Что такое внешние характеристики генератора постоянного тока - NEVINKA-INFO.RU

Что такое внешние характеристики генератора постоянного тока

Что такое внешние характеристики генератора постоянного тока 4.4. Генераторы постоянного тока В зависимости от способа питания обмотки возбуждения различают генераторы: - с независимым

Что такое внешние характеристики генератора постоянного тока

Что такое внешние характеристики генератора постоянного тока

4.4. Генераторы постоянного тока

В зависимости от способа питания обмотки возбуждения различают генераторы:

— с независимым возбуждением;

— с параллельным возбуждением;

— с последовательным возбуждением (сериесный);

— со смешанным возбуждением (компаундный); он имеет две обмотки возбуждения; одна включена параллельно обмотке якоря, а другая — последовательно с нею и нагрузкой.

Генераторы малой мощности иногда выполняются с постоянными магнитами. Свойства таких генераторов близки к свойствам генераторов с независимым возбуждением.

В генераторе с независимым возбуждением (рис. 4.8а) ток возбуждения не зависит от тока якоря I а , который равен току нагрузки I н . Обычно ток возбуждения невелик и составляет 1. 3 % от номинального тока якоря.

Основными характеристиками генератора являются характеристики: холостого хода, внешняя, регулировочная и нагрузочная.

Рис. 4.8. Принципиальная схема генератора с независимым возбуждением (а) и его характеристика холостого хода (б)

Характеристика холостого хода U 0 =f(I в ) при I н =0 и n=const (рис. 4.8б). Расхождение входящей и нисходящей ветвей характеристики объясняется наличием гистерезиса в магнитопроводе машины. E ост составляет 2. 4 % от U ном.

Рис. 4.9. Внешняя (а) и регулировочная (б) характеристики генератора с независимым возбуждением

Внешней характеристикой называется зависимость U=f(I н ) при n=const и I н =const (рис. 4.9а). Под нагрузкой напряжение генератора

∑r — сумма сопротивлений всех обмоток, включенных последовательно в цепь якоря (якоря, дополнительных полюсов и компенсационной обмотки).

С увеличением нагрузки напряжение U уменьшается по двум причинам:

— из-за падения напряжения во внутреннем сопротивлении ∑r машины;

— из-за уменьшения ЭДС E в результате размагничивающего действия реакции якоря.

Величина составляет 3. 8 %.

В генераторе с параллельным возбуждением (рис. 4.10а) обмотка возбуждения присоединена через регулировочный реостат параллельно обмотке якоря. Для нормальной работы приемников электроэнергии необходимо поддерживать постоянство напряжения на их зажимах, несмотря на изменение общей нагрузки генератора. Это осуществляется посредством регулирования тока возбуждения.

Регулировочной характеристикой генератора (рис. 4.9б) называется зависимость тока возбуждения I в от тока якоря I а при постоянном напряжении U и скорости n. Такая характеристика показывает, как надо изменять ток возбуждения для того, чтобы при изменениях нагрузки поддерживать постоянство напряжения на зажимах генератора. Эта кривая сначала почти прямолинейна, но затем загибается вверх от оси абсцисс, вследствие влияния насыщения магнитопровода машины. Следовательно, в машине используется принцип самовозбуждения, при котором обмотка возбуждения получает питание непосредственно от самого генератора.

Рис. 4.10. Принципиальная схема генератора с параллельным возбуждением (а); характер изменения ЭДС и тока возбуждения генератора в процессе возбуждения (б)

Самовозбуждение генератора возможно только при наличии гистерезиса в магнитной цепи.

При вращении якоря в его обмотке потоком остаточного магнетизма индуктируется ЭДС Е ост , и по обмотке возбуждения начинает протекать ток. Если обмотка возбуждения включена так, что ее НС F в направлена согласно с НС остаточного магнетизма, то магнитный поток возрастает, увеличивая ЭДС Е, поток Ф и ток возбуждения I в . Машина самовозбуждается и начинает устойчиво работать с I в =const, E=const, зависящими от величины сопротивления R в цепи возбуждения.

Для режима холостого хода генератора:

L — суммарная индуктивность обмоток возбуждения и якоря.

Зависимость e=f(i в ) представляет собой характеристику холостого хода генератора ОА, а прямая ОВ — ВАХ сопротивления R в (tgγ= R в ) (рис. 4.10б).

Пока имеется положительная разность (e-i в R в ) , член >0, т.е. происходит нарастание тока i в . Установившийся режим будет иметь место при =0, т.е. в точке С. При изменении величины сопротивления R в прямая ОВ изменяет свой угол γ, что приводит к изменению установившегося тока возбуждения I в0 , и соответствующего ему напряжения U 0 =E 0 . Параметры цепи подбираются так, чтобы в точке С обеспечивалась устойчивость режима самовозбуждения. При случайном изменении i в возникает соответствующая положительная или отрицательная разность (e-i в R в ) , стремящаяся изменить ток i в так, чтобы он стал снова равен I в0 .

Степень устойчивости рассматриваемого режима будет определяться производной:

β — σγξл пересечения характеристики ОА с прямой ОВ.

При увеличении R в до критического значения R в.кр. , соответствующего γ кр , угол β≈0 и режим самовозбуждения становится неустойчивым, при этом ЭДС генератора уменьшается до Е ост . Таким образом, для нормальной работы генератора с параллельным возбуждением необходимо, чтобы R в в.кр.

Внешняя характеристика генератора с самовозбуждением располагается ниже внешней характеристики генератора с независимым возбуждением (рис. 4.11). Объясняется это тем, что в рассматриваемом генераторе напряжение уменьшается не только с ростом нагрузки и размагничивающего действия реакции якоря, но и вследствие уменьшения тока возбуждения , который зависит от напряжения U, т. е. от тока I н .

Рис. 4.11. Внешние характеристики генераторов с независимым (верхняя кривая) и параллельным (нижняя кривая) возбуждением

Ток короткого замыкания создается только ЭДС от остаточного магнетизма и составляет (0,4. 0,8) I ном .

Работа на участке ab внешней характеристики неустойчива.

Регулировочная характеристика генератора с параллельным возбуждением имеет такой же вид, как и для генератора с независимым возбуждением.

В генераторе с последовательным возбуждением (рис. 4.12а) ток возбуждения I в =I а =I н .

Рис. 4.12. Схема генератора с последовательным возбуждением (а) и его внешняя характеристика (б)

Внешняя характеристика (кривая 1) и характеристика холостого хода (кривая 2) изображены на рис. 4.12б. Ввиду того, что в генераторе с последовательным возбуждением напряжение сильно изменяется при изменении нагрузки, такие генераторы практически не применяются. Их используют лишь при электрическом торможении двигателей с последовательным возбуждением, которые при этом переводятся в генераторный режим.

В генераторе со смешанным возбуждением имеются две обмотки возбуждения: основная (параллельная) и вспомогательная (последовательная). Наличие двух обмоток при их согласном включении позволяет получать приблизительно постоянное напряжение генератора при изменении нагрузки. Подбирая число витков последовательной обмотки так, чтобы при номинальной нагрузке создаваемое ею напряжение ΔU посл компенсировало суммарное падение напряжения ΔU при работе машины с одной только параллельной обмоткой, можно добиться, чтобы напряжение U при изменении тока нагрузки от нуля до I ном оставалось практически неизменным.

Генераторы постоянного тока имеют большей частью параллельное возбуждение. Обычно для улучшения внешней характеристики они снабжаются небольшой последовательной обмоткой (1-3 витка на полюс). При необходимости такие генераторы могут включаться и по схеме с независимым возбуждением.

Генераторы с независимым возбуждением используются только при большой мощности и низком напряжении. В этих машинах независимо от величины напряжения на якоре обмотка возбуждения рассчитывается на стандартное напряжение постоянного тока 110 или 220 В с целью упрощения регулирующей аппаратуры.

Свойства и характеристики генераторов постоянного тока

Свойства генераторов анализируются с помощью характеристик, которые устанавливают зависимости между основными величинами, определяющими работу генераторов. Такими основными величинами являются:

1) напряжение на зажимах U;

2) ток возбуждения IВ;

3) ток якоря IЯ или ток нагрузки I;

4) частота вращения n.

Обычно генераторы работают при n=const. Поэтому основные характеристики определяются при n=nн=const/

Существует пять основных характеристик генераторов:

1) холостого хода;

2) короткого замыкания;

Наиболее важными являются характеристики холостого хода, внешняя и регулировочная.

Характеристика холостого хода представляет собой зависимость напряжения на зажимах генератора от тока возбуждения:

при I=0 и n=const.

и определяет зависимость U или ЭДС якоря от тока возбуждения при холостом ходе (I=0, P2=0).

Регулируя ток возбуждения IВ от 0 до IВ НОМ и от IВ НОМ до 0 при отключенной нагрузке, получают восходящую и нисходящую кривые (рис.8.9). Характеристика снимается экспериментально при отключенном рубильнике.

Несовпадение кривых объясняется явлением гистерезиса в магнитной цепи индуктора. За расчетную характеристику принимают среднюю кривую. Для всех типов генераторов характеристика холостого хода практически одинакова. Она позволяет оценить магнитные свойства машины.

Рис. 8.9 Характеристика холостого хода генератора независимого возбуждения.

Читайте также  Что то цепляет в генераторе

Эта кривая состоит из следующих характерных участков:

– ЭДС, индуцируемая в якоре остаточным магнитным потоком, сохранившимся от предыдущего намагничивания машины;

Еа – прямолинейный участок, соответствующий ненасыщенному состоянию машины;

“ав” – средненасыщенный участок или «колено» кривой;

“вс” – участок магнитного насыщения машины.

При нормальных условиях эксплуатации магнитная цепь генератора должна быть в состоянии среднего насыщения, т.е. номинальное значение напряжения UНОМ находится на колене характеристики “ав”. Это условие обеспечивает устойчивую работу генератора.

Характеристика холостого хода позволяет судить о насыщении магнитной цепи машины при номинальном напряжении, проверять соответствие расчетных данных экспериментально и составляет основу исследования эксплутационных свойств машины.

Внешняя характеристика генератора является зависимостью напряжения генератора U от тока нагрузки:

U = f(I) при IВ = const и n = const

и определяет зависимость напряжения генератора от его нагрузки в естественных условиях, когда ток возбуждения не регулируется.

В генераторах с параллельным возбуждением снижение напряжения при увеличении нагрузки обусловлено тремя причинами: падением напряжения в обмотке якоря, реакцией якоря и уменьшением тока возбуждения от первых двух причин (IВ=U/RВ).

Поэтому внешняя характеристика генераторов с параллельным возбуждением более крутая по сравнению с характеристиками генераторов независимого и смешанного возбуждения (рис.8.10, кривая 2).

Рис. 8.10. Внешние характеристики генераторов: 1 – с независимым возбуждением; 2 – с параллельным; 3 – с последовательным; 4 – со смешанным включением при согласном включении обмоток; 5 – то же при встречном включении обмоток.

В генераторах со смешанным возбуждением основной является параллельная обмотка, а вспомогательной — последовательная. Соединение последовательной обмотки может быть: согласным, что позволяет получить увеличение магнитного потока при росте тока нагрузки, а, следовательно, стабилизировать напряжение (рис.8.10, кривая 4); встречным, когда магнитные потоки параллельной и последовательной катушек на каждом полюсе направлены навстречу друг другу. При встречном включении обмоток напряжение генератора при нагрузке резко падает (рис.8.10, кривая 5) и одновременно обеспе­чивается постоянство тока. Поэтому такие генераторы, используются для выполнения высококачественной, электродуговой сварки, т. е. когда необходимо получить крутопадающую внешнюю характеристику.

Наклон внешней характеристики к оси абсцисс (жесткость внешней характеристики) оценивается номинальным изменением напряжения генератора при сбросе нагрузки:

(обычно для генератора независимого возбуждения ΔUном=5-10%, а для генератора параллельного возбуждения ΔUном=10-30%).

Регулировочная характеристика показывает, каким следует поддерживать ток возбуждения Iв при различных нагрузках генератора, чтобы его напряжение было постоянным, т.е.

IB=f(IH) при U=const и n=const

Регулировочные характеристики (рис.8.11.) обратны кривым внешних характеристик генераторов постоянного тока.

С увеличением I ток IВ необходимо несколько увеличивать, чтобы компенсировать влияние падения напряжения IЯRЯ и реакции якоря.

Рис. 8.11. Регулировочные характеристики, генераторов постоянного тока: I — независимого возбуждения; 2 — параллельного; 3 — смешанного

Благодаря обратимости электрических машин генераторный режим машины может быть изменен на .двигательный. Особенно просто такое изменение режима осуществляется в генераторе с параллельным возбуждением, работающем на сеть постоянного тока. Для этого достаточно уменьшить ток возбуждения настолько, чтобы ЭДС якоря стала меньше напряжения сети. Преобладание напряжения сети вызовет изменение направления тока в обмотке якоря IЯ, который в таких условиях будет создаваться разностью напряжения сети и ЭДС якоря, т.е.

Этот ток, взаимодействуя с магнитным полем машины, будет создавать не тормозной, а вращающий электромагнитный момент.

| следующая лекция ==>
Основные понятия. В процессе работы генератора постоянного тока в обмотке якоря индуцируется ЭДС Eя (8.6) | Уравнение напряжения и тока

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

§32. Схемы генераторов и их характеристики

Свойства генератора постоянного тока определяются в основном способом включения обмотки возбуждения. В зависимости от этого различают генераторы:

с независимым возбуждением: обмотка возбуждения получает питание от постороннего источника постоянного тока (аккумуляторной батареи, небольшого вспомогательного генератора, называемого возбудителем, или выпрямителя);

с параллельным возбуждением: обмотка возбуждения подключена параллельно обмотке якоря и нагрузке;

с последовательным возбуждением: обмотка возбуждения включена последовательно с обмоткой якоря и нагрузкой;

со смешанным возбуждением: имеются две обмотки возбуждения — параллельная и последовательная; первая подключена параллельно обмотке якоря, а вторая — последовательно с нею и нагрузкой.

Генераторы с параллельным, последовательным и смешанным возбуждением относятся к машинам с самовозбуждением, так как питание их обмоток возбуждения осуществляется от самого генератора.

Все перечисленные генераторы имеют одинаковое устройство и отличаются лишь выполнением обмоток возбуждения. Обмотки независимого и параллельного возбуждения изготовляют из провода

Рис. 120. Принципиальная схема генератора с независимым возбуждением

малого сечения, они имеют большое число витков, обмотку последовательного возбуждения — из провода большого сечения, она имеет малое число витков.

О свойствах генераторов постоянного тока судят по их характеристикам: холостого хода, внешней и регулировочной. Ниже будут рассмотрены эти характеристики для генераторов различного типа.

Генератор с независимым возбуждением. Характерной особенностью генератора с независимым возбуждением (рис. 120) является то, что его ток возбуждения Iв не зависит от тока якоря Iя, а определяется только напряжением UB, подаваемым на обмотку возбуждения, и сопротивлением RB цепи возбуждения. Обычно ток возбуждения невелик и составляет 2—5 % номинального тока якоря. Для регулирования напряжения генератора в цепь обмотки возбуждения часто включают регулировочный реостат Rрв. На тепловозах ток Iв регулируют путем изменения напряжения UB.

Характеристика холостого хода генератора (рис. 121, а) — зависимость напряжения U при холостом ходе от тока возбуждения Iв при отсутствии нагрузки Rн т. е. при Iн = Iя = 0 и при постоянной частоте вращения п. При холостом ходе, когда цепь нагрузки разомкнута, напряжение генератора U равно его э. д. с. Е = сЕФn. Так как при снятии характеристики холостого хода частота вращения п поддерживается неизменной, то напряжение U зависит только от магнитного потока Ф. Поэтому характеристика холостого хода будет подобна зависимости потока Ф от тока возбуждения Iя (магнитной характеристике магнитной цепи генератора). Характеристику холостого хода легко снять экспериментально, постепенно увеличивая ток возбуждения от нуля до значения, при котором U ? 1,25Uном, а затем уменьшая ток возбуждения до нуля. При этом получаются восходящая 1 и нисходящая 2 ветви характеристики. Расхождение этих ветвей объясняется наличием гистерезиса в магнитопроводе машины. При Iв = 0 в обмотке якоря потоком остаточного магнетизма индуцируется остаточная э. д. с. Еост которая обычно составляет 2—4 % номинального напряжения Uном.

При малых токах возбуждения магнитный поток машины невелик, поэтому в этой области поток и напряжение U изменяются прямо пропорционально току возбуждения и начальная часть этой характеристики представляет собой прямую. При увеличении тока возбуждения магнитная цепь генератора насыщается и нарастание напряжения U замедляется. Чем больше становится ток возбуждения, тем сильнее сказывается насыщение магнитной цепи машины и тем медленнее возрастает напряжение U. При очень больших токах возбуждения напряжение U практически перестает возрастать.

Характеристика холостого хода позволяет судить о значении возможного напряжения и о магнитных свойствах машины. Номинальное напряжение (указанное в паспорте) для машин общего применения соответствует насыщенной части характеристики («колену» этой кривой). В тепловозных генераторах, требующих регулирования напряжения в широких пределах, используют как криволинейную, так и прямолинейную ненасыщенную часть характеристики.

Генератор постоянного тока независимого возбуждения

Схема включения генератора независимого возбуждения по­казана на рис. 28.2, а. Реостат rрг, включенный в цепь возбужде­ния, дает возможность регулировать ток Iв в обмотке возбуждения, а следовательно, и основной магнитный поток машины. Обмотка возбуждения питается от источника энергии постоянного тока: аккумулятора, выпрямителя или же другого генератора постоян­ного тока, называемого в этом случае возбудителем.

Рис. 28.2 Принципиальная схема (а) и характеристики х.х. (б) генера­тора независимого возбуждения

Характеристика холостого хода генератора постоянного тока независимого возбуждения

При снятии характеристики U= F(IВ) генератор работает в режиме х.х. (Ia = 0). Установив номинальную частоту вращения и поддерживая ее неизменной, постепенно увеличивают ток в обмотке возбуждения Iв от нулевого значения до +Iв = Oa, при котором напряжение х.х. U = 1.15Uном . Получают данные для построения кривой 1 (рис. 28.2, б). Начальная ордината кривой 1 не равна нулю, что объясняется действием небольшого магнитного потока остаточного магнетизма, сохранившегося от предыдущего намагничивания машины. Уменьшив ток возбуждения до нуля, и изменив его направление, постепенно увеличивают ток в цепи возбуждения до -Iв = Oб. По­лученная таким образом кривая 2 называется нисходящей ветвью характеристики. В первом квадранте кривая 2 располагается вы­ше кривой 1. Объясняется это тем, что в процессе снятия кривой 1 произошло увеличение магнитного потока остаточного намагни­чивания. Далее опыт проводят в обратном направлении, т. е. уменьшают ток возбуждения от -Iв = Oб до Iв = 0, а затем увеличи­вают его до значения +Iв = Oa. В результате получают кривую 3, называемую восходящей ветвью характеристики х.х. Нисходящая и восходящая ветви характеристики х.х. образуют петлю намагни­чивания. Проведя между кривыми 2 и 3 среднюю линию 4, полу­чим расчетную характеристику х.х.

Читайте также  Устройство микроконтроллерное для защиты обмотки ротора генератора мк рзр

Прямолинейная часть характеристики х.х. соответствует нена­сыщенной магнитной системе машины. При дальнейшем увеличе­нии тока сталь машины насыщается и характеристика приобретает криволинейный характер. Зависимость U= F(IВ) дает возможность судить о магнитных свойствах машины.

Нагрузочная характеристика генератора постоянного тока независимого возбуждения

Эта характери­стика выражает зависимость напряжения U на выходе генератора от тока возбуждения Iв при неизменных токе нагрузки, например номинальном, и частоте вращения. При указанных условиях на­пряжение на выводах генератора меньше ЭДС , поэто­му нагрузочная характеристика 1 располагается ниже характери­стики холостого хода 2 (рис. 28.3). Если из точки а, соответствующей номинальному напряжению Uном, отложить вверх отрезок аb, равный IaΣr, и провести горизонтально отре­зок bс до пересечения с характеристикой х.х., а затем соединить точки а и с, то получим аbстреугольник реактивный (характе­ристический).

Так, при работе генератора в режиме х.х. при токе возбужде­ния IВ1 = IВ.ном напряжение на выводах U = de ; с подключением нагрузки (при неизменном токе возбуждения) напряжение генера­тора снизится до значения Uном = ae . Таким образом, отрезок dа выражает значение напряжения ΔU = U — Uном при IВ1 = IВ.ном. На­пряжение на выводах генератора в этом случае уменьшилось в результате действия двух причин: падения напряжения в цепи якоря и размагничивающего влияния реакции якоря . Измерив значение сопротивления цепи якоря и подсчитав падение напряжения IaΣr, можно определить ЭДС генератора при заданном токе нагрузки: Ea = U + IaΣr. На рис. 28.3 эта ЭДС представлена отрезком bе. Электродвижущая сила генератора при нагрузке меньше, чем в режиме х.х. (bе

Внешняя характеристика генератора

Данная характеристика показывает, как изменяется напряжение на зажимах
генератора при изменении силы тока нагрузки, то есть внешняя характеристика генератора – это зависимость напряжения на зажимах (на щётках) генератора от силы тока, протекающего в обмотке якоря. Получим уравнение этой характеристики на основании расчётной схемы генератора (рис.6.4), для чего составим уравнение электрического равновесия якорной цепи и выразим потенциал точки Я1 (jЯ1) через потенциал точки Я2 (jЯ2):

Реактивное сопротивление обмотки якоря равно нулю (Хя = 0), так как ток постоянный.

Перепишем (6.14) в следующем виде:

Учитывая, что jЯ1jЯ2 = U , получим следующее:

Полученное уравнение (6.16) представляет собой уравнение внешней характеристики генератора.

Е = kФw . (6.17)

Кроме того, на основании (6.1) можем записать:

, (6.18)

где wв – число витков обмотки возбуждения.

Графически внешняя характеристика генератора (то есть зависимость
U = f (Iя )) выглядит так, как показано на рис.6.5.

Пунктирной линией на рис.6.5 показана внешняя характеристика идеального генератора, у которого Rя = 0.

Вопросы для самоконтроля

1. Запишите и расшифруйте выражение внешней характеристики генератора.

2. Изобразите качественно внешнюю характеристику генератора.

3. Укажите путь улучшения внешней характеристики генератора.

Регулирование напряжения генератора

Напряжение на зажимах генератора, как видно из (6.16), зависит от значения э.д.с., наводимой в якоре, и силы тока в обмотке якоря (силы тока нагрузки). Э.д.с.,
которая индуктируется в якоре, как видно из (6.17), зависит от значения магнитного потока и скорости вращения якоря. Магнитный поток, как видно из (6.18), зависит от силы тока в обмотке возбуждения. Следовательно, регулировать напряжение на зажимах генератора можно следующим образом:

1) изменением силы тока в обмотке возбуждения (для этого используют реостат, включённый последовательно с обмоткой возбуждения);

2) изменением скорости вращения якоря.

Вопрос для самоконтроля

1. Перечислите способы регулирования напряжения на зажимах генератора,
укажите технические средства для их реализации.

6.7. Принципиальная электрическая схема
управления генератором

В соответствии с изложенным выше составляем принципиальную электрическую схему управления генератором (рис.6.6).

На данной схеме (рис.6.6) приведены следующие обозначения:

РВ – регулировочный реостат в цепи
возбуждения;

ОВ – обмотка возбуждения;

Ш1, Ш2 – зажимы обмотки возбуждения;

Я1, Я2 – зажимы обмотки якоря;

Я – якорь генератора;

w – угловая скорость вращения
вала генератора;

РA – амперметр, измеряющий силу тока нагрузки;

РV – вольтметр, измеряющий
напряжение на зажимах генератора;

РН – реостат нагрузки.

Пример 6.1

К генератору постоянного тока независимого возбуждения при неизменной угловой скорости подводится механическая мощность равная 7,0 кВт. Генератор развивает
электродвижущую силу равную 300 В. Сопротивление обмотки якоря генератора (включая сопротивление щёток) равно 1,5 Ом. Сопротивление цепи возбуждения генератора равно 270 Ом. На зажимы цепи возбуждения подаётся напряжение равное 270 В.

К генератору подключена нагрузка сопротивлением 13,5 Ом с помощью идеальной линии электропередачи. Потери мощности в механической системе генератора составляют 1,5 % от подводимой к валу мощности. Потери мощности в магнитопроводе генератора
составляют 3,0 % от подводимой к валу мощности. Добавочные потери составляют 0,1 % от подводимой к валу мощности.

Составить расчётные схемы якорной цепи с нагрузкой и цепи возбуждения.

Определить: силу тока в якорной цепи; мощность, развиваемую генератором; потери мощности в обмотке якоря; силу тока в цепи возбуждения; потери мощности в цепи возбуждения; потери мощности в механической системе; потери мощности в магнитопроводе;
суммарные потери мощности в генераторе; мощность, отдаваемую генератором в сеть (мощность нагрузки); электрический коэффициент полезного действия генератора; коэффициент полезного действия генератора как электромеханического преобразователя; электроэнергию, которую потребит нагрузка за 100 ч.

Построить в масштабе по двум точкам внешнюю характеристику генератора.

1. Составляем расчётную схему, состоящую из якорной цепи и цепи возбуждения:

2. Определяем силу тока в якорной цепи:

.

3. Определяем мощность, развиваемую генератором:

.

4. Определяем потери мощности в обмотке якоря:

.

5. Определяем силу тока в цепи возбуждения:

.

6. Определяем потери мощности в цепи возбуждения:

.

7. Определяем потери мощности в механической системе:

.

8. Определяем потери мощности в магнитопроводе:

.

9. Определяем добавочные потери мощности в генераторе:

.

10. Определяем суммарные потери мощности в генераторе:

.

11. Определяем мощность, отдаваемую генератором в сеть (мощность нагрузки):

.

12. Определяем электрический коэффициент полезного действия генератора:

.

13. Определяем коэффициент полезного действия генератора

как электромеханического преобразователя:

.

14. Определяем электроэнергию, которую потребит нагрузка за 100 ч:

.

15. Рассчитываем и строим внешнюю характеристику генератора:

U = ЕRяIя = 300 – 1,5×Iя.

U, В
Iя , А

Вопросы для самоконтроля

1. Составьте принципиальную электрическую схему управления генератором
постоянного тока параллельного возбуждения.

2. Поясните, как регулируется напряжение на зажимах генератора
при изменении нагрузки, используя внешнюю характеристику генератора
и принципиальную схему управления.

Задания для самоконтроля

К генератору постоянного тока независимого возбуждения при неизменной угловой скорости подводится механическая мощность равная 5,0 кВт.
Генератор развивает электродвижущую силу равную 240 В. Сопротивление
обмотки якоря генератора (включая сопротивление щёток) равно 0,5 Ом.
Сопротивление цепи возбуждения равно 220 Ом. На зажимы цепи возбуждения подаётся напряжение равное 220 В.

К генератору подключена нагрузка сопротивлением 11,5 Омс помощью идеальной линии электропередачи. Потери мощности в механической системе генератора составляют 0,5 % от подводимой к валу мощности. Потери мощности в магнитопроводе генератора составляют 1,0 %от подводимой к валу мощности. Добавочные потери мощности в генераторе составляют 0,2 % от подводимой к валу мощности.

Читайте также  Установка ремня генератора чери тигго т11

1. Составить расчётные схемы якорной цепи с нагрузкой и цепи возбуждения.

2. Определить силу тока в якорной цепи.

3. Определить мощность, развиваемую генератором.

4. Определить потери мощности в обмотке якоря.

5. Определить силу тока в обмотке возбуждения.

6. Определить потери мощности в обмотке возбуждения

7. Определить потери мощности в механической системе.

8. Определить потери мощности в магнитопроводе.

9. Определить добавочные потери мощности в генераторе.

10. Определить суммарные потери мощности в генераторе.

11. Определить мощность, отдаваемую генератором в сеть
(мощность нагрузки).

12. Определить электрический коэффициент полезного действия генератора.

13. Определить коэффициент полезного действия генератора
как электромеханического преобразователя.

14. Построить в масштабе по двум точкам внешнюю характеристику генератора.

15. Определить напряжение на зажимах генератора
при силе тока в якорной цепи равной 10 А.

16. Определить электроэнергию, которую потребит нагрузка за 10 ч.

ЧТО ТАКОЕ ГЕНЕРАТОР ПОСТОЯННОГО ТОКА

Генератор постоянного тока предназначен для преобразования кинетической энергии в электрическую. Используется в качестве источника электроэнергии в тепловозах, автомобилях, промышленных установках и т.д.

Представляет собой обратимую электрическую машину. В зависимости от схемы подключения может работать как генератор или как электродвигатель.

Принцип действия генератора постоянного тока основан на физическом явлении электромагнитной индукции. Заключается в том, что если проводник передвигается в магнитном поле, в нем возникает электрический ток. Такой ток называется индукционным.

Схематично это явление можно описать следующим образом. Если проводник, например, медную проволоку в виде рамки поместить между двумя полюсами подковообразного магнита, он будет находиться в постоянном магнитном поле.

Затем начнем вращать эту рамку. В процессе вращения она будет пересекать магнитный поток. Вследствие этого, внутри проволоки индуцируется электродвижущая сила э.д.с.

Если концы этой рамки соединить, то под воздействием э.д.с., потечет индукционный ток. Если включить в эту цепь амперметр, он покажет наличие в ней тока. Это и есть самый простой макет генератора.

Для того, чтобы подключить рамку к электрической цепи, ее крепят к полукольцам. Две щетки контактируют с вращающимися полукольцами поочередно, и через них индукционный ток поступает далее в электрическую цепь. Полукольца устанавливают на оси, вокруг которой вращается рамка. Это упрощенная схема коллектора.

Когда рамка переходит через горизонтальное положение (нейтраль), щетки одновременно переключаются с одного полукольца на второе. В этот момент стороны рамки магнитных силовых линий не пересекают. В таком положении э.д.с. и, соответственно, ток равны 0. Благодаря этому переключение щеток не сопровождается искрением.

На величину электродвижущей силы влияют следующие факторы:

  • длина проволоки;
  • величина индукции магнитного поля;
  • частота вращения.

Величина э.д.с. (Е) меняется по синусоидальной траектории, с пиками при прохождении рамкой вертикальных положений. В эти моменты она перпендикулярно пересекает максимум силовых линий. Нулевые значения отмечаются при прохождении нейтрали. После ее пересечения э.д.с. меняет свое направление.

В свою очередь, коллектор, чередуя каждые пол оборота полукольца на щетках, выпрямляет переменную э.д.с. На выходе получается пульсирующий, в виде выпрямленной синусоиды, постоянный ток.

КАК НА ВЫХОДЕ ПОЛУЧАЕТСЯ ПОСТОЯННЫЙ ТОК

Для того, чтобы можно было пользоваться генератором, как источником энергии, ток нужно сгладить. Если увеличить количество рамок до двух и расположить их перпендикулярно друг другу. Тогда пиковые значения Е и, соответственно, тока будут возникать уже каждые четверть оборота.

Если их соединить последовательно, индуцируемый ток будет суммироваться. А его выходная характеристика будет иметь вид двух, смещенных между собой на четверть периода выпрямленных синусоид. Пульсация значительно уменьшится.

Если количество последовательных рамок еще увеличивать, тогда значение тока будет все больше приближаться к идеальной прямой. Кроме того, величина электродвижущей силы напрямую зависит от длины проводника. Поэтому количество рамок делают большим, а их совокупность и составляет обмотку вращающейся части генератора — якоря.

Для последовательного соединения витков обмотки, конец предыдущего нужно соединить с началом следующего. Делают это на полукольцах или, как их называют, пластинах. Их количество будет равняться количеству витков.

Другим фактором, влияющим на величину Е, является сила магнитного поля. Индукция магнитного потока обычного магнита слишком маленькая, а потери в среде между двумя полюсами наоборот очень большие.

Для решения первой проблемы вместо постоянного магнита используют гораздо более сильный электромагнит. Для решения второй проблемы сердечник якоря выполняют из стали. Также уменьшают до самого минимума зазор между якорем генератора и полюсами электромагнита.

Ток, протекающий в якоре, образуют своего рода электромагнит, и создает свое магнитное поле. Это явление называется реакция якоря. В нем также возникает реактивная э.д.с. Вместе они искажают магнитное поле. Чтобы это скомпенсировать, устанавливаются добавочные полюса. Они включаются в цепь якоря и полностью перекрывают это негативное воздействие.

По источнику тока возбуждения генераторы бывают:

  • с независимым возбуждением;
  • с самовозбуждением.

Необходимый для работы генератора магнитный поток создается благодаря току, проходящему через обмотки главных полюсов. Этот ток называется током возбуждения. При независимом возбуждении обмотка питается от аккумулятора или другого источника питания. При самовозбуждении питается током якоря.

Благодаря тому, что сердечники полюсов обладают остаточным магнетизмом, они создают небольшой магнитный поток. Если якорь начинает вращаться, этого потока достаточно для появления в витках якоря небольшого индукционного тока.

Этот ток, попадая в обмотку возбуждения полюсов, усиливает рабочий магнитный поток. Это приводит к увеличению тока в якоре и происходит цепная реакция. Таким образом, генератор быстро выходит на расчетную мощность.

По схеме подключения обмотки якоря к обмотке возбуждения генераторы с самовозбуждением делятся на три типа:

  • с параллельным возбуждением;
  • с последовательным возбуждением;
  • со смешанным возбуждением.

Схема возбуждения влияет на характеристики генератора и особенности его применения. Основным его параметром является внешняя характеристика, выражающая зависимость напряжения на выходе от тока нагрузки при заданной частоте вращения и параметрах возбуждения. Также к основным характеристикам относится мощность и КПД, который достигает 90-95%.

УСТРОЙСТВО ГЕНЕРАТОРА ПОСТОЯННОГО ТОКА

Генератор состоит из двух частей:

  • подвижная вращающаяся часть якорь;
  • неподвижная – статор.

Статор состоит из станины, магнитных полюсов, подшипникового щита с подшипниками. Станина — это несущая часть генератора, на которой размещены все его части. Внутри установлены полюсы с сердечниками и обмотками возбуждения. Изготавливается из ферромагнитных материалов.

Ротор или якорь состоит из сердечника, вала, коллектора и вентилятора. В качестве опоры для якоря используются подшипники, установленные на боковых подшипниковых щитах статора.

Преимущества и область применения.

Генераторы постоянного тока обладают следующими достоинствами:

  • простота конструкции, компактность;
  • надежность;
  • экономичность;
  • обратимость, то есть возможность использования в качестве электродвигателя;
  • практически линейная внешняя характеристика.

Недостатки:

  • высокая стоимость;
  • ограниченный срок службы щеточно-коллекторного узла.

Используются в различных отраслях производства, в строительстве, в промышленных установках, сварочном оборудовании, в машиностроении, на предприятиях металлургической промышленности, в автомобильном, железнодорожном, воздушном и морском, транспорте.

© 2014-2021 г.г. Все права защищены.
Материалы сайта имеют ознакомительный характер, могут выражать мнение автора и не подлежат использованию в качестве руководящих и нормативных документов.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: