Частота вращения генератора постоянного тока параллельного возбуждения

Двигатель с параллельным возбуждением Электрические машины постоянного тока. Генератор с параллельным возбуждением. Ток отдаваемый генератором в сеть: Эдс.

Частота вращения генератора постоянного тока параллельного возбуждения

Двигатель с параллельным возбуждением

Электрические машины постоянного тока.

Генератор с параллельным возбуждением.

Ток отдаваемый генератором в сеть:

Эдс. генератора: Е= U+Iя ∙Rя.

Мощность отдаваемая сети: Р2 = U∙I =I 2 ∙R

Мощность приводного двигателя: Р1 = Р2/ η

Мощность потерь в обмотке якоря:

Мощность потерь в обмотке возбуждения:

Рв = U ∙Iв = I 2 в∙ Rв

Суммарные потери: ΣР = Р1 – Р2 .

Коэффициент полезного действия генератора:

η = Р2/Р1 = U∙I / (U∙I+ ΣР)

Двигатель с параллельным возбуждением.

Ток двигателя: I = Iя + Iв

Напряжение двигателя: U = E + Iя ∙Rя.

Мощность потребляемая от сети: Р1 = U∙I

Момент на валу двигателя:

Коэффициент полезного действия двигателя:

Пример 6.1.Генератор постоянного тока с параллельным возбуждением развивает номинальное напряжение Uн =220 В. Генератор нагружен на нагрузку Rн = 2,2 Ом. Сопротивление обмотки якоря Rя = 0,2 Ом, обмотки возбуждения Rв =220 Ом. КПД генератора η = 0,87. Определить следующие величины:

1.ток нагрузки; 2. ток якоря; 3. ток возбуждения; 4. эдс генератора;

5.полезную мощность; 6. потребляемую мощность; 7. суммарные потери в генераторе; 8. потери в обмотке якоря; 9. потери в обмотке возбуждения.

3.Ток якоря: Iя = I – Iв = 100 – 1= 99 А.

Е = U+ Iя ∙Rя = 220 + 99∙0,1 = 229,9 В.

Р2 = Uн∙I = 220∙100 = 22000 Вт = 22 кВт.

7.Суммарные потери в генераторе:

ΣР = Р1– Р2 = 25,87 – 22 = 3,87 кВт.

8.Потери в обмотке якоря:

Ря = Iя 2 ∙Rя = 99 2 ∙0,2 = 1960,2 Вт.

9.Потери в обмотке возбуждения:

Рв = Uн∙Iв = 220∙1 = 220 Вт.

Ответ: I = 100А; Iв = 1 А; Iя = 99 А; Е = 229,9 В; Р2 = 22 кВт;

Р1 = 25,87 кВт; ΣР = 3,87 кВт; Ря = 1960,2 Вт; Рв = 220 Вт.

Пример 6.2.Рис.8.2.Двигатель постоянного токапараллельного возбуждения работает от сети Uн = 220 В. Частота вращения якоря n2 = 1450 об/мин. Ток двигателя I = 500 А, противо–эдс якоря Е = 202 В, сопротивление обмотки возбуждения Rв = 44 Ом. Кпд двигателя

η = 0,88. Определить:1.ток возбуждения; 2.ток якоря; 3. сопротивление обмотки якоря; 4.потребляемую мощность; 5.полезную мощность на валу; 6 Суммарные потери в двигателе; 7.потери в обмотке якоря; 8.потери в обмотке якоря; 9.вращающий момент на валу.

1. Ток возбуждения:

Iя = I – Iв = 500 –5 = 495 А.

3. Сопротивление обмотки якоря:

4. Потребляемая мощность от сети:

Р1 = Uн∙I = 220 ∙500 = 110 000 Вт = 110 кВт.

5. Полезная мощность на валу:

Р2 = P1∙ η = 110 ∙ 0,87 = 95,7 кВт.

6. Суммарные потери в двигателе:

ΣР = Р1 – P2 = 110 – 95,7 = 14,3 кВт.

7. Потери в обмотке возбуждения:

Pв = Uн∙Iв = 220∙5 = 1100 Вт =1,1 кВт.

8. Потери в обмотке якоря:

Ря = Iя 2 ∙ Rя =495 2 ∙0,016 = 3920,4 Вт = 3,92 кВт.

9. Вращающий момент на валу:

Ответ: Iв = 5 А,Iя = 495 А, Rя = 0,016 Ом,Р1 = 110 кВт, Р2 = 95,7 кВт,

ΣР = 14,3 кВт, Pв = 1,1 кВт, Ря =3,92 кВт М = 630,7 Нм.

Параллельная работа генераторов

Случается так, что возникает необходимость подключения второго генератора на параллельную работу. К примеру в судовых электроэнергетических системах с целью увеличения живучести устанавливаются два или более генераторов. Суммарная мощность генераторов всегда несколько больше суммарной мощности всех потребителей. Установка нескольких генераторов повышает живучесть и экономичность установки, дает возможность проводить плановые осмотры и ремонты генераторов, выводя их поочередно из действия.

Судовые генераторы могут работать раздельно, без электрической связи между собой, или совместно, при параллельном соединении. Различают кратковременную и длительную параллельную работу генераторов. Кратковременная параллельная работа предназначена для плавного перевода нагрузки с одного генератора на другой с последующим отключением первого генератора или раздельной их работы. Совместная параллельная работа генераторов имеет ряд преимуществ:

1) перевод нагрузки с одного генератора на другой осуществляется плавно, без перерыва питания;

2) обеспечивается бесперебойность питания потребителей при выходе из строя одного из генераторов;

3) обеспечивается более высокое качество электроэнергии (меньше колебания напряжения);

4) возможность поочередного проведения технических осмотров и ремонтов генераторов.

К недостаткам параллельной работы генераторов следует отнести:

1) усложнение схемы включения и управления генераторами;

2) значительное увеличение тока при коротких замыканиях в электроэнергетической системе.

Рассмотрим параллельную работу генераторов постоянного тока параллельного и смешанного возбуждения, т.к. генераторы последовательного возбуждения в таком режиме обычно не применяются, а в параллельной работе генераторов параллельного и независимого возбуждения практически различий нет.

Рис.1 — Схема параллельной работы генераторов параллельного возбуждения

Включение на параллельную работу генераторов параллельного возбуждения.

Принципиальная схема параллельной работы генераторов изображена на рис.1. Допустим, что первый генератор Г1 включен на шины и работает с некоторой нагрузкой, создавая на шинах напряжения U. Генератор Г2, работающий на холостом ходу, требуется включить в работу так, чтобы не изменился режим первого генератора Г1, а ток генератора Г2 при включении равнялся нулю.

Для замкнутого контура, образованного генераторами и участком шин между ними, составим уравнение по второму закону Кирхгофа

Отсюда следует, что ЭДС генераторов должны быть направлены встречно относительно друг друга. Следовательно, условия включения генераторов параллельного возбуждения на параллельную работу можно сформулировать так:

1. Полярность зажимов работающего и подключаемого генератора должна быть одинаковой.

2. ЭДС подключаемого генератора должна быть равна напряжению сети, к которой он подключается.

При выполнении этих условий ток генератора Г2 будет равен нулю, а режим генератора Г1 не изменится, так как

Если включить генератор Г2 с неправильной полярностью, то в замкнутой цепи, образованной якорями обоих генераторов и шинами, их ЭДС будут складываться и так как сопротивление этой цепи очень мало, то возникает очень большой ток, что может привести к аварии генераторов.

Перевод и распределение нагрузки. После подключения генератора Г2 к сети, можно принимать на него нагрузку. Для двух работающих параллельно генераторов уравнения равновесия напряжений цепи якоря можно представить в виде

откуда получаются соотношения для токов нагрузки

Из системы уравнений видно, что для принятия нагрузки на генераторы нужно увеличивать ЭДС, которые можно изменять либо изменением числа оборотов генератора, либо изменением тока возбуждения. Обычно частота вращения генераторов поддерживается постоянной с помощью автоматического регулятора скорости (АРС) и на практике ЭДС генераторов регулируют изменением тока возбуждения.

Для принятия нагрузки на генератор Г2 нужно увеличить ток Iв2 путем уменьшения сопротивления rв2 в цепи возбуждения. ЭДС Еа2 становится больше напряжения U, в результате чего в якоре генератора Г2 возникает ток I2. Если ток нагрузки не изменяется, то с появлением тока I2 ток I1 уменьшается. Если Еа1 при этом не изменять, то Еа1-I1ra1 становится больше и напряжение на шинах начинает расти. Поэтому для поддержания U=const одновременно с увеличением Еа2 нужно уменьшать Еа1 путем уменьшения тока возбуждения Iв1 в цепи возбуждения генератора Г1. Таким образом можно перевести часть или всю нагрузку с генератора Г1 на генератор Г2. Следует отметить, что при переводе нагрузки изменяются токи генераторов, а следовательно, изменяются и их мощности. При этом нарушается баланс мощностей генераторов и их первичных двигателей, в результате чего изменяются частоты вращения генераторов. Для поддержания числа оборотов постоянными включаются в работу АРС, которые изменяют подачу топлива, пара и т.д. в первичный двигатель и восста­навливают прежнюю частоту вращения.

Рис. 2 — Внешние характеристики генераторов

Как правило, в качестве генераторов для параллельной работа выбираются машины равной мощности, внешние характеристики которых совпадают. Тогда можно нагружать генераторы равномерно при одинаковом токе возбуждения. Если внешние характеристики не совпадают, то генераторы при параллельной работе нагружаются разными токами. На рис.2 показаны внешние характеристики двух генераторов, имеющие разный наклон. Допустим, что оба генератора включены параллельно и работают на холостом ходу с напряжением U. При включении на них номинальной нагрузки равной 2Iн на шинах устанавливается номинальное напряжение Uн.

Этому напряжению по внешним характеристикам соответствуют токи нагрузки генераторов I1и I2, причем I1+I2=2Iн. Как видим, генератор, имеющий более «мягкую» характеристику (1), оказывается недогруженным, а с более «жесткой» характеристикой (2) перегружен. В этом случае для равномерной нагрузки обоих генераторов необходимо увеличивать ток возбуждения первого генератора и уменьшать его у второго генератора до уравнивания токов I1 и I2.

Если генераторы имеют различные мощности и предназначены для параллельной работы, то для пропорционального распределения нагрузки соответственно их мощностям без регулирования тока возбуждения, необходимо, чтобы совпадали их относительные характеристики . В этом случае нагрузка будет распределяться пропорционально номинальным мощностям генераторов.

Особенности параллельной работы генераторов смешанного возбуждения. Принципиальная схема включения генераторов смешанного возбуждения при параллельной работе представлена на рис. 3.

Рис. 3 — Схема параллельной работы генераторов смешанного возбуждения

Ее отличительная особенность состоит в том, что точки (I) и (2), в которых последовательные обмотки возбуждения подключены к одноименным зажимам якоря, соединены между собой уравнительным проводом.

Читайте также  Трассопоисковый комплект rd8100pdlg с генератором тх 10

Уравнительный провод позволяет обеспечить устойчивую параллельную работу генераторов. Чтобы уяснить необходимость уравнительного провода, рассмотрим параллельную работу генераторов смешанного возбуждения без уравнительного провода. Допустим, что работают два генератора одинаковой мощности, с одинаковой частотой вращения, одинаковым внутренним сопротивлением rа1= ra2, нагрузки, ЭДС и магнитные потоки их также равны.

Если по какой-либо причине скорость одного, например, первого генератора, возрастает, то это вызовет увеличение его ЭДС Ea1, а следовательно и увеличение тока нагрузки на этот генератор. Благодаря наличию последовательной обмотки, рост нагрузки влечет за собой увеличение результирующего магнитного потока этого генератора, что приводит к еще большему возрастанию ЭДС, а соответственно и тока и т.д. В результате нагрузка данного генератора будет возрастать, а у второго генератора уменьшаться, вплоть до его перехода в двигательный режим, что опасно для обоих генераторов.

В дальнейшем чрезмерное увеличение нагрузки на первом генераторе вызывает снижение его частоты вращения, а следовательно и ЭДС. Нагрузка начинает переходить на второй генератор, т.е. его обороты будут стремиться к увеличению. Таким образом возникает колебательный процесс перехода нагрузки с одного генератора на другой и параллельная работа получается неустойчивой.

При наличии уравнительного провода 1-2 (рис. 3), последовательные обмотки оказываются включенными параллельно. Следовательно, их токи всегда находятся в одном и том же отношении, определяемом сопротивлениями этих обмоток.

Если теперь почему-либо ЭДС Ea1 генератора Г1 станет больше ЭДС Ea2 генератора Г2, то в цепи между якорями возникает уравнительный ток, величина которого определяется выражением

Таким образом, при увеличении ЭДС, а следовательно и тока в последовательной обмотке одного генератора в том же отношении увеличится ток и в последовательной обмотке другого генератора. В соответствии с этим одновременно увеличатся ЭДС и нагрузочные токи обоих генераторов и колебательный процесс происходить не будет. Это равенство токов в последовательных обмотках будет сохраняться при любой нагрузке. Если параллельно работают генераторы разной мощности, то сопротивления их последовательных обмотках будут не равны, поэтому токи в этих обмотках будут распределяться обратно пропорционально их сопротивлениям. Однако в любом случае изменение тока в одном генераторе приведет к изменению тока в другом и колебательный процесс происходить не будет. В этих условиях параллельная работа генераторов смешанного возбуждения становится вполне устойчивой.

Прием и распределение нагрузки в генераторах смешанного возбуждения производится как в генераторах параллельного возбуждения путем изменения тока в параллельных обмотках возбуждения.

Генераторы параллельного возбуждения

Определение. Генераторами параллельного возбуждения называют генераторы, обмотка возбуждения которых питается от ЭДС обмотки якоря и подключена к выводам якоря машины параллельно цепи нагрузки.

Схема генератора параллельного возбуждения. Схема изображена на рис. 1.20. Ток якоря IЯ = I + IВ у щеток разветвляется на ток нагрузкиI и ток возбуждения IВ . Обычно ток возбуждения невелик и составляет (0,01-0,05) IЯ.НОМ . Последовательно с обмоткой возбуждения включается реостат RP для регулирования возбуждения. Реостат позволяет изменять ток возбуждения и, следовательно, напряжение генератора.

Характеристика холостого хода генератора с самовозбуждением всегда снимается при независимом возбуждении (обмотка возбуждения отключается от якоря и запитывается от постороннего источника) и поэтому аналогична характеристике холостого хода генератора с независимым возбуждением.

Самовозбуждение генератора. Так как обмотка возбуждения подключена к выводам якоря, то важное значение имеет процесс первоначального возникновения ЭДС, называемый процессом самовозбуждения.

Рассмотрим процесс самовозбуждения при отключенной нагрузке генератора, т.е. при холостом ходе.

Магнитная цепь машины имеет небольшой остаточный магнитный поток (примерно 2-3% номинального). При вращении якоря в поле остаточного потока в нем наводится небольшая ЭДС, вызывающая некоторый ток в обмотке возбуждения. При соответствующем направлении он увеличивает остаточный магнитный поток, ЭДС в якоре возрастает и процесс развивается лавинообразно до тех пор, пока не будет ограничен насыщением магнитной цепи.

Однако процесс самовозбуждения может развиваться только при определенных условиях, называемых условиями самовозбуждения. Выясним эти условия. Уравнение второго закона Кирхгофа для цепи возбуждения имеет вид: Е + еL= (Rв + Rя)iв, где еL = – d (Liв) /dt – ЭДС самоиндукции цепи возбуждения, возникающая при нарастании тока возбуждения;

L – суммарная индуктивность обмоток возбуждения и якоря; Rв — сумма сопротивлений обмотки возбуждения и регулировочного реостата.

Так как Rя « Rв, то уравнение принимает вид:

Eя=Rв iв +

Покажем на графике характеристику холостого хода Е = f (Iв) и характеристику цепи возбуждения – прямую Uв = Rв Iв

(рис. 1.21). Отрезок аб, равный Е – Rв Iв = d (Liв) /dt, пропорционален ЭДС самоиндукции цепи возбуждения. Из графика следует, что в точке в пересечения характеристик d (Liв) /dt = 0 рост тока возбуждения прекращается Uв = E и процесс самовозбуждения заканчивается. Положение точки в, называемой рабочейточкой, зависит от сопротивления цепи возбуждения Rв » tgα. Чем оно больше, тем прямая Uв = f (Iв) идет круче и рабочая точка перемещается влево. При некотором сопротивлении цепи возбуждения Rв, кр = tg αкр, называемом критическим, напряжение на выводах генератора близко к остаточной ЭДС Ео и генератор не возбуждается.

Из сказанного вытекают условия, при которых генератор должен возбуждаться:

Ø наличие остаточной намагниченности;

Ø совпадение по направлению остаточного магнитного поля и поля, создаваемого обмоткой возбуждения (несовпадение полей может быть при неправильном подключении выводов обмотки возбуждения или при несоответствующем направлении вращения якоря);

Ø сопротивление цепи возбуждения должно быть меньше критического;

Ø скорость вращения якоря должна быть выше критической скорости.

Внешняя характеристика. Внешняя характеристика генератора параллельного возбуждения U = f (I) при Rв = const и n = nном = const (рис. 1.18, кривые 2 и 2а) отличается от внешней характеристики генератора независимого возбуждения более резким снижением напряжения при увеличении нагрузки. Это объясняется следующим образом: уменьшение напряжения по тем же причинам, что и у генератора независимого возбуждения, приводит к уменьшению тока возбуждения, дополнительному уменьшению ЭДС генератора. При номинальной нагрузке снижение напряжения относительно напряжения холостого хода составляет 10-18%.

Регулировочная характеристика. Регулировочная характеристика генератора Iв = f (I) при U = Uном = const и n = nном = const аналогична регулировочной характеристике генератора независимого возбуждения (рис. 1.19, кривая 2), но идет несколько круче, что объясняется более значительным уменьшением напряжения генератора.

Частота вращения генератора постоянного тока параллельного возбуждения

ПАРАЛЛЕЛЬНАЯ РАБОТА ГЕНЕРАТОРОВ ПОСТОЯННОГО ТОКА

Под параллельной работой понимается работа нескольких генераторов на общую нагрузку (рис. 20). Необходимость в параллельной работе возникает при переменном характере нагрузки, когда она меняется в течение суток или времен года, а также для повышения надежности элек­троснабжения потребителей.

Если выбрать генератор исходя из максимально возможной нагрузки, то в часы снижения нагрузки генератор будет работать недогруженным. КПД генератора при небольших нагрузках гораздо ниже оптимального, поэтому работа генератора при нагрузках, значительно меньших номинальной, неэкономична.

В этом случае целесообразно установить несколько генераторов и в зависимости от нагрузки включить то или иное их количество на параллельную работу. При этом можно обеспечить работу каждого генератора с нагрузкой, близкой к номинальной, с высоким КПД.

Установка одного генератора имеет еще и тот недостаток, что при выходе его из строя полностью прекращается питание нагрузки. Этот недостаток отсутствует при параллельном включении нескольких генераторов. Иногда к параллельной работе генераторов прибегают и в том случае, когда мощность нагрузки превышает предельную мощность генераторов.

При изучении параллельной работы генераторов рассмотрим: 1) условия включения генератора на параллельную работу; 2) перевод нагрузки с одного генератора на другой; 3) распределение нагрузки между работающими генераторами. Исследуем эти вопросы на примере параллельной работы двух генераторов независимого возбуждения.

Включение генератора на параллельную работу. Предположим, что первый генератор подключен к шинам и нагружен током I1. Напряжение на шинах равно U. Включение на параллельную работу второго генератора должно быть произведено так, чтобы не нарушался режим работы сети, т.е. чтобы при включении генератора не возникали в ней большие толчки тока и напряжения. Для осуществления этого необходимо выполнить два условия:

1) ЭДС Е2 подключаемого генератора должна быть равна напряжению сети U. При этом согласно (4) ток в якоре генератора после его включения в сеть будет равен

I2 = (E2U)/Ra2 = 0.

Достигнуть равенства E2 =U можно, изменив ток возбуждения Iв2 у подключаемого генератора. Контроль этого условия производится поочередным измерением напряжения в сети и на выводах генератора;

2) полярность подключаемого генератора должна соответствовать полярности сети. Это означает, что к выводу сети, имеющему, например, полярность « + », должен быть подключен вывод генератора той же полярности. Аналогично должны подключаться выводы с полярностью «-». При невыполнении этого условия в контуре, образованном якорями генераторов, их ЭДС будут суммироваться и возникнет ток

равный току короткого замыкания на выводах машины. Напряжение на шинах при этом U=0. Ток Iк может вызвать повреждение генераторов.

Читайте также  Щетки генератора ивеко евростар

Проверку соответствия полярности можно произвести двумя способами:

1) с помощью вольтметра магнитоэлектрической системы. Направление отклонения стрелки этого прибора зависит от полярности подведенного к нему напряжения. Если измерить вольтметром напряжение в сети, а затем на соответствующих выводах генератора, то отклонение стрелки прибора в одну и ту же сторону будет свидетельствовать, что полярности одинаковые;

2) подключением вольтметра к выводам одного ножа рубильника QS (рис. 21). Другой нож этого рубильника должен быть замкнут. При соответствии полярностей генератора и сети показание вельтметра равно нулю, а при несоответствии — 2U. При несоответствии полярностей следует поменять между собой выводы генератора или сети, подходящие к рубильнику.

Перевод нагрузки с одного генератора на другой. Если выполнены условия включения генератора на параллельную работу, то у подключенного генератора ток равен нулю. Теперь требуется часть нагрузки с первого генератора перевести на второй — подключенный. При этом необходимо сохранить напряжение на шинах неизменным (U = const). Токи нагрузки генераторов равны

Для того чтобы произвести перераспределение токов при U = const, необходимо изменить ЭДС Е1 и Е2 путем воздействия на цепи возбуждения генераторов. Для увеличения нагрузки генератора его ток возбуждения следует повышать, а для уменьшения нагрузки — снижать. В нашем случае для перевода части нагрузки с первого генератора на второй необходимо Iв1 снижать, а Iв2 повышать. Перераспределение нагрузки можно было бы осуществить путем воздействия только на ток возбуждения одного из генераторов, но в этом случае напряжение на шинах не будет оставаться постоянным. Если в процессе работы из-за спада нагрузки потребуется один из генераторов отключить, то для этого предварительно следует его ток нагрузки перераспределить между другими работающими генераторами и только тогда, когда он станет равным нулю, произвести отключение. При переводе нагрузки следует иметь в виду, что из-за малых сопротивлений цепи якоря генераторов небольшие изменения токов возбуждения (а следовательно, и ЭДС) могут вызвать значительные изменения токов нагрузки. Поэтому при переводе нагрузки токи воз­буждения следует регулировать плавно, контролируя изменение токов в цепях якорей.

Пример. Генератор мощностью 75 кВт включен на параллельную работу с сетью при Uном = 230 В. Номинальный ток генератора Iном = 326 А, Ra = 0,0025 Ом. Определить ток в цепи якоря генератора, если его ЭДС увеличить на 4 % по сравнению с Uном:

I = (EUном)/Ra = 230 (1,04-1)/0,0025 = 368 A,

т.е. ток будет равен 1,13 Iном.

Распределение нагрузки между параллельно работающими генераторами. Если в процессе работы нагрузка сети будет изменяться, то при отсутствии регулировки токов возбуждения параллельно работающих генераторов распределение нагрузки между ними будет происходить в общем случае непропорционально их номинальным мощностям. На распределение нагрузки между параллельно работающими генераторами существенное влияние оказывают их внешние характеристики. Предположим, что два генератора одинаковой мощности включены на параллельную работу при холостом ходе. Примем, что их внешние характеристики (кривые 1 и 2 на рис. 22), снятые отдельно для каждого из генераторов, неодинаковы.

Если подключить нагрузку, то напряжение упадет до некоторого значения U, общего для обоих генераторов, так как они включены параллельно. При этом напряжении токи генераторов, как видно из рис. 22, неодинаковы (I1 Сильное увеличение нагрузки первого генератора повлечет за собой уменьшение частоты вращения сочлененного с ним первичного двигателя, вследствие чего процесс пойдет в обратном направлении: первый генератор будет разгружаться, а второй, наоборот, нагружаться. Таким образом может возникнуть колебательный процесс переброски нагрузочного тока с одного генератора на другой.

Чтобы исключить появление колебательного процесса, в схему включения генераторов на параллельную работу добавляют уравнительный провод ab (рис. 24), которым объединяют точки соединения последовательных обмоток возбуждения с обмотками якоря.

При наличии уравнительного провода последовательные обмотки возбуждения генераторов оказываются включенными параллельно друг другу, поэтому при увеличении тока якоря одного из генераторов ток будет распределяться между последователь­ными обмотками обратно пропорционально их сопротивлениям. При этом увеличиваются ЭДС и ток как одного, так и другого генератора и колебательного процесса происходить не будет.

билеты_ЭМ / 11.Генератор постоянного тока с параллельным возбуждением принцип действия, условия самовозбуждения, характеристики

11.Генератор постоянного тока с параллельным возбуждением: принцип действия, условия самовозбуждения, характеристики.

Рис. 8.47. Принципиальная схема генератора с параллельным возбуждением (а) и зависимости изменения ЭДС и падения напряжения в цепи возбуждения iвΣRв при изменении тока возбуждения генератора (б)

Генератор с параллельным возбуждением. В этом генераторе (рис. 8.47, а) обмотка возбуждения подсоединена через регулировочный реостат параллельно нагрузке. Следовательно, в данном случае используется принцип самовозбуждения, при котором обмотка возбуждения получает питание непосредственно от обмотки якоря генератора. Самовозбуждение генератора возможно только при выполнении определенных условий. Чтобы установить их, рассмотрим процесс изменения тока в контуре «обмотка возбуждения — обмотка якоря» в режиме холостого хода. Для рассматриваемого контура получим уравнение

где е и iв — мгновенные значения ЭДС в обмотке якоря и тока возбуждения; ΣRв = Rв + Rр.в — суммарное сопротивление цепи возбуждения генератора (сопротивлением ΣRа можно пренебречь, так как оно значительно меньше ΣRв ); Lв — суммарная индуктивность обмоток возбуждения и якоря. Все члены, входящие в (8.59), можно изобразить графически (рис. 8.47,б). ЭДС е при некотором значении iв тока возбуждения можно определить по характеристике ОА холостого хода генератора, а падение напряжения iв ΣRв — по вольтамперной характеристике ОВ его цепи возбуждения. Характеристика ОВ представляет собой прямую, проходящую через начало координат под углом у к оси абсцисс; при этом tg γ = ΣRв . Из (8.59) имеем

Следовательно, если разность (eiвΣRв ) > 0, то производная diв /dt > 0, и происходит процесс увеличения тока возбуждения iв .

Установившийся режим в цепи обмотки возбуждения наблюдается при diв /dt = 0, т. е. в точке пересечения С характеристики холостого хода ОА с прямой ОВ. При этом машина работает с некоторым установившимся током возбуждения Iв0 и ЭДС Е = U .

Из уравнения (8.60) следует, что для самовозбуждения генератора необходимо выполнение определенных условий:

1) процесс самовозбуждения может начаться только в том случае, если в начальный момент (iв = 0) в обмотке якоря индуцируется некоторая начальная ЭДС. Такая ЭДС может быть создана потоком остаточного магнетизма, поэтому для начала процесса самовозбуждения необходимо, чтобы в генераторе имелся поток остаточного магнетизма, который при вращении якоря индуцирует в его обмотке ЭДС Еост . Обычно поток остаточного магнетизма имеется в машине из-за наличия гистерезиса в ее магнитной системе. Если такой поток отсутствует, то его создают, пропуская через обмотку возбуждения ток от постороннего источника;

2) при прохождении тока iв по обмотке возбуждения ее МДС Fв должна быть направлена согласно МДС остаточного магнетизма Focт . В этом случае под действием разности е — iв ΣRв происходит процесс нарастания тока iв , магнитного потока возбуждения Фв и ЭДС е. Если указанные МДС направлены встречно, то МДС обмотки возбуждения создает поток, направленный против потока остаточного магнетизма, машина размагничивается и процесс самовозбуждения не сможет начаться;

3) положительная разность е — iв ΣRв , необходимая для возрастания тока возбуждения iв от нуля до установившегося значения Iв0 , может возникать только в том случае, если в указанном диапазоне изменения тока iв прямая ОB располагается ниже характеристики холостого хода ОА. При увеличении сопротивления цепи возбуждения ΣRв возрастает угол наклона γ прямой ОB к оси тока Iв и при некотором критическом значении угла γкр (соответствующем критическому значению сопротивления ΣRв.кр ) прямая ОВ’ практически совпадает с прямолинейной частью характеристики холостого хода. В этом случае еiв ΣRв и процесс самовозбуждения становится невозможным. Следовательно, для самовозбуждения генератора необходимо, чтобы сопротивление цепи возбуждения было меньше критического значения.

Рис. 8.48. Внешние характеристики генераторов с независимым и парал-лельным возбуждением

нагрузки (падения напряже-ния в якоре и размагничи-вающего действия реакции якоря), существует еще третья причина — уменьше-ние тока возбуждения Iв = URв , который зависит от напряжения U, т. е. от тока Iн .

Генератор может быть нагружен только до некоторого максимального тока Iкр . При дальнейшем снижении сопротивления нагрузки Rн ток Iн = U/Rн начинает уменьшаться, так как напряжение U падает быстрее, чем уменьшается Rн . Работа на участке ab внешней характеристики неустойчива; в этом случае машина переходит в режим работы, соответствующий точке b, т. е. в режим короткого замыкания.

Особенно наглядно видно действие причин, вызывающих уменьшение напряжения генератора с ростом нагрузки, из рассмотрения рис. 8.49, на котором показано построение внешней характеристики по характеристике холостого хода и характеристическому треугольнику.

Построение производится в следующем порядке. Через точку D на оси ординат, соответствующую номинальному напряжению, проводят прямую, параллельную оси абсцисс. На этой прямой располагают вершину А характеристического треугольника, соответствующего номинальной нагрузке; катет АВ должен быть параллелен оси ординат, а вершина С должна лежать на характеристике холостого хода 1. Через начало координат и вершину А проводят прямую 2 до пересечения с характеристикой холостого хода; эта прямая является вольтамперной характеристикой сопротивления цепи обмотки возбуждения. По ординате точки пересечения Е характеристик 1 и 2 получаем напряжение генератора U = E при холостом ходе.

Читайте также  Что такое турбина в генераторе переменного тока

Ток возбуждения Iв.ном при номинальном режиме соответствует абсциссе точки А, а ЭДС генератора Eном при номинальной нагрузке — ординате точки В. Ее можно определить по характеристике холостого хода, если уменьшить ток возбуждения Iв.ном на величину отрезка ВС, учитывающего размагничивающее действие реакции якоря. При построении внешней характеристики 3 ее точки а и b, соответствующие холостому ходу и номинальной нагрузке, определяются напряжениями U и Uном . Промежуточные точки с, d. получают, проводя

Рис. 8.49. Графики построения внешней характеристики генератора с параллельным возбуждением с помощью характеристического треугольника

прямые А’С’, А»С», А'»С»‘. параллельные гипотенузе АС, до пересечения с вольт-амперной характеристикой 2 в точках А’, А», А»‘. а также с характеристикой холостого хода 1 в точках С’, С», С'»,. Ординаты точек А’ А» А'». соответствуют напряжениям при токах нагрузки Ia1, Ia2, Ia3. величины которых определяются из соотношения

Iaном : Ia1 : Ia2, Ia3 … = AC : A’C’ : A»C» : A'»C'» .

При переходе от режима номинальной нагрузки к режиму холостого хода напряжение генератора изменяется на 10 — 20%, т. е. больше, чем в генераторе с независимым возбуждением.

При установившемся коротком замыкании якоря ток Iк генератора с параллельным возбуждением сравнительно мал (см. рис. 8.48), так как в этом режиме напряжение и ток возбуждения равны нулю. Следовательно, ток к. з. создается только ЭДС от остаточного магнетизма и составляет (0,4 — 0,8) Iном . Регулировочная и нагрузочная характеристики генератора с параллельным возбуждением имеют такой же характер, как и у генератора с независимым возбуждением.

Большинство генераторов постоянного тока, выпускаемых отечественной промышленностью, имеют параллельное возбуждение. Для улучшения внешней характеристики они обычно имеют небольшую последовательную обмотку (один — три витка на полюс). При необходимости такие генераторы можно включать и по схеме с независимым возбуждением.

§5.3. Генераторы постоянного тока. Основные характеристики

Генераторы постоянного тока различных систем возбуждения можно объединить в две основные группы: генераторы с независимым возбуждением и генераторы с самовозбуждением, к которым относятся генераторы параллельного, последовательного и смешанного возбуждения.

Генератор независимого возбуждения.


Рис.5.11

Основные статистические характеристики генераторов анализируются при постоянной угловой скорости приводного двигателя.
Характеристика х.х. Eя= f(Iв)при Iя= 0 генератора независимого возбуждения (рис.5.11) изображена на рис.5.12, а.


Рис.5.12

Вид такой характеристики можно наиболее просто объяснить на основе формулы (5.6), в которой зависимость потока Фвот тока возбуждения Iв определяется петлей намагничивания магнитопровода машины. Характеристика х.х. снимается путем уменьшения от значения примерно 1,25 Iв.ном до (-1,25 Iв.ном) (нисходящая ветвь) и затем увеличения до прежнего значения ( восходящая ветвь ). При Iв=0 в магнитопроводе сохраняется поток остаточного намагничивания и в якоре наводится остаточная ЭДС , составляющая 1–4% от номинальной. За расчетную характеристику х.х. принимается средняя линия.
Внешняя характеристика строится на основании уравнения равновесия ЭДС и напряжений в цепи якоря, составленного по второму закону Кирхгофа в установившемся режиме:

Эта характеристика, построенная без учета реакции якоря, изображена на рис.5.12,б сплошной линией. Характеристика жесткая, так как ток и поток возбуждения не зависят от тока якоря, а падение напряжения IяRя на обмотке якоря в номинальном режиме составляет 5–15% от ЭДС. Отклонение внешней характеристики от линейного закона ( штрих-пунктирная линия ) может быть вызвано реакцией якоря. При изменении от Rн до 0 ток якоря непрерывно возрастает.
Регулировочная характеристика Iв = f(Iя)при Uя =const определяет тот закон, по которому нужно изменять ток возбуждения и соответственно ЭДС якоря, чтобы выходное напряжение сохранялось постоянным при любом токе якоря. Как следует из (5.11) и (5.6), для этого при увеличении тока Iя необходимо увеличивать ток Iв (рис.5.12,в).

Генератор параллельного возбуждения.
Отличительной особенностью генераторов с самовозбуждением является то, что для возбуждения машины не требуется внешний источник. Принцип самовозбуждения рассмотрим на примере генератора параллельного возбуждения (рис.5.13, а) в режиме х.х.


Рис.5.13

Самовозбуждение генератора начинается при выполнении двух условий:
а) в машине имеется поток остаточного намагничивания Фост;
б) полярность включения обмотки возбуждения и направления вращения якоря таковы, что возникающий ток возбуждения создает магнитный поток, направленный согласно с Фост.
В реальных машинах постоянного тока, хотя бы раз намагниченных, длительное время сохраняется остаточный поток. При вращении якоря поток Фост наводит ЭДС Eя ост в обмотке якоря, на обмотке возбуждения появляется напряжение х.х. Uя ост,и по обмотке возбуждения начинает протекать небольшой ток . Этот ток создает магнитный поток , направленный согласно с Фост и усиливающий Ея. Усиливается ток возбуждения, и процесс возбуждения продолжается по описанному выше циклу.
Внешняя характеристика генератора параллельного возбуждения
(рис.5.13, б) , где ток нагрузки Iн=Iя-Iв, отличается от характеристики генератора независимого возбуждения, так как уменьшение Uя при увеличении Iн приводит одновременно к уменьшению Iв и соответственно Ея. Характеристика становится менее жесткой. Кроме того, в режиме к.з. напряжение Uв=Uя =0 и ЭДС и ток якоря должны быть равны нулю. Однако в реальном генераторе при Uв = 0 поток Ф ≠ 0 и равен потоку Фост. Этот поток наводит ЭДС в якоре, и по нему протекает ток к.з. Iк.з., но значение этого тока к.з. невелико. Таким образом, при изменении Rн от ∞ до 0 токи Iн и Iz соответственно возрастают только до некоторого значения, называемого критическим Iкр., и затем убывают.
Регулировочная характеристика и характеристика х.х. генератора параллельного возбуждения имеют такой же вид, как и у генератора независимого возбуждения.

Динамические характеристики.
Динамические характеристики рассмотрим на примере анализа переходных процессов в генераторе независимого возбуждения при подаче на обмотку возбуждения напряжения постоянного тока Uв. При анализе примем допущения о линейности кривой намагничивания машины и отсутствии реакции якоря. Переходный процесс в цепи возбуждения описывается дифференциальным уравнением, составленным по второму закону Кирхгофа:

Uв= iвRв + Lв· diв/dt, (5.12)
где Rв и Lв — активное сопротивление и индуктивность обмотки возбуждения.

ЭДС якоря определяется в соответствии с ( 5.6 )

eя=kkфωiв , (5.13)
где kф — коэффициент пропорциональности между потоком и током возбуждения: Ф= kфiв.

Определяем из (5.13) ток и подставляем полученное выражение в (5.12). В результате получаем дифференциальное уравнение, определяющее переходный процесс в генераторе в режиме х.х.:

Переходная функция, определяющая закон изменения во времени выходной величины при ступенчатом изменении входной величины, находится как решение дифференциального уравнения ( 5.14 ) при нулевых начальных условиях ( t = 0, eя= 0).
Это экспонента

eя = Eя (1-e [t/τв] ), (5.15)
где τв – электромагнитная постоянная времени обмотки возбуждения;
Eя = ku0 Uв— установившееся значение ЭДС якоря.

Коэффициент передачи (усиления) генератора по напряжению в режиме х.х. ku0 представляет собой отношение приращений ЭДС якоря и напряжения возбуждения в установившемся режиме:

Уравнение (5.14) в операторной форме с учетом (5.16) имеет вид

На основании (5.17) записываем передаточную функцию генератора:

Из выражения (5.18) видно, что генератор независимого возбуждения в режиме х.х. является апериодическим звеном.
Переходные процессы в режиме нагрузки естественно отличаются от процессов при х.х. При этом характер отличий существенно зависит от характера нагрузки. В качестве примера рассмотрим простейший случай: генератор работает на активную нагрузку Rн. Уравнения, составленные по второму закону Кирхгофа для цепи якоря и нагрузки, при записи в операторной форме имеют вид

где iя(p) и uн(p)— операторные изображения тока якоря и напряжения на нагрузке; Rя и Lя — индуктивность и активное сопротивление обмотки якоря. Подставляя iя(p) из (5.20) в (5.19) и затем из (5.19) в (5.17), получим операторное уравнение

где τян = Lя /(Rя+Rн) – постоянная времени цепи якорь–нагрузка;
ku= ku0Rн /(Rя+Rн)– коэффициент передачи по напряжению при нагрузке.
На основании (5.21) получаем передаточную функцию

т.е. при активной нагрузке генератор можно представить двумя последовательно включенными апериодическими звеньями.

Яков Кузнецов/ автор статьи

Приветствую! Я являюсь руководителем данного проекта и занимаюсь его наполнением. Здесь я стараюсь собирать и публиковать максимально полный и интересный контент на темы связанные ремонтом автомобилей и подбором для них запасных частей. Уверен вы найдете для себя немало полезной информации. С уважением, Яков Кузнецов.

Понравилась статья? Поделиться с друзьями:
NEVINKA-INFO.RU
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: