Что такое статистический генератор - NEVINKA-INFO.RU

Что такое статистический генератор

2 Схемы Принципиальные электросхемы, подключение устройств и распиновка разъёмов Электростатический генератор своими руками Принцип работы генератора статического электричества

Что такое статистический генератор

2 Схемы

Принципиальные электросхемы, подключение устройств и распиновка разъёмов

Электростатический генератор своими руками

Принцип работы генератора статического электричества (ещё их называют электрофорные машины) заключается в том, что диски вращаются относительно друг друга в противоположные стороны и создают положительные и отрицательные заряды. При вращении дисков по мере накопления зарядов происходит разряд — молния между электродами.

Как это работает — теория

Вращение дисков с металлическими секторами приводит к переносу электрического заряда внутри машины, который хранится в конденсаторах до момента возникновения искры или заряда утечки.

Самые важные части в электрофорном агрегате – нейтрализаторы. Это две перемычки со щетками установленные крестом. Если хотя бы одну из четырех щеток отодвинуть от сегментов, машинка перестает работать. Хотя казалось бы диски вращаются, электризуются трением о воздух и значит электричество вырабатывается.

Нейтрализатор делает следующее: он перетаскивает заряд с одной половинки диска на другую и диск оказывается не просто заряжен, а заряжен избирательно — не по всей плоскости.

Другими словами, диск собирает заряды из воздуха, а нейтрализаторы их перераспределяют. Заряд снимается щеткой, движется по проводнику к противоположной щетке и в тот момент когда напротив сегмента появится сегмент второго диска — перескакивает на него.

Далее этот сегмент подходит к щетке второго нейтрализатора и процесс повторяется, но уже на другом диске. Таким образом происходит кругооборот зарядов между дисками в процессе которого воздух между сегментами ионизируется и разделяется. В результате накачки увеличивается напряжение, кроме того в машинке работает эффект раздвигания обкладок конденсатора, что также способствует увеличению напряжения.

Миниатюрное устройство по созданию таких безвредных молний (но не для микроэлектроники) легко сделать своими руками.

Данный электростатический генератор способен генерировать более 20000 Вольт, но малый ток делает его безопасным для использования без специальных мер предосторожности.

Характеристики устройства

  • Высота: около 140 мм
  • Ширина: приблизительно 120 мм
  • Питание: 3 В 0,3 А
  • Статический заряд: 20 кВ
  • Диаметр диска: 120 мм

Руками тут ничего крутить не нужно (как это было в прототипе позапрошлого века) — всё делают 2 электромотора. достаточно нажать на кнопку включения и подождать некоторое время до накопления заряда на электродах.

Материалы и компоненты

Необходимо будет для монтажа: паяльник и припой, отвертка и плоскогубцы. Два мотора от старых CD плееров и всякая крепёжная мелочёвка.

Генератор работает от двух батареек АА и способен создавать разряды длинной 2 см. Самое сложное тут — 120 мм диски. Их нужно изготовить по такому принципу: взять два лазерных диска от CD или DVD. Сегменты приклеить из алюминиевого скотча (25 секторов). Приклеить диски к моторчикам. Сделать щетки из алюминиевых полосок.

Если всё сделать и настроить как надо, то искра достигнет размеров около 20 мм, а разряд будет пробивать каждые 0,5 сек.

НАЖМИТЕ ТУТ И ОТКРОЙТЕ КОММЕНТАРИИ

Что бы затем, полученной статикой запустить генератор — хотя бы на 10 ватт, этой мощности статики не хватит. А что бы иметь сотню ватт генератор на выходе статики, в качестве нагрузки, диаметр статики дисков должен быть не один метр. К тому же — для согласования кило ваттных генераторов с статикой дисков, у генераторов должна быть исключительно — не стандартная технология. Я бы пошёл по пути — ИСПОЛЬЗОВАНИЯ готовых стандартных в промышленности генераторов из АД.

Другое дело; Взяв Предпочтительное, с целю использовать в технологии; При этом ещё и пытаться осознать написанное под схемой качера: http://uploads.ru/MmRfO.jpg и пробовать сие адаптировать под тут показанное, под ИНДУКЦИОНКУ, Моторы, роторы, турбины, ветряки, ВД, БТГ, самоходы колёс, маятников, авто Тесла, тогда окажется понятным и то, что 400 лет назад был САМОХОД тележек Леонардо Да Винчи. … — Подробнее об использовании СЕ можно продолжить и голосом в скайп : FILL1133

И крепёжные пластины и диски имеют значок молнии — высокого напряжения, и разметку для проводников именно электрофорной машины, а значит они изготовлены специально для этого промышленным способом. Итого: купили электрофорную машину, разобрали, собрали, и гордо рассказали, как легко собрать электрофорую машину из старых CD. Хоть раз попробуйте не пиздеть, а реально сделать что-то из подручных материалов.

Электростатические генераторы — устройство, принцип действия и применение

Электрический заряд — явление, когда два разноименных заряда одинаковой величины взаимно уничтожаются. Если два тела, в значительной мере заряженные противоположным электрическим зарядом, находятся на близком расстоянии друг от друга, то между ними проскакивает искра и слышен короткий треск.

Сила действия электрически заряженного тела на другое, заряд которого принимается за единицу, называется потенциалом. Разница потенциалов — напряжение.

Первые способы получения электрических зарядов и электростатических полей заключались в трении разнородных материалов (меха, шерсти, шелка, кожи и других материалов о стекло, смолы, каучук и др.). Напряжения и заряды при этом были крайне малы. Наведением и накоплением зарядов путем механического переноса удалось несколько повысить получаемые при этом напряжения.

В дальнейшем для получения высоких напряжений были созданы непрерывно действующие машины с вращающимися дисками, основанные на принципе электростатического наведения (индуцировании). Однако эти машины не давали возможности получить большие мощности и нашли применение главным образом как приборы в физических кабинетах учебных заведений.

Электризация тел и электростатическая индукция

Сообщение телу электрических зарядов называется электризацией. Описанный в статье Электризация тел и взаимодействие зарядов процесс образования положительного и отрицательного ионов дает представление о процессе электризации тел: он заключается в переносе электронов от одного тела к другому.

Таким образом, электрическй заряд тела определяется избытком или недостатком в теле электронов. Наэлектризовать тело можно разными способами, из них техническими являются трение, контактирование, наведение, перенос зарядов.

Обратный процесс — восстановление нейтрального состояния тела (нейтрализация) — заключается в сообщении ему недостающего числа электронов или удаление из него избыточного числа их.

При электризации трением, если ни одному из соприкасающихся при этом тел не сообщается извне добавочных зарядов, оба тела заряжаются одинаковым количеством электричества разных знаков. При соединении тел их заряды полностью нейтрализуются.

Таким образом, заряды не создаются и не уничтожаются, а только передаются от одного тела к другому. Это убеждает нас в существовании закона сохранения электрических зарядов, подобно закону сохранения энергии.

Статическое электричество — электрический заряд в состоянии покоя. Оно возникает в результате трения двух непроводников или непроводника и металла (например, приводные ремни электромоторов), но необязательно твердых тел.

Статическое электричество может возникнуть также в результате трения некоторых жидкостей или газов. У людей с очень сухой кожей образуются электрические заряды. При движении (трении волокон о кожу) в ткани возникает значительный статический электрический заряд, ткань прилипает к телу и мешает движениям.

Статическое электричество становится опасным в легковоспламеняющейся и взрывоопасной среде, где одна искра может зажечь всю массу. В таком случае надо своевременно отвести статический заряд в землю или воздух с помощью какого-либо металлического приспособления, электропроводность которого можно поднять увлажнением или облучением.

Электростатическая индукция — возникновение электрических зарядов на проводнике под влиянием других зарядов, находящихся возле проводника (электризация тела на расстоянии).

Под действием внешнего заряда на ближайшем конце проводника индуктируется (возникает) заряд, знак которого противоположен знаку действующего извне заряда, а на дальнем конце проводника — заряд того же знака. При этом оба индуктируемых заряда равны по величине, т. е. индукция вызывает только разделение зарядов на проводнике, но не изменяет общего заряда проводника (т. к. сумма индуктируемых зарядов равна нулю).

Величина индуктируемых зарядов и их расположение определяются из условия, что электростатическое поле внутри проводника должно отсутствовать. Поэтому индуктируемые заряды располагаются так, что создаваемое ими электрическое поле как раз уничтожает внутри проводника то поле, которое создается индуктирующим зарядом.

Пример электростатической индукции: в незаряженном электроскопе оба электрических заряда, положительный и отрицательный, находятся в равных количествах и поэтому электроскоп не наэлектризован.

Если к нему приблизить стеклянную палочку с положительным зарядом, то свободные электроны одновременно притянутся к ней, положительный заряд электроскопа одновременно отталкивается.

Отрицательный заряд концентрируется ближе к стеклянной палочке, связан с ней, тогда как положительный отталкивается и поэтому располагается на обратной стороне электроскопа — он свободен.

Теперь электроскоп наэлектризован. Однако это состояние не является продолжительным. Стоит удалить стеклянную палочку, как разделение заряда на положительный и отрицательный нарушается, нейтральное состояние электроскопа восстанавливается, и его листочки вернутся в исходное положение.

Электроскоп — устройство, с помощью которого можно установить, каким зарядом наэлектризовано тело. Он состоит из металлического стержня с шариком или пластинкой на верхнем конце и двух свободно свисающих металлических листочков в нижней части. Действие электроскопа основано на принципе: одноименно заряженные тела отталкиваются (Смотрите — Принцип действия электроскопа).

Электростатическая индукция — одна из причин возникновения молнии в природе,— самого мощного и опасного проявления атмосферного статического электричества.

Читайте также  Щетки для генератора ваз 2190

Молния — это разряд атмосферного электричества между отдельными частями облака, отдельными облаками, облаком и Землей, от Земли к облаку. Другими словами, молнию можно определить как электрический ток короткой продолжительности, электрическую искру, выравнивающую электрические потенциалы.

Электростатический генератор Ван де Графа

Для научных и технических целей (например, в ядерной физике, радиобиологии, рентгенотерапии, для испытания материалов, дефектоскопии и пр.) необходимы устройства, позволяющие получать напряжения в несколько миллионов вольт.

Такими устройствами являются технически совершенные электростатические генераторы высокого постоянного напряжения. Наиболее известен из них генератор Ван де Граафа, который создал в 1829-м году американский физик Роберт Ван де Грааф (1901 — 1967).

Генератор Ван де Граафа (1933 год) напряжением на 7 мегавольт

Генератор представляет собой металлический полый шар, укрепленный на высокой пустотелой колонне из изолирующего материала. Размеры шара и высота колонны определяются пределом требуемого напряжения генератора (например, у генератора напряжением 5 МВ диаметр шара достигает 5 м). Внутри колонны движется бесконечная лента из изолирующего материала (шелка, резины), которая служит конвейером для передачи зарядов на сферу.

При движении вверх лента проходит в нижней части устройства мимо щетки соединенной с одним полюсом источника постоянного тока напряжением примерно 10000 В (в качестве этого источника может служить соответствующее выпрямительное устройство). В конструкции своих первых электростатических генераторов Ван де Грааф использовал устройство с электронной лампой.

Устройство электростатического генератора Ван де Граафа

С остриев этой щетки заряды стекают на ленту, переносящую их внутрь шара, а через вторую щетку они переходят на внешнюю поверхность шара. Для усиления процесса незаряженной части ленты, движущейся вниз, передаются заряды противоположного знака, с помощью щеток отводимые от заряжаемого шара.

Благодаря электростатической индукции на щетке появляется отрицательный заряд, который путем истечения передается опускающейся части ленты. Этот заряд затем передается щетке и заземленному нижнему шкиву, через которые отводится в землю.

При непрерывном движении ленты заряд шара увеличивается, пока не достигает заданного предельного значения, определяемого диаметром шара и расстоянием от него до другого электрода или до земли.

При непрерывном движении ленты заряд шара увеличивается, пока не достигает заданного предельного значения, определяемого диаметром шара и расстоянием от него до другого электрода или до земли.

Чтобы увеличить напряжение, устанавливают два таких устройства, в которых шары получают заряды противоположных знаков. Так, например, чтобы получить напряжение 10 МВ, применяют два генератора, заряжаемых относительно земли до +5 Мв и -5 МВ и устанавливаемых на таком расстоянии один от другого, чтобы была исключена возможность пробоя при напряжении, меньше заданного.

В настоящее время существует большое количество разнообразных моделей электростатических генераторов, в том числе повторяющих конструкции Ван де Граафа. Они используются как для физических экспериментов, так и в качестве атракциона для развлечений и демонстраций действия статического электричества.

Проект Заряд

Автономное энергоснабжение. Свободная и альтернативная энергия будущего. Бестопливные генераторы и «вечные двигатели» в каждый дом!

Статический автономный генератор электроэнергии

Вот мы и закончили проводимые нами совместные работы по проверке некоторых технологий, опытов и устройств, о которых мы неоднократно писали ранее и которые дались нам не с первой попытки и с огромными проблемами и трудностями. Ну да обо всем по порядку… Материала накоплено очень много, начинаем его обрабатывать и будем им с Вами делиться, как и обещали. Пока же занимаемся обработкой и подготовкой материала по собственным опытам, опубликуем несколько пришелших нам за это время писем и сообщений. Письмо первое, публикуем «как есть». Никаких дополнительных материалов, доказательств, подтверждений, видео или даже фото у нас пока нет. Надеемся, что приведенный ниже текст это не очередная попытка приобрести например недвижимость коста дорада и никакая не уловка и не мошенничество, а автор имеет действующий образец и в скором времени предоставит тому доказательства.

Разработан очень простой по конструкции и надежный генератор электроэнергии, не имеющий ни одной подвижной детали, и могущий работать полностью автономно, после запуска от небольшого аккумулятора, производя во много раз большую мощность, чем потребляет сам. Т.е. способен, ничего видимо не потребляя, производить электроэнергию для потребителя. Нужно понимать, что это не «вечный двигатель»,а устройство, способное поглощать энергию из окружающего нас пространства, преобразовывать ее в электричество, и отдавать потребителю. Ближайший аналог, всем известный тепловой насос. Который производит гораздо больше тепла, чем потребляет электроэнергии.

Но предлагаемый генератор гораздо проще, дешевле, надежнее теплового насоса, и производит сразу электроэнергию. По своей сущности данный генератор очень напоминает обычный силовой трансформатор. Это замкнутый магнитопровод с катушками и электронный блок управления. Магнитопровод может быть изготовлен как из обычной трансформаторной стали, так и иных ферромагнитных материалов. Разумеется, есть ноу-хау, которые тут не раскрываются, но благодаря которым возможна работа устройства по специальному алгоритму. Сложность изготовления данного устройства очень небольшая. Не требуется никакого особого оборудования, кроме стандартного, для резки, и шихтовки трансформаторной стали, а также склейки пакетов и их шлифовки. Что и делается при изготовлении почти всех трансформаторов. Блок управления тоже очень простой, и состоит всего из нескольких недорогих и доступных элементов. В мире разработано очень много конструкций статических генераторов электроэнергии, основанных на переключении магнитного потока в сердечнике. Например конструкции Наудина, Флинна… Но они имеют огромные недостатки. Магнитопровод их должен выполняться из особого дорогого и недолговечного материала, имеют дорогие редкоземельные магниты, работоспособность данных генераторов все еще под вопросом. Мне пока неизвестны случаи удачного повторения данных конструкций. Сами авторы смогли получить избыточную энергию только на нагрузке нелинейного характера, в узком диапазоне мощности. Предлагаемый генератор может работать в любом необходимом диапазоне мощностей. Принцип его работы не переключение магнитного потока из одной половины сердечника в другую(что вообще считается невозможным по всем известным законам),а 100% модуляция магнитного потока, без влияния цепей управления на силовую катушку. Т.е. магнитный поток во всем магнитопроводе то максимален, то отсутствует полностью. За счет изменения магнитного потока в силовой катушке и вырабатывается электрический ток. Как в любом электромагнитном генераторе. Нагрузка совершенно не влияет на цепь управления. Поэтому даже при коротком замыкании силовой катушки нет повышения потребляемого тока самим генератором. Кроме того, предлагаемый генератор, не требует вообще никаких магнитов. Пока генераторы данного типа не предназначены для генерации больших мощностей. Максимум несколько киловатт. Причина в материале сердечника. На железе трудно построить малогабаритный генератор большой мощности. А нужные материалы гораздо дефицитней, или их трудно обрабатывать. Поэтому нужно заказывать сразу на заводе-изготовителе(например ферриты). На начальном этапе работ это нерационально. Но при должном совершенствовании, данные генераторы вполне смогут отдавать мощность примерно 1квт/кг веса сердечника и даже больше. Стоимость такого генератора вероятно не превысит 200 евро/квт мощности. Данный генератор ничего не излучает, кроме слабого магнитного поля(как обычные трансформаторы),а также почти не издает шума(очень тихое гудение или писк). На высоких частотах вообще никакого звука не будет слышно. Использование данных генераторов возможно практически в любой сфере человеческой деятельности. Это и питание радиоаппаратуры, особенно в удаленных местах, космической технике, подводной и пр. Отопление и энергоснабжение коттеджей и домов, это источник питания для электромобилей(или на первых порах для подзарядки аккумуляторов с целью удлинения пробега),можно использовать на водном транспорте, и многое иное. Просто невозможно перечислить… Были проведены опыты по исследованию отдельных частей, составляющих данный генератор. Например испытаны катушки, дающие магнитное поле гораздо более сильное, чем известные, при одинаковых параметрах обмоток, и мощности, подаваемой в них. Но в отличии от обычных катушек, которые, при воздействии на них внешнего переменного магнитного поля вырабатывают электроэнергию, данные катушки ничего не вырабатывают! Т.е. они не реагировали на внешнее магнитное поле, даже достаточно сильное. Подобные катушки и являются основой данного генератора. Испытывались и катушки — антиподы: они наоборот, будучи помещены во внешнее переменное магнитное поле вырабатывали электроэнергию, но при подаче на их обмотку тока, не создавали магнитного поля. Данную разновидность катушек тоже можно использовать в данном генераторе.

Для осуществления проекта ищу надежного и порядочного партнера, могущего на первом этапе вложить в проект не менее 5000-10000 евро, имеющего нужную производственную базу и специалистов(или могущий обеспечить производство всех нужных работ). Опытный образец нетрудно изготовить за один месяц. Сколько потребует его доводка, и создание промышленных образцов не берусь сказать. Скорее всего, нужно идти поэтапно. Вначале малые генераторы на железе, а после на иных, более совершенных материалах. Окупаемость вполне возможно в течении 18-24 месяцев, а то и раньше. Слишком много факторов на это влияет. Например, можно довести образец до промышленного уровня и продать крупной корпорации. Есть такие желающие на примете. Можно создать АО и постепенно развиваться. Есть и другие варианты. Это можно будет решить совместно с партнером. Что касается прав на разработку, то предлагаю оставить за автором минимум 50,1% ,а партнеру 49,9%. Иначе может быть вариант, когда разработка ложится «под сукно». Это, разумеется, не касается прибыли, я согласен на 10% от продажной стоимости устройств. Но и это конкретно будет обсуждаться с конкретным человеком, который пожелает вложить средства.

Читайте также  Шкив до генератора форд коннект

Шурыгин Юрий Александрович.

От редакции: Во избежании каких либо недоразумений и мошенничества, мы пока не публикуем почты автора, т.к. пока не имеем никаких подтверждений изложенных выше предположений и фактов…

ЭЛЕКТРОСТАТИЧЕСКИЙ ГЕНЕРАТОР

устройство, в к-ром высокое постоянное напряжение (до нескольких MB) создаётся при помощи механич. переноса электроста-тич. зарядов. Цикл работы Э. г. можно представить диаграммой (рис. 1). На нек-рую ёмкость C 1 , состоящую из подвижного и неподвижного электродов, при первичном напряжении U 1 . подаётся заряд q 1 = C 1 U 1 . (точка А на диаграмме). При переметении подвижного электрода ёмкость уменьшается, и при нек-ром значении C 2 потенциал возрастёт до U 2 =U 1 C 1 /C 2 . (точка В). При этом потенциале U2 движущийся электрод соединяется с высоковольтной системой, и при дальнейшем уменьшении ёмкости до величины C3 (точка D )высоковольтной системе отдаётся заряд (q1q2) = (C2-C3) U2. Затем подвижный электрод отсоединяется от высоковольтной системы и начинает перемещаться к неподвижному заземлённому электроду (при постоянном заряде q2 = C3U2); ёмкость растёт и при нек-ром значении C4 потенциал электрода уменьшится до U1 (точка E). В этот момент электрод соединяют с источником первичного напряжения U1, и при дальнейшем увеличении ёмкости заряд растёт; когда ёмкость достигнет первонач. величины C1, на электрод переходит заряд (q1 — q2)=(C1 -C4) U1. В результате такого цикла кол-во электричества (q1-q2 )переходит от первичной системы с потенциалом U1 квысоковольтной системе с потенциалом U2. Сила тока I = (q1-q2)/Dt, где Dt — время цикла (при холостом ходе и в отсутствие утечек, q1q2 = 0, напряжение высоковольтной системы определяется значениями мин. ёмкости C3 и Um = C1U1/C3). Энергия, получаемая высоковольтной системой, складывается из электрич. энергии, сообщаемой первичной (низковольтной) системой W1=(q1-q2)U1. (возбуждение), и механич. работы W=(q1-q2)(U2— U1), затрачиваемой при перемещении заряда. Если C2 >U1 и W>>W1, т. е. практически вся энергия получается за счёт затрачиваемой механич. работы.

Рис. 1. Диаграмма цикла работы электростатического генератора.

Существует много типов Э. г., отличающихся способом транспортировки зарядов: Э. г. с жёсткими роторами в виде цилиндров или дисков; Э. г. с гибкими лентами (генератор Ван-де-Граафа); Э. г. с пылевым или жидкостным транспортёром и др. В работе Э. г. существ. значение имеют электроизолирующие свойства среды. Первые конструкции Э. г. (30-е гг.) работали в открытом воздухе при обычном атм. давлении. Для уменьшения габаритов большинство совр. Э. г. работает в сжатом газе.

У Э. г. с диэлектрич. транспортёром нанесение и съём зарядов производятся непрерывно системой коронирую-щих острий или щёток (рис. 2). Переносимый транспортёром ток равен i =sbu, где s -поверхностная плотность зарядов; b — ширина транспортёра; u его линейная скорость.

Если у высоковольтного электрода на транспортёр наносятся заряды обратной полярности, то переносимый ток увеличивается в 2 раза. Плотность зарядов s ограничивается возникновением поверхностных разрядов и обычно составляет (3-4)·10 -9 Кл/см 2 , при этом переносимый ток i не превышает 1 мА.

Рис. 2. Схема генератора Ван-де-Граафа с диэлектрическим транспортёром зарядов: 1 — транспортёр; 2 -устройства для нанесения и съёма зарядов; 3- валы транспортёра; 4 — высоковольтный электрод.

У транспортёра с проводящими зарядоносителями заряды наносятся на их поверхность в поле индуктора (рис. 3) и передаются высоковольтному электроду дискретными порциями. Переносимый транспортёром ток равен i = qN, где q — заряд токоносителей; N- число зарядоносителей, касающихся высоковольтного электрода за 1 с. Пульсации напряжения генератора, вызываемые дискретным переносом зарядов, весьма малы. Транспортёр из цилиндров (пеллетрон) передаёт ток ок. 0,1 мА, транспортёр из стержней (ладдетрон) — 0,5 мА (при скорости перемещения носителей ок. 10 м/с). Возможно параллельное включение неск. транспортёров.

Рис. 3. Устройство транспортёра с проводящими за рядоносителями: 1 — шкив транспортёра: 2 -зарядо носители; 3 — изоляторы; 4 — индуктор.

Транспортёры с проводящими зарядоносителями более надёжны по сравнению с диэлектрическими, могут работать в чистых электроотрицат. газах и не загрязняют изолирующий газ пылью. В качестве газовой изоляции используют азот, углекислоту или их смеси, для увеличения эяектрич. прочности изоляции применяют также эле-газ SF 6 , фреон или их смесь с азотом и углекислотой.

Напряжение на выходе Э. г. пропорционально сопротивлению его нагрузки и току транспортёра (рис. 4). Регулировать и стабилизировать его можно, изменяя ток в цепи нагрузки (напр., при помощи коронирующего электрода; рис. 5) или плотность наносимых на транспортёр зарядов. В первом случае постоянная времени регулятора составляет неск. мс, во втором — десятые доли секунды. Диапазон напряжений, развиваемых Э. г., в зависимости от типа составляет от неск. десятков кВ до 10 мВ и более. Э. г. используются как непосредственно в виде источников высокого напряжения, когда не требуются значит. мощности, так и в сочетании с ускорит. трубками в электростатич. ускорителях заряж. частиц (ускорители прямого действия, инжекторы, предускорители для циклич. и линейных ускорителей и т. д.).

Рис. 4. Зависимость напряжения электростатического генератора от сопротивления нагрузки и тока, перено симого его транспортёром.

Рис. 5. Схема регулирования электростатического ге нератора с коронирующим электродом: 1— корони рующие острия; 2 — изолятор; 3- регулирующий триод; 4- высоковольтный электрод генератора; 5 — сосуд вы сокого давления.

Лит.: Гохберг Б. M., Яньков Г. Б., Электростатические З’скорители заряженных частиц, M., 1960; Электростатические ускорители заряженных частиц. Сб., под ред. А. К. Вальтера, M., 1963.

Б. M. Гохберг, M. П. Свиньин.

Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .

Генератор Тестатика — свободная энергия из атмосферы

Дата публикации: 31 октября 2019

  • Оригинальная история
  • Электростатический генератор Тестатика своими руками

Машина свободной энергии Testatika продолжает вдохновлять людей на эксперименты. Это когда-нибудь работало? Такой вопрос задают себе многие исследователи и физики, получившие классическое образование. В целом, конструкция напоминает типичную машину Вимшерста, но во многих других отношениях есть детали, которые остаются загадкой.

Оригинальная история

Электростатический генератор Тестатика, основанный на Pidgeon 1989 года, включает в себя цепь индуктивности. Предполагается, что прибор «свободной энергии» использует энергетический потенциал атмосферы, что в некотором отношении напоминает агрегат Вимшерста. Он был построен инженером и продвигался швейцарской религиозной общиной.

Изобретатель Бауман утверждал, что концепции устройств пришли к нему через посетителей из космоса, когда он находился в швейцарской тюрьме (1970-е) по обвинению в жестоком обращении с детьми, связанным с религиозным культом, основателем коего он был. Testatika известна как швейцарский конвертер ML или Thesta-Distatica. Примерная схема генератора Тестатика:

Работающие устройства, как утверждается, существуют с 1960-х в религиозной группе под названием Methernitha (недалеко от Берна, Швейцария). Конкретные и точные принципы работы приборов неизвестны. Согласно различным источникам, Testatika использует конструктивные особенности электростатической машины Пиджона: обладает индуктивной цепью, емкостной цепью и термоэлектронным выпрямительным клапаном. До сих пор в устройствах не использовались полупроводники или транзисторы. Всё устройство можно разделить на две большие составные части: генератор и вспомогательные цепи.

1. Генератор

В базовой системе Pidgeon указаны модификации для повышения, стабилизации и фиксации полярностей заряда в определенных точках машины. Многодисковая конденсаторная машина Wommelsdorf также имеет аспекты, применимые к Testatika. Тестатика имеет 50 стальных решёток на диск. Это инновация для электростатических машин прошлого. Основываясь на умозрительных заключениях учёных-энтузиастов, исследовавших изобретение, можно выделить несколько отличительных черт детища господина Баумана:

  1. Принцип основан на предыдущих исследованиях и патентах на электрические цепи, в которых секторы гофрированы.
  2. Такие гофрированные электростатические секторы — более эффективные носители заряда по сравнению с плоскими аналогами.
  3. Диски переносят заряды с вращающихся элементов на коллекторы.
  4. Перфорированные клавишные панели заменяют стандартные щетки или заостренные направляющие предыдущих вариантов электростатических машин.
  5. Коллекторы не трогают диски, заряд проходит через параллельный воздушный зазор от металлических решеток к площадкам. Во время работы воздушный зазор подвергается воздействию миниатюрных вихревых токов, которые циркулируют вокруг перфорированной поверхности.

Вышеописанный процесс, в отличие от системы Pidgeon, имеет дополнительный косвенно связанный коллектор на передней верхней центральной части первого диска.

Диски вращаются со скоростью всего 60 об/мин (варьируется до 15 об/мин). Расположены очень близко друг к другу. Передний — прозрачный, сделан из плексигласа (положительно заряженный «облачный»), задний — темный диск (отрицательный «заземленный») соответствуют трибоэлектрическому ряду. Диски могут быть легированы парамагнитными частицами.

Нейтрализующие стержни размещены так, что заряды индуцируются из одной области, накапливаясь в других местах. Они выравнивают, стабилизируют частицы противоположных знаков, обеспечивают правильную распределенную полярность заряда в определенных зонах.

2. Вспомогательные цепи

Статическую энергию электростатический генератор Тестатика преобразует в электродвижущую силу с помощью своего колебательного контура, выпрямителей клапана. Колебания электрического тока контролируются соединением термоэлектронного выпрямительного клапана, конденсаторов цилиндров и естественным сопротивлением.

Читайте также  Чем отмыть обмотку генератора от масла

Колебания электромагнитной цепи модулируются через трансформаторы, выпрямляясь в импульсы постоянного тока. Герман Плазон, эстонский изобретатель, описывает такие методы преобразования статической энергии. Термоэлектронный выпрямительный клапан имеет анодную сетчатую пластину, спиральную медную решетку, светящийся (нагретый) катодный провод, проходящий горизонтально через его центр, и соответствующие провода.

Подковообразный магнит содержит четыре блока из плексигласовой среды, чередующиеся с медными, алюминиевыми пластинами. Два подковообразных магнита с ламинированными блоками из металлизированного плексигласа, чередующиеся с медными и алюминиевыми пластинами, образуют, как говорят разные источники, «генераторы электронного каскада». Существует цепная реакция, образующая «свободные электроны». Изолированный провод также наматывается вокруг подковообразных магнитов для индукционных целей.

Используются два внешних цилиндра. Соединение каждой отдельной вторичной обмотки может быть основано на «катушке разрывающего разряда», разработанной Николой Теслой. Цилиндры по бокам частично действуют как конденсаторы. Эта конфигурация формирует сеть импульсов. Каждый цилиндр имеет сердечник из 6 анизотропных ферритовых магнитов с полым кольцом, пластиковыми проставками для воздушных зазоров, образующих трансформатор.

Центральный входной стержень соединяется внизу со стопкой взаимосвязанных блинных катушек. Один трансформатор подключен к выходному отрицательному полюсу, а другой к выходной положительной полярности относительно зазоров магнитного сопротивления. Каждый соединен с вторичной обмоткой блинной катушки. Использование алюминиевой экранирующей сетки и сплошных медных экранирующих листов направлено на минимизацию паразитных электростатических зарядов.

Два дроссельных узла находятся в вертикальных двойных стеклянных трубках со спирально повернутой алюминиевой полосой. Трубы составляют две трети высоты башни. Стеклянная трубка заканчивается наверху прямоугольными латунными стержнями, соединяющимися с выпрямителем. Деревянное основание имеет чередующиеся слои перфорированных металлических изолирующих пластин, образующих накопительный конденсатор.

Возможно, это еще один пример альтернативного мышления, необходимого для трансформации нынешнего энергетико-экологического кризиса. Несмотря на создание и демонстрацию этого устройства, технология не использовалась остальным миром в течение более 30 лет не только по моральным соображениям (изобретение было детищем секты, а сам инженер был обвинён в жестоком обращении с детьми), а потому, что ни у кого из очевидцев нет точных технических данных об устройстве чудо-машины.

Но тот простой факт, что само религиозное сообщество Methernitha не использует устройство, ставит под сомнение его эффективность в отношении получения свободной энергии. Все их потребности в электричестве удовлетворяются парой ветрогенераторов, а также они покупают электроэнергию как все остальные. Большой вопрос о возможностях этой машины до сих пор остается без ответа.

Электростатический генератор Тестатика своими руками

Сейчас в открытом доступе довольно много информации о внешнем виде и эксплуатации аппарата, вся она предположительная и технически сложная. На протяжении многих лет агрегат демонстрировался различным техническим специалистам и инженерам, которые приглашались в общину, но за 30 лет никто так и не получил рабочего прототипа устройства, чтобы его можно было собрать за пределами Methernitha. По убеждению метернитов, для того, чтобы понять природу и ощутить её голос, человек обязан испытать тишину и одиночество. Ведь именно там были получены знания об этой технологии.

Но народные умельцы не оставляют надежды получить свободную энергию и пытаются воссоздать творение Пола Бауманна своими руками.

Инструкция по сборке генератора статического электричества своими руками

До этого я уже создавал несколько генераторов статического электричества и эти проекты всегда вызывали сильный интерес. С ними очень весело проводить время и они позволяют делать много разных трюков с помощью электростатического разряда. Например, можно щелкать током своих друзей (и себя), заставлять руками частицы песка или пыли вести себя странно, так как они подвержены влиянию статических зарядов. Также можно притягивать струю воды, заряжать бумагу, чтобы она прилипала к стене и производить множество других магических трюков.

Вышеприложенное видео демонстрирует процесс сборки этого проекта, а текстовая версия ниже даст вам пошаговую инструкцию. Это третья версия моего генератора статического электричества, при этом она самая дешевая. Она позволяет создавать заряд примерно такой же, какой бывает, когда вы ловите искру от ковра, гуляя по нему в пижаме.

Ионизатор USB, который является основным компонентом проекта, можно найти здесь: ссылка

  • Ионизатор.
  • Изолированная проволока.
  • Термоусадочная трубка.
  • Горячий клей.
  • Припой и паяльник.
  • Батарейки-кнопки на 1.5v.
  • Изолента.

Шаг 1: Разбираем ионизатор

Ионизаторы такого типа разбираются очень просто. Если вы будете использовать их по назначению, то корпус, скорее всего, сам треснет уже через неделю. С помощью плоскогубцев моно легко вскрыть корпус и получить доступ к плате устройства. К слову, хочу заметить, что я бы не подключал такое устройство к USB-порту компьютера. Высоковольтные устройства лучше вообще не подключать к компьютеру.

Если вы обратите внимание на последние две картинки, то заметите, что я разделил устройство на две секции. Первая часть, близкая к USB, представляет собой конвертер, который преобразует постоянный ток от USB в переменный ток, который затем проходит через крошечный трансформатор во вторую часть устройства. Вторая часть состоит из цепи четырех последовательных усилителей напряжения, которым для работы нужен переменный ток. Но в конце мы имеем постоянный ток, который направляется на белый провод.

Схема представляет как раз то, что нужно, чтобы получить статический заряд, но нам нужно модифицировать её так, чтобы она работала от батареек.

Шаг 2: Добавляем входной и выходной провода

Чтобы изменить схему до нужного нам состояния, первым делом избавимся от USB. Отвернём два ушка по бокам, и порт будет держаться лишь на 4 пинах. Прислоним паяльник сразу ко всем пинам и высвободим плату от USB порта.

На другой стороне платы есть обозначения, по которым можно определить, какая клемма предназначена для положительного заряда и какая для земли, они соответственно обозначены символами V+ и GND. Я припаял к этим клеммам по проводу, другие концы проводов будут соединены с батарейками.

На последней картинке видно, что я работаю на другой стороне платы, где я выпаиваю короткий выходной провод и припаиваю вместо него новый, значительно более длинный.

Шаг 3: Изолируем схему

Нам нужно изолировать схему от высокого напряжения, которое она будет генерировать, иначе она поджарит сама себя. Перед тем как поместить всё в термоусадочную трубку, я сперва прошелся по схеме горячим клеем, это позволило создать для проводов соединение более прочное, чем просто маленькая капелька припоя. Затем я поместил поверх устройства термоусадочную трубку и малым огнём аккуратно закрепил её на месте. Концы трубки остались не слишком зажатыми, и я также заполнил их горячим клеем. Такие ионизаторы идут со световым индикатором, чтобы вы знали, что они работают, так что я убрал немного термоусадки в том месте, где находился диод.

Шаг 4: Запитываем генератор

Источники питания USB, под которые проектируются такие устройства, дают на выходе 5 Вольт постоянного тока. Достаточно сложно найти батарейку с таким же напряжением, но обычно электроприборы могут работать в небольшом диапазоне напряжений, поэтому мы можем совместить три батарейки на 1.5V и этого вполне должно хватить.

Чтобы соединить их, оголите небольшой участок заземляющего провода (также оставив длинный изолированный его конец) и согните его, чтобы можно было придавить этот участок к отрицательной клемме батареек. Я добавил к оголенной части немного припоя и она стала держать форму.

Затем поместите пачку батареек между двумя проводами, положительный вход совместите с положительной клеммой батареек, а заземляющий провод соедините с отрицательной клеммой батареек. Небольшое количество изоленты удержит батарейки вместе и плотно прижмёт провода к их клеммам.

При желании на положительный провод можно припаять выключатель, но я решил, что устройство будет всегда включено. Для выключения я просто просовываю небольшую пластиковую пластину между батареек, и она разрывает соединение.

Шаг 5: Заключение

Устройство на данном этапе полностью работоспособно. Для того чтобы оно зарядило ваше тело (или любой проводящий объект), выходной провод должен касаться вашей кожи, в то время как конец длинного заземляющего провода должен соприкасаться с поверхностью, на которой вы стоите. Более токопроводящая поверхность позволит девайсу работать лучше, так как это даст возможность получить больший дифференциал заряда между вами и вашим окружением.

Для своих предыдущих генераторов я создавал соединения на липучках, они позволяли надежно закрепить выходные провода на теле и прикрепить заземляющий провод к низу моей подошвы.

На этом всё! Надеюсь вам понравилось читать о моём проекте.

Рассказываю как сделать какую-либо вещь с пошаговыми фото и видео инструкциями.

Яков Кузнецов/ автор статьи

Приветствую! Я являюсь руководителем данного проекта и занимаюсь его наполнением. Здесь я стараюсь собирать и публиковать максимально полный и интересный контент на темы связанные ремонтом автомобилей и подбором для них запасных частей. Уверен вы найдете для себя немало полезной информации. С уважением, Яков Кузнецов.

Понравилась статья? Поделиться с друзьями:
NEVINKA-INFO.RU
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: