее прописывается на новых моделях Kia и Hyundai.

Кризис гидромеханики: почему новые АКПП столь же ненадежны, как «роботы» и вариаторы

Еще недавно проблемы преселективных коробок DSG были у всех на слуху, и альтернативная гидромеханическая коробка передач на машинах VW и Skoda многими рассматривалась как реальное решение проблемы. Но прошло четыре-пять лет, и вот уже в США бьют тревогу. Новые автоматические коробки передач о 8 и 9 ступенях по ресурсу оказались неровня свои предкам, хотя и шестиступки имели ресурс далеко не выдающийся. А учитывая высокую сложность гидромеханических АКПП, их ремонт куда дороже, чем ремонт «роботов», и значит, все владельцы машин с «автоматами» оказались в одной лодке.

Более того, отчет Consumer Report говорит и о том, что даже обладатели машин с вариаторами не избежали проблем, хотя там конструкция вроде бы сильно не менялась. Но стремление получить максимальный динамический диапазон и облегчить при этом конструкцию подорвало и их позиции.

Похоже, цель выжать последние соки из классических конструкций, вкладываясь только в маркетинг, на фоне новых инициатив псевдоэкологического лобби приводит нас не в светлое будущее, а в тупик. Но если проблема настолько очевидна, то почему все равно локомотив индустрии движется в этом направлении?

Больше ступеней – больше проблем

Казалось бы, пятиступенчатая АКПП обеспечивает минимальный расход топлива и динамику на уровне механических коробок… Но вот уже сделали шестиступки – уж эти-то точно максимально экономичны? Дальше любые усилия по улучшению наталкиваются на тот простой факт, что водитель не совершенен. Он все равно израсходует больше топлива только потому, что решит погоняться, не увидит вовремя красный сигнал светофора, превысит скорость, будет прогреваться слишком мало или слишком долго, попадет в пробку… Если шесть ступеней в сравнении с пятиступенчатой дают максимум 5-10% уменьшения расхода топлива, то добавление двух-трех ступеней приводит к еще меньшему результату.

До какого-то момента можно оправдать небольшое усложнение коробки, пока «лишние» передачи даются легко, но ведь последнее поколение «классических» АКПП по сути отличается от классических четырехступок как небо и земля. Начиная с шестиступенчатых коробок, гидротрансформатор вовсе не является основной частью коробки – он лишь один ее набор фрикционов, только умеющий немного размыкаться.

По большей части именно как ГДТ он не работает – даже при очень плавном разгоне накладки блокируются частично, а чуть нажми педаль газа и заблокируются почти полностью. Фактически он превратился в расходник, только вот почему-то все еще включен в общую гидравлическую схему АКПП и стоит вовсе не как набор фрикционов, а как полновесная деталь.

Количество планетарных рядов выросло уже вдвое, блок гидравлики теперь стал сложнее на два порядка, соленоиды – не просто клапаны, они теперь отвечают за плавное изменение давления, постоянно меняя проходное сечение каналов. В четырехступке при старте было так: пара соленоидов срабатывала, потом срабатывала другая пара, потом еще один отключался, и вот уже машина едет. За все это время клапаны переключились один раз, и износ фрикционов в АКПП был только в краткие моменты переключений.

В современной восьмиступенчатой коробке все происходит куда сложнее. При старте включается несколько соленоидов, отвечающих за включение первой или второй передачи. Далее соленоид блокировки сначала разблокирует ГТД, а потом сразу начинает регулировать степень проскальзывания блокировки, ради плавного переключения фрикционы передач смыкаются с «перекрытием», а их пробуксовка в этот момент регулируется линейными соленоидами.

Таким образом, при каждом переключении происходит больше действий и сильнее износ. Самих переключений с передачи на передачу тоже больше, потому что в городском режиме задействовано не две-три передачи, как на старых 4-АКПП, а уже все пять. Нетрудно догадаться, что даже если в конструкции коробки заложен значительный ресурс, исчерпается он довольно быстро.

Так в чем же смысл?

Производитель автомашины получает столь нужные ему плавность и престиж. Да-да, покупатели все еще ведутся на циферки – маркетологи не зря жуют свой хлеб, эта вредная профессия нас всех приведет к апокалипсису под бой барабанов. И конечно же, производитель получает несколько процентов экономии расхода топлива в нереалистичном ездовом цикле, который заботливо поддерживается гениальными «экологами» как мерило вредности машины для окружающей среды.

Объяснить мотивы производителя АКПП в этой порочной карусели, на первый взгляд, сложнее, ведь за гарантию отвечает именно он. Но у него тоже есть веские основания. Во-первых, на него давит производитель машины, чтобы получить свое. Во-вторых, если задержать в производстве что-то удачное и простое, оно подешевеет – придется урезать расходы на исследования и разработку.

До кучи идею скопируют где-нибудь в Китае, и норма прибыли сразу упадет. Одними лицензиями на агрегат не прокормиться, а трудолюбиво улучшать свой агрегат сложно. Это нужно снова заниматься тем, от чего отказались уже «прогрессивные» отделы разработки – натурными испытаниями.

В свою очередь, для разработки чего-то нового нужно только программное обеспечение, эквилибристика ума у некоторого числа инженеров и способность произвести нового многоступенчатого монстра. К тому же чем больше ступеней у коробки передач, тем проще сделать ее легче, теоретически снижаются пульсации момента при переключениях и можно вывесить на сайт очередной манифест из серии «мы сделали это, мы снова лучшие».

Сложилась парадоксальная ситуация: в попытках заставить производителей машин отказаться от собственных наработок по части трансмиссий, в частности от дальнейшего прогресса DSG, коробочные «монстры» сделали свои АКПП более интересными с ездовой точки зрения, но по части надежности провалились вниз с треском. И начинают проигрывать «непрофессионалам» «коробочного бизнеса».

Похоже, недалек тот момент, когда уже потребитель будет воротить нос от «классики», предпочитая более простую в ремонте роботизированную трансмиссию, а не гидромеханические заморочки. Тем более что с глобальными проблемами самого зловредного преселектива DSG-7, похоже, разобрались после очередной модернизации.

Фактически история сделала круг, ведь все помнят, как боялись коробок-автоматов еще лет пятнадцать назад, и лишь очень удачные серии четырех- и пятиступок позволили побороть этот страх и обеспечить основные продажи именно автоматизированным машинам. Впрочем, я вполне осознаю, что уровень подготовки водителей на данный момент таков, что большая часть просто не сможет отказаться от «автоматов», а значит, будет спрос на любые поделки, которые будут предложены.

Не стоит, впрочем, думать, что любой «робот» окажется проще и надежнее. Великолепная на бумаге коробка Honda, совместившая преселективный робот и ГДТ, оказалась в числе наиболее проблемных трансмиссий в США по данным того же Consumer Reports.

И кстати, не все шестиступки «одинаково полезны». Тот, кто читает мои обзоры машин на вторичном рынке, знает, что шестиступенчатые АКПП ZF имеют ряд проблем с давлением и вибрациями и значительно менее надежны, чем их же пятиступенчатые предки. Но в сравнении с ними новое поколение коробок совместной разработки GM/Ford оказалось еще хуже. И только выпуск новых, еще менее удачных трансмиссий не позволяет признать их действительно неудачными. Ведь все познается в сравнении…

Что дальше?

Автоматы, классические и не очень, стали очень сложными – недаром почти все разработки в этой области отданы на откуп паре специализированных фирм их Европы и Японии, а остальные плетутся в арьергарде прогресса, пытаясь скопировать удачные решения и повторяя те же ошибки.

Читайте также  Фольксваген тигуан трансмиссия привод

Некоторые попутно пытаются сделать что-то совсем «свое» на базе «робота» или вариатора, с переменным успехом, но порой совершая маленькие революции. Но боюсь, что скоро все закончится. Мы не дождемся двадцатиступенчатых АКПП и двадцатишестиступенчатых «роботов». Победное шествие гибридов явно намекает на то, что скоро ДВС останется на машинах лишь в виде расширителя дистанции, а основную работу будут делать электромоторы и батареи.

Это значит, что отпадет и нужда в сложных трансмиссиях – в крайнем случае будет работать электропередача, которая имеет практически идеальные характеристики, а по массе с учетом необходимости электромотора окажется в выигрыше. Нельзя сказать, что современные электромоторы отличаются особой простотой, но они проще любых сложных гидромеханических устройств на пару порядков и ресурс имеют очень большой, ограниченный лишь сроком службы подшипников и иногда щеточного узла.

И чем сложнее и ненадежнее будет ДВС и АКПП, тем быстрее это будущее наступит, тем больше его будут приветствовать. И порой мне кажется, что все эти проблемы с надежностью агрегатов, усложнение и прочее – это лишь очередная маркетинговая уловка, которая поможет электромобилям и гибридам закрепиться как основному виду транспорта.

И еще немного теории заговора

выпускающий редактор Kolesa.ru

Раз уж автор закончил статью на конспирологической ноте, позволю себе еще тезис на эту тему. Пытливый читатель наверняка заметил, что в статье мы подозрительно позитивно описали работу DSG-7. А не является ли продавец этих коробок заказчиком статьи? Или, может быть, ее заказали производители механических коробок, о которых в статье вовсе ничего не сказано? Позволим же этому вопросу остаться риторическим.

Почему Komatsu использует в линейке два вида трансмиссии: гидростатическую и гидромеханическую

Какой должна быть трансмиссия бульдозеров: гидростатической или гидромеханической? Какая из них удобнее в работе, для каких целей? Это один из давних споров между пользователями и даже между производителями техники. Komatsu решила этот спор, использовав в линейке бульдозеров оба варианта, но в технике разного назначения. И вот почему.

Для начала сравним, как работают обе системы.

Гидромеханическая трансмиссия — это гидротрансформатор плюс обычная шестеренчатая коробка передач. Автоматическая, как на бульдозерах Komatsu 16-й серии, или с переключением в ручном режиме, как на бульдозерах 12-й серии. Ключевой элемент — гидротрансформатор, который преобразует и увеличивает тягу относительно тяги, которую выдает двигатель. Например, если двигатель выдает 100 Н·м, то на выходе из турбинного колеса получаем тягу до 240 Н·м. Это огромный плюс гидромеханики, но в этом и ее проблема. Такой режим трансформации достигается только при высокой степени пробуксовки гидротрансформатора, когда турбинное колесо стоит, а насосное очень быстро крутится. При этом возникают внутренние потери на трение жидкости внутри гидротрансформатора, резко снижается КПД. Зато тяга максимальна.

В гидростатике два ключевых элемента: насос, который преобразует энергию двигателя в движение жидкости, и гидромотор, который приводит в движение гусеницы. Гидротрансформатора нет, то есть тяга меньше, зато выше КПД.

Из этого следует разница в назначении машин с этими типами трансмиссии.

Бульдозеры с гидромеханикой — это инструмент для тяжелых работ, где требуется высокая тяга. В первую очередь это горная промышленность, работа в карьерах. Максимальная тяга часто полезна и для тяжелых строительных работ, например при подготовке площадок для кустовых месторождений, то есть при работе на мерзлом грунте. Это бульдозеры Komatsu D65EX-16, D155A-5, D275A-5, D375A-6.

Тяжелый бульдозер Komatsu D375A-6 трудится на известняковом карьере в Дании

Ниша бульдозеров на гидростатике — дорожные и коммунальные работы. Специфика задач в этих видах деятельности требует максимальной маневренности и экономичности техники. При постоянных передвижениях с относительно малой нагрузкой себестоимость работы техники на гидростатической трансмиссии будет ниже, например из-за меньшего расхода топлива. Поэтому модели Komatsu для строительства дорог и городских работ оснащены насосами и гидромоторами. Это D39EX/PX-22 и D37EX/PX-22.

Но есть модель, техническое решение которой вызывает самые бурные обсуждения как минимум потому, что это самая распространенная, популярная модель в линейке бульдозеров Komatsu. Это D65-16 в спецификациях EX/PX/WX.

Двадцатитонный D65 — универсал. Он популярен у строителей в нефтегазовой сфере, его можно встретить на песчаных, щебеночных и угольных карьерах, его используют в дорожном строительстве и даже порой на крупных городских проектах. Причем часто, если у компании — владельца техники есть сразу несколько проектов, бульдозер переводят с одной задачи на другую и он продолжает эффективно трудиться. Например, из карьера — на строительство дороги. И в D65 стоит гидромеханическая коробка передач.

Часть стандартных работ, где обычно задействован «шестьдесят пятый», — это именно те работы, про которые выше говорилось, что на них чаще используют технику с гидростатикой. Вот, например, видео, где на дорожных работах бок о бок трудятся Komatsu D65EX-12 с гидромеханической коробкой передач и машина примерно этого же класса от другого производителя (на гидростатике).

Бульдозер Komatsu D65EX-12 на дорожных работах рядом с машиной на гидростатике

Давайте обозначим критерии, по которым можно сравнить эффективность эксплуатации на схожих задачах машин с разными типами трансмиссии:

  • производительность
  • экономичность в работе
  • надежность
  • ремонтопригодность
  • затраты на эксплуатацию

Производительность бульдозеров

На вскрыше скальной породы гидромеханика однозначно полезнее гидростатики. На задачах, где не требуется максимальное тяговое усилие, у гидростата с замкнутым контуром значительно выше КПД за счет меньших потерь энергии. Эксплуатанты отмечают и большую управляемость: бульдозер может поворачивать во время перемещения грунта. Но это могут делать и бульдозеры на гидромеханике с гидросистемой поворота HSS, например D65EX-16.

Экономичность

При цикличных перемещениях с коротким плечом гидростатика выигрывает.

При постоянном движении с определенной скоростью гидромеханика оказывается экономичнее.

Ресурс трансмиссии и общая надежность техники

Гидростатическая трансмиссия — более сложная система. Если просто сравнить ресурс насоса и гидротрансформатора,- последний оказывается более надежным. Но все зависит от производителя, оператора и механиков. Качественный гидронасос при грамотной эксплуатации и профессиональном сервисе полностью отрабатывает свой ресурс, как и гидротрансформатор.

Но в сложных условиях бульдозер на гидромеханике будет трудиться без помех, тогда как к гидростату придется относиться с большой осторожностью или вовсе нельзя будет работать на технике с ним.

Например, если речь о работе на горячем шлаке, то ходовой мотор может просто загореться вместе со всеми горючими жидкостями, которые он прокачивает.

А в эксплуатации при низких температурах гидромеханике нужно меньше времени для подготовки к работе, нет нужды трепетно соблюдать ритуал прогрева, ей не так страшны частые остановки двигателя на час-другой.

Гидросистема ходовой части очень требовательна к использованию низкотемпературных гидравлических жидкостей, и ее обязательно нужно прогреть перед движением. Если в сильный мороз это не сделать, а завести и сразу тронуть бульдозер с места, можно повредить сальники на валах насоса и мотора, гидрошланги и т. д.

Ремонтопригодность

Компоненты гидростата легче и быстрее заменяются хотя бы потому, что они меньшего размера, чем компоненты на механике. Если запчасти под рукой, склад близко или вообще на участке (на крупных проектах с сервисной поддержкой от дистрибьютора), то в среднем ремонт занимает одну смену. Из этого времени сама работа с гидронасосом или гидромотором — это 2–3 часа. С гидромеханикой процесс замены компонентов ощутимо тяжелее и дольше.

Затраты на эксплуатацию (включая ТОиР)

Гидротрансформатор и его КПП до ремонта служат дольше, чем гидромотор с гидронасосом. Хотя бы потому, что они менее требовательны к правильной эксплуатации, более неприхотливы. Ресурс компонентов у гидростата меньше, покупать и менять компоненты нужно несколько чаще. Так что, если сравнивать расходы за один и тот же промежуток времени, получается паритет между двумя системами.

Гидростатика vs гидромеханика: финальный подсчет

Сравнение трансмиссий Гидромеханика Гидростатика
Производительность Максимальное тяговое усилие, низкий КПД Большая управляемость, маневренность, высокий КПД
Экономичность Большее потребление топлива Меньшее потребление топлива
Ресурс и общая надежность Более простая система, ресурс больше, неприхотлива в эксплуатации Более сложная система, ресурс меньше, требовательна к эксплуатации и сервису, особенно при низких температурах
Ремонтопригодность Компоненты тяжелее, их физически сложнее и дольше заменять, ремонт и замена длятся дольше Компоненты легче, их быстрее заменять, ремонт и замена длятся меньше
Затраты на эксплуатацию Служит дольше Служит меньше

Резюмируем: в стоимости обслуживания и ремонта, в сложности этих процедур у гидростатики и гидромеханики примерный паритет, достоинства и недостатки обоих систем уравновешивают друг друга, если сравнивать эксплуатацию за более-менее продолжительный срок. Ключевая разница — в применении бульдозеров с этими системами: экономичность и высокий КПД против максимальной тяги и неприхотливости. Соответственно, выбор техники с тем или иным типом передачи крутящего момента двигателя зависит от задач владельца. Для тяжелых условий, для максимальных показателей по производительности и экономичности — однозначно, гидромеханика. Для более щадящей работы — гидростатика.

Это касается и «пограничного» случая с D65: если у компании задачи связаны в основном с городским и дорожным строительством, есть смысл выбрать более легкие модели D39 или D37 с гидростатической трансмиссией. Тем, кто работает на месторождениях, на Севере, прокладывает нефте- и газопроводы, для работы в карьерах может быть удобнее более неприхотливый и мощный D65. Также D65 с его гидромеханикой предпочтительнее для проектов, где много работы для рыхлителя.

Тем, кто совмещает разные типы работ, также есть смысл использовать технику на гидромеханике: она может оказаться менее экономичной на легких задачах, но вытянет там, где не справится бульдозер на гидростате.

Яков Кузнецов/ автор статьи

Приветствую! Я являюсь руководителем данного проекта и занимаюсь его наполнением. Здесь я стараюсь собирать и публиковать максимально полный и интересный контент на темы связанные ремонтом автомобилей и подбором для них запасных частей. Уверен вы найдете для себя немало полезной информации. С уважением, Яков Кузнецов.

Понравилась статья? Поделиться с друзьями:
NEVINKA-INFO.RU
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: