Что вращается в генераторе ротор или статор

Уважительное «геннадий» или панибратское «гена» неспроста написаны с маленькой буквы! Это не имя автослесаря, а шутливо-жаргонное прозвище электрогенератора – одного из важнейших узлов автомобиля, практически не изменившего свою конструкцию за несколько десятилетий. Давайте познакомимся с «геннадием» поближе, изучив его сильные и слабые стороны и поняв, с каких фронтов можно ждать сюрпризов по электрической части автомобиля.

Что вращается в генераторе ротор или статор

Генераторы: как они устроены, и как их ремонтируют

Уважительное «геннадий» или панибратское «гена» неспроста написаны с маленькой буквы! Это не имя автослесаря, а шутливо-жаргонное прозвище электрогенератора – одного из важнейших узлов автомобиля, практически не изменившего свою конструкцию за несколько десятилетий. Давайте познакомимся с «геннадием» поближе, изучив его сильные и слабые стороны и поняв, с каких фронтов можно ждать сюрпризов по электрической части автомобиля.

«Дитя света»

А втомобильный генератор в современном понимании порожден любовью человечества к электрическому свету. Машины эпохи зари автомобилизма имели лишь простейший узел под названием «магнето» – миниатюрный генератор, совмещенный с прерывателем зажигания, интегрированный в корпус двигателя и выдающий исключительно высоковольтные импульсы для работы свечей. Ни лампу, ни какой-то иной потребитель электроэнергии к магнето подключить было нельзя, поэтому машины XIX века освещали дорогу карбидными лампами, в которых горел ацетилен – от двигателя внутреннего сгорания помощи ждать не приходилось.

Однако достаточно скоро стало очевидно, что двигатель автомобиля должен порождать больше электричества: не только для собственной работы, но и для работы внешних потребителей – фар, клаксона, измерительных приборов передней панели, зарядки батареи и тому подобного. Поэтому рядом с высоковольтной «искровой» обмоткой магнето появилась дополнительная обмотка – низковольтная, дающая бортовое напряжение. МАГнето + ДИНамО-машина = магдино. Так стали называться первые генераторы.

Но поскольку магнето и магдино традиционно встраиваются непосредственно в двигатель, мощность их ограничена небольшими габаритами. И как только стало ясно, что рост мощности генераторов неизбежен, «гена» стал внешним – он переехал на кронштейн на блоке цилиндров и вращение стал получать от внешней передачи – ременной, а иногда цепной или шестеренчатой.

Первые генераторы вырабатывали постоянный ток, однако после развития в середине ХХ века полупроводниковой промышленности и появления мощных выпрямительных диодов генераторы стали производить переменный ток, который затем выпрямлялся до постоянного диодными мостами. Смена типа тока позволила скачкообразно в несколько раз и понизить габариты и массу генераторов, и поднять их мощность.

Собственно, современный генератор практически идентичен тому, что стоял на машинах, разработанных и 10, и 20, и 30, и более лет тому назад. Двигатели и КПП год за годом усложняются, а едва ли не главный внешний электроагрегат остается практически неизменным. Его конструкция неидеальна, но являет собой золотой баланс свойств и стоимости. Появляются, правда, дополнительные узлы и усовершенствования – например, вместо элементарного шкива для ремня на генератор может устанавливаться обгонная муфта, как в стартерном бендиксе, или в обмотке статора увеличивается количество катушек и усложняется диодный мост, но большинство генераторов все же по-прежнему обходятся классической конструкцией.

Как устроен генератор

Две половинки корпуса, отлитые из алюминия, образуют «бочонок» и стянуты друг с другом болтами. Внутри «бочонка» расположена кольцевая обмотка – катушка статора, с которой мы снимаем переменное напряжение. Снаружи к этой обмотке подключен диодный мост, прикрытый пластиковой защитной полукрышкой и делающий из переменного напряжения постоянное. Через корпус генератора проходит ось – вал, вращающийся на двух подшипниках и приводимый в движение за шкив ремнем от коленвала двигателя.

На валу генератора установлен и вращается вместе с ним ротор с катушкой внутри – электромагнит. Через пару скользящих контактов и угольные щетки на него подает управляющий ток регулятор напряжения, следящий за тем, чтобы генератор выдавал на выходе 14 вольт – без регулятора величина напряжения будет зависеть от оборотов и способна достичь нескольких десятков вольт, опасных для 12-вольтового автомобильного электрооборудования.

Неисправности генератора

Генератор на большинстве машин достаточно прост по конструкции, и благодаря этому количество разновидностей его неисправностей невелико, а диагностика несложна. «Плавающих» проблем, которые затруднительно выловить и локализовать, в нем практически никогда не бывает.

Самые слабые узлы генератора – не механические, а электронные: это диодный мост, состоящий из шести мощных диодов, объединенных в три группы на алюминиевой пластине-радиаторе, и регулятор напряжения. Выходят из строя они из-за перегрузки (из-за систематической работы с перегрузкой от нештатных потребителей тока, если прикуривать чужую машину, не заглушив свой двигатель, или из-за короткого замыкания в банках аккумулятора), из-за появления микротрещин от постоянной смены подкапотной температуры в широких пределах и проникновения в трещины влаги, а также иногда и вовсе без видимых причин – с электроникой это случается… В регуляторе напряжения еще вдобавок со временем стачиваются графитовые щетки. При этом и диодный мост, и регулятор напряжения в сборе со щетками могут быть заменены на новые.

На втором месте по выходу из строя – подшипники. Их в генераторе два — более мощный и массивный передний, а также задний – меньших габаритов. Страдает чаще всего передний, поскольку на него приходятся и нагрузка от туго натянутого ремня, и проникновение пыли и влаги извне. Подшипники проявляют себя гулом и визгом, который исчезает, если завести мотор при снятом ремне генератора. Они также могут быть заменены новыми.

На третьем месте – более неприятные неисправности, хотя и, к счастью, более редкие. Могут сточиться до основания два медных колечка на валу – контакты для питания обмотки ротора, по которым скользят графитовые щетки регулятора напряжения. Колечки эти достаточно долговечны, поскольку пружины щеток слабенькие, но, отработав несколько комплектов щеток, кольца с годами могут прийти в негодность. В качестве запчастей встречаются не всегда, и для конкретной модели генератора их можно не найти… Если же купить удалось, то снимаются с вала они единым блоком (залиты в пластик), и одним блоком же ставятся новые.

Еще от старости может произойти разрушение изоляции проводов обмотки статора и возникнуть короткое замыкание между витками. Как правило, такое ремонтировать невыгодно, хотя в принципе перемотка возможна. Неисправности типа разрушения корпуса рассматривать, наверное, не стоит, хотя и они, безусловно, случаются, и, как ни странно, некоторые отечественные производители генераторов поставляют в розничную продажу половинки «бочонка».

Ремонт генератора

Теперь рассмотрим ремонт генератора на живом примере. Автомобиль ВАЗ-2115 приехал на сервис с проблемой отсутствия зарядки аккумулятора. Электрик, к его чести, не приговорил, не глядя (как это часто делается), диодный мост и регулятор скопом, а сперва проверил проводку к генератору, затем (не снимая генератор с машины) извлек из него регулятор напряжения и проверил его при помощи внешнего источника напряжения 15-16 вольт и нагрузочной лампы, сымитировав штатную работу – регулятор оказался исправен. Целыми оказались и щетки регулятора, контактные кольца на валу и обмотка ротора. После этого мастер посветил фонариком на диодный мост, увидел обугленный диод, сделал вывод о неисправности моста… и предложил полную замену генератора!

Почему? Все просто: на наш генератор, рожденный Ржевским заводом автотракторного электрооборудования ЭЛТРА, модели 5102.3771, устанавливается 80-амперный диодный мост МП13-80-3-2, который стоит в магазине… 909 рублей, и меняется он не так, как, скажем на старой-доброй «девятке», где это делалось при помощи отвертки и без снятия генератора с машины. В нашем случае мост меняется с использованием мощного паяльника, и генератор для этого, по-хорошему, должен лечь на верстак. Это изрядная возня, требующая к тому же определенной аккуратности. Мастер не захотел связываться с этим менее, чем за 2 000 рублей, и намекнул владельцу, что стоимость запчасти и ремонта почти в 3 000 рублей на генератор 2006 года выпуска выглядят бледно на фоне цены нового генератора в сборе в 4 450 рублей. Иначе говоря, можно за 3 000 починить, а можно за дополнительные 1 500 рублей к цене ремонта получить нового «гену» на гарантии, с новыми подшипниками, обмотками, гарантированно лишенными усталостных трещин лака, и так далее. Владелец согласился с такими доводами, и генератор был заменен на новый.

Вот такой неожиданный исход… Мы хотели понаблюдать за недорогим восстановительным ремонтом, а столкнулись с крупноузловой дорогостоящей заменой. Впрочем, ремонт уже завершен, машина восстановила подвижность и уехала, и у нас появилась возможность в спокойной обстановке внимательно взглянуть на генератор изнутри, изучить конструкцию и разобраться, прав ли был мастер. Более того, нам никто не запрещает починить его самостоятельно.

Генератор изнутри

Разборку генератора начинаем со снятия шкива с вала: 6-ручьевой шкив под поликлиновый ремень аккуратно зажимаем в тисках через алюминиевые прокладки и откручиваем гайку пневмогайковертом. Легкие следы замятия на шкиве не страшны, если они контролируемы и прогнозируемы – ни канавки, ни кромки не деформированы.

На валу виден паз под шпонку, однако шпонки самой нет, как нет и паза для нее в шкиве. На данном генераторе шкив крепится трением – затяжкой гайки с гровером с упором во внутреннее кольцо подшипника, а через него – в ротор.

Снимаем пластиковую «полукрышку», под которой прячутся диодный мост и регулятор напряжения. Видим, что мост неисправен – пробит как минимум один диод из шести. Это заметно даже без проверки тестером – видно, что диод обуглен.

Регулятор напряжения снимается легко – откручиванием двух гаек М8. Электрически его уже проверяли, визуально тоже видно, что щетки изношены незначительно. Продуваем, вытираем и откладываем в сторону.

«PRO» генератор. Часть 3. Инь и ян. Ротор и статор.

Всем доброго времени суток! Итак мы продолжаем тему «PRO» генератор, и сегодня будем рассматривать двоих неразлучных, ротор и статор. Кому интересно, начало можно увидеть тут:
«PRO» генератор. Часть1. Что делать если зарядка с гены нет? Начнем сначала.
«PRO» генератор. Часть 2. Анатомия диодного моста.
Итак, начнем. Что мы знаем о роторе и статоре, и вообще зачем они нужны в генераторе и что они делают?
Суть работы автомобильного генератора основана на явлении электромагнитной индукции — возникновении тока в проводнике, который покоится в переменном магнитном поле. Проводник, в котором возникает ток, покоится (это статор), а магнитное поле постоянно изменяется (т.е ротор вращается).
При запуске двигателя ротор генератора начинает вращаться, одновременно на его возбуждающую обмотку подается напряжение от АКБ. Ротор имеет многополюсный стальной сердечник, который при подаче тока на обмотку становится электромагнитом, соответственно, вращающийся ротор создает переменное магнитное поле. Силовые линии этого поля пересекают статор, расположенный вокруг ротора. Сердечник статора определенным образом распределяет магнитное поле, его силовые линии пересекают витки рабочих обмоток — в них за счет электромагнитной индукции генерируется переменный ток, который снимается с выводов обмотки, проходит через диодный мост, там «выпрямляется» до постоянного электрического тока и через регулятор напряжения уходит в бортовую сеть.
При увеличении оборотов двигателя часть тока от рабочей обмотки статора подается на обмотку возбуждения ротора — так генератор переходит в режим самовозбуждения и уже не нуждается в стороннем токе от АКБ.
Ну так какие «проблемы» могут быть у ротора и статора, которые можно диагностировать легко с помощью обычного мультиметра. А проблемы две, это обрыв или пробой обмоток.
Ну начнем со статора.

Мультиметр переводим в режим измерения сопротивления, и замеряем сопротивление между тремя выводными клеммами статора, сопротивление между друг другом не должно превышать 10 Ом. И далее переведя мультиметр в режим «прозвона», мы проверяем каждую выводную клемму статора на «пробой» на корпус статора, для этого нужно одним щупом прикоснуться к выводной клемме статора, а другим щупом прикоснуться к корпусу статора. Если мультиметр молчит, не пищит, значит «пробоя» на корпус нет. И так нужно проделать со всеми тремя выводными клеммами.
А теперь возьмемся за ротор.

С ротором все те же манипуляции, что и со статором. Мультиметром в режиме измерения сопротивления замерям показания между двумя токоснимающими кольцами, оно должно быть в пределах от 2 до 5,1 Ом. Переведя мультиметр в режим «прозвона», мы также проверяем каждое из двух колец на «пробой» с корпусом ротора. На исправном роторе мультиметр должен молчать. (Кстати в моем случае мультиметр «пищал как резаный»). Именно здесь я и нашел одну из неисправностей своего генератора, пробой обмотки ротора на его корпус.
На этом со статором и ротором закончим. Продолжение следует. Всем пока.

ГАЗ 31 2000, двигатель бензиновый 2.4 л., 145 л. с., задний привод, механическая коробка передач — электроника

Машины в продаже

ГАЗ 3102 Волга, 1997

ГАЗ 3102 Волга, 1994

ГАЗ 31029 Волга, 1994

ГАЗ 3102 Волга, 2005

Комментарии 6

Откуда вся эта информация?

Читайте также  Электронные тахометры для дизель генераторов

Тут, похоже, полное непонимание всех происходящих процессов.
Во-первых, в обмотках статора возникает напряжение, а не ток. Ток уже появляется тогда, когда генератор будет чем-то нагружен.
Во-вторых, это напряжение подается на диодный мост и им выпрямляется до однополярного пульсирующего, а не постоянного. Опять же, напряжения.
В третьих, ни через какой регулятор оно в бортсеть ни разу не поступает. Выходом генератора (силовой клеммой) как раз и является «+»-вой вывод диодного моста, который непосредственно подключается ко всем потребителям и в результате чего возникает ток.

Реле-регулятор обеспечивает подачу напряжения на обмотку возбуждения (на якорь) и производит регулирование тока в этой обмотке в зависимости от величины напряжения, которое оно «видит» на выходе генератора. Чем меньше ток в обмотке возбуждения, тем меньше будут напряжения на обмотках статора и напряжение на выходе генератора. Ну и наоборот. Если тупо подать выходное напряжение генератора на обмотку возбуждения напрямую, то при раскрутке генератора это напряжение может достигнуть Вольт 20-ти (для обычного 14-ти Вольтового генератора), и гена долго в таком режиме не «проживет».

Ну и по поводу всех этих проверок работоспособности.
Тестер совершенно не пригоден для этих целей, от слова вообще. Тем более, при включении оного в таких режимах измерения. Ну разве что для общей оценки катастрофы, если пол-генератора выгорело синим пламенем.
Чтобы проверить обмотки статора и ротора на обрыв, и при этом быть точно уверенным в результатах, понадобится аккумулятор или мощный блок питания и мощная лампочка (можно галогенку из фары). При помощи такой нехитрой «контрольки», в случае чего, будет легко выявлен не только обрыв обмотки, но и плохой контакт в месте пайки или на клемме, если такая имеется.
Тем же самым макаром проверяются и силовые диоды диодного моста. Для проверки дополнительных (маленьких) надо взять лампочку Ватт на 10.
Чтобы качественно проверить обмотки на пробой (на массу), следует использовать источник высокого напряжения. Тут сгодится либо мегаомметр, либо хотя бы сеть

220V и соответствующая лампочка-контролька, при его отсутствии. Но в этом случае надо строго соблюдать технику безопасности!

И Вам здравствуйте! Все написано у Вас правильно конечно. Вся информация у меня из интернета взята. У меня все написано настолько упрощенно, местами даже упрощено до неузнаваемости, чтобы обычный обыватель примерно имел представление что да как.
Ну давайте по порядку. Во первых для обычного человека мало разбирающегося в электротехнике, не автоэлектрика, не важно напряжение там или ток, главное что ему понятно.
Во вторых, обывателю проще понимать, как из курса средней школы, про переменный и постоянный ток, зачем ему такие понятия как однополярный пульсирующий.
В-третьих, про вывод 30 диодного моста знаю, да это силовая клемма и она соединена с генератором.
Вы бесспорно правы в своих словах. Но в наше время мультиметр имеет право быть, я им также пользуюсь и пробой на статоре я им нашел, и с виду у меня половина генератора не выгорела. В наше время людям нужно проще все, понятнее, особенно для молодежи, чтобы он пошел в магазин купил мультиметр за 500 руб и смог грубо говоря на балконе разобрать тот же генератор и прозвонить. Мои записи предназначены как раз для простого понимания, не углубляясь в технические дебри. Я думаю я Вам ответил на Ваш комментарий, свою точку зрения предоставил. А вы бы все свои знания взяли бы да и выложили бы тоже для обозрения, чтобы те кому интересно, более глубже смогли понимать процессы работы генератора.

Ну как же так то? Копипастить чью-то писанину, приняв ее за чистую монету, не убедившись в ее достоверности? Однако…
В таком случае, хотя бы ссылки на первоисточники надо выкладывать.

А вообще, по этому поводу я мыслю следующим образом. Еще со школьного курса истории нам известно, что первобытные люди сначала стали умелыми, а лишь через многие тысячелетия дошли до уровня разумных. Отличие заключается в том, что первые чему-то научились и что-то умели (пользоваться топором, сделанным из булыжника, например), а вторые кроме всего этого еще и обладали даром всему этому научить других. Так вот я, хоть и не являюсь первобытным человеком, но до уровня разумного явно не дотягиваю. Кое-какими мыслями поделиться могу, но написать какое-нибудь руководство, не говоря уже об учебнике, я бы не рискнул.
А все потому, что если уж мы и решимся на это, то надо не только умудриться изложить все в самой простой и доступной форме, понятной для того, кто задумает все это прочесть, но и выдать абсолютно достоверную и научно подтвержденную информацию, используя правильную терминологию и правильное написание текста до последней запятой. В противном случае, прочитавший этот материал юный начинающий, не только моментально запомнит большую часть текста, где как раз и присутствуют бредовые утверждения, но и завтра же в общении со взрослыми дядьками по всем интернетам будет бить себя пяткой в грудь, доказывая, что «Земля имеет форму чемодана». Ну и ссылаться, разумеется, на первоисточник. В результате мы собственноручно произвели на свет очередного упоротого барана, которому теперь хоть кол на голове теши, на путь истинный его уже не направишь. А все, кому не лень, будут отправлять «лестные» высказывания в наш адрес. А оно нам надо?
Потому, если в двух словах, я глубоко убежден, что подобного уровня материалы имеют право писать люди, в разы умнее меня, и обладающие громадным багажом знаний, а так же практическим опытом в данных вопросах. То, что творится сейчас в интернете — это полный звиздец! Ибо ни одна падла не несет ответственность за свой базар, но каждая если не писатель, то обязательно режиссер…
А учить молодежь и передавать свой личный опыт конечно же нужно! Но если есть подозрение, что сам не особо силен в некоторых вопросах, то не грех и самому по ходу дела немного подучиться, да кое в чем разобраться. Но пользоваться при этом исключительно научной литературой и прочими источниками достоверной информации.
Я так думаю…

И снова здравствуйте! Однако. Я в своих текстах ни кого не учу, я его изложил как понял сам, у меня даже есть там строки, что прошу отнестись к вышеописанному не слишком критично. И мне этой информации вполне хватило для установления поломки моего генератора. Поэтому слишком углубляться в технические детали я в этой теме не хочу, мне это вообще не нужно было. К тому же это запись в бортжурнале, а не пособие или инструкция. У меня четко написано, что это все как я понимаю и как я искал проблему на основе этой информации.

В таком случае готов согласиться, что «это мой личный бортжурнал и что хочу, то и пишу». Тут без вариантов.
Но обычно, если предусматривается оговорка, что, типа, это мое видение или мое представление, то по идее изложенный материал не должен иметь утвердительной формы изложения и предусматривать бурное обсуждение в комментариях. В данном же случае это выглядит как руководство, утвержденное президиумом… На «для себя лично», что-то не похоже.
С другой стороны, я вижу целый цикл статей, в которых куча утвердительных умозаключений, мягко говоря, не соответствующих реальной жизни. Все бы ничего, но ведь это могут прочитать люди, понятия не имеющие в данных вопросах и, как минимум, все понять криво. Какой тогда смысл?
Я вовсе ни на чем не настаиваю, это всего лишь мое видение!

Я описал в своем БЖ как я изучал материал, что узнал и как я это понял. И я также вовсе ни на чем не настаиваю, это всего лишь мое видение! Счастливо и удачи!

Что такое статор и ротор и чем они отличаются

Существует несколько классов электрических преобразователей, среди которых практическое применение нашли так называемые индуктивные аналоги. В них преобразование энергии происходит за счет преобразования индукции обмоток, являющиеся неотъемлемой частью самого агрегата. Обмотки располагаются на двух элементах – на статоре и роторе. Итак, чем отличаются статор и ротор (что это такое и каковы их функции?).

Самое простое определение двух частей преобразователя – это их функциональность. Здесь все просто: статор (электродвигателя или генератора) является неподвижной частью, ротор подвижной. В большинстве случаев последний располагается внутри первого, и между ними есть небольшой зазор. Есть так называемые агрегаты с внешним ротором, который представляет собой вращающееся кольцо, внутри которого располагается неподвижный статор.

Виды преобразователей

Почему так важно рассмотреть виды, чтобы понять, чем отличается статор электродвигателя от подвижной его части. Все дело в том, что конструктивных особенностей у электродвижков немало, то же самое касается и генераторов (это преобразователи механической энергии в электрическую, электродвигатели имеют обратную функциональность).

Итак, электрические двигатели делятся на аппараты переменного и постоянного тока. Первые в свою очередь разделяются на синхронные, асинхронные и коллекторные. У первых угловая скорость вращения статора и ротора равны. У вторых два эти показателя неравны. У коллекторных видов в конструкции присутствует так называемый преобразователь частоты и количества фаз механического типа, который носит название коллектор. Отсюда и название агрегата. Именно он напрямую связан с обмотками ротора двигателя и его статора.

Машины постоянного тока на роторе имеют тот же коллектор. Но в случае с генераторами он выполняет функции преобразователя, а в случае с электродвигателями функции инвертора.

Если электрический агрегат – это машина, в которой вращается только ротор, то его название – одномерный. Если в нем вращаются в противоположные стороны сразу два элемента, то этот аппарат носит название двухмерный или биротативный.

Асинхронные электродвигатели

Чтобы разобраться в понятиях ротора двигателя и его статора, необходимо рассмотреть один из видов электрических преобразовательных машин. Так как асинхронные электродвижки используются чаще всего в производственном оборудовании и бытовой техники, то стоит рассмотреть именно их.

Итак, что собой представляет асинхронный электродвигатель? Это обычно чугунный корпус, в который запрессован магнитопровод. В нем сделаны специальные пазы, куда укладывается обмотка статора, собранная из медной проволоки. Пазы сдвинуты относительно друг друга на 120º, поэтому их всего три. Они же образуют три фазы.

Ротор в свою очередь – это цилиндр, собранный из стальных листов (сталь штампованная электротехническая), и насажанный на стальной вал, который в свою очередь при сборке электрического движка устанавливается в подшипники. В зависимости от того, как собраны фазные обмотки агрегата, роторы двигателя могут быть фазными или короткозамкнутыми.

  • Фазный ротор – это цилиндр, на котором собраны катушки, сдвинутые относительно друг друга на 120º. При этом в его конструкцию установлены три контактных кольца, которые не соприкасаются ни с валом, ни между собой. К кольцам присоединены с одной стороны концы трех обмоток, а с другой графитовые щетки, которые относительно колец располагаются в скользящем контакте. Пример такой машины – это крановые электродвигатели с фазным ротором.
  • Короткозамкнутый ротор собирается из медных стержней, которые укладываются в пазы. При этом их соединяют специальным кольцом, изготовленном из меди.

Асинхронный электрический двигатель с фазным ротором является обладателем больших размеров и веса. Но у него отличные свойства, касающиеся пусковых и регулировочных моментов. Двигатели, у которых установлен короткозамкнутый ротор, считаются самыми надежными на сегодняшний день. Они просты в конструкции, поэтому и являются дешевыми. Их единственный недостаток – это большой пусковой ток, с которым сегодня борются соединением обмоток статора со звезды на треугольник. То есть, пуск производится при соединении звездой, после набора оборотов производится переключение на треугольник.

Что такое ротор и статор в электродвигателе

Что такое ротор

Ротор, еще его иногда называют якорь, это подвижная, то есть вращающаяся часть в генераторе или электродвигателях, которые повсеместно применяются в бытовой и промышленной технике.

Если рассматривать ротор двигателя постоянного тока или универсального коллекторного двигателя, то он состоит из нескольких основных узлов, а именно:

  1. Сердечник. Он выполнен из множества штампованных тонких металлических пластин, изолированных друг от друга специальным диэлектриком или же просто оксидной пленкой, которая проводит ток гораздо хуже, чем чистый металл. Сердечник набирается из них и представляет собой «слоеный пирог». В результате электроны не успевают разогнаться из-за маленькой толщины металла, и нагрев ротора гораздо меньше, а эффективность всего устройства выше за счет уменьшения потерь. Данное конструктивное решение принято для уменьшения вихревых токов Фуко, которые неизбежно возникают при работе двигателя из-за перемагничивания сердечника. Этот же метод борьбы с ними используется и в трансформаторах переменного тока.
  2. Обмотки. Вокруг сердечника особым образом намотана медная проволока, покрытая лаковой изоляцией для предотвращения появления короткозамкнутых витков, которые недопустимы. Вся обмотка дополнительно пропитана эпоксидной смолой или лаком для фиксации обмоток, чтобы они не повреждались при вибрациях от вращения.
  3. Обмотки ротора могут подключаться к коллектору – специальному блоку с контактами, надежно закрепленному на валу. Эти контакты называются ламелями, они выполнены из меди или ее сплава для лучшей передачи электрического тока. По нему скользят щетки, обычно выполненные из графита, и в нужный момент на обмотки подается электрический ток. Это называется скользящий контакт.
  4. Сам вал является металлическим стержнем, на его концах расположены посадочные места под подшипники качения, он может иметь резьбу или выемки, пазы под шпонку для крепления шестерен, шкивов или других деталей, приводимых в движение электродвигателем.
  5. На валу также размещается крыльчатка вентилятора, чтобы двигатель охлаждал сам себя и не приходилось бы устанавливать дополнительное устройство для отвода тепла.
Читайте также  Электро генератор из электродвигателя

Стоит отметить, что не у всякого ротора есть обмотки, которые, в сущности, представляют собой электромагнит. Вместо них могут применяться постоянные магниты, как в бесщеточных двигателях постоянного тока. А у асинхронного двигателя с короткозамкнутым ротором обмоток в привычном виде вовсе нет, вместо них используются короткозамкнутые металлические стержни, но об этом ниже.

Что такое статор

Статор – это неподвижная часть в электродвигателе. Обычно он совмещен с корпусом устройства и представляет собой цилиндрическую деталь. Он так же состоит из множества пластин для уменьшения нагрева из-за токов Фуко, в обязательном порядке покрытых лаком. На торцах располагаются посадочные места под подшипники скольжения или качения.

Конструкция называется пакет статора, она впрессовывается в чугунный корпус устройства. Внутри этого цилиндра вытачиваются пазы под обмотки, которые, так же как и для ротора, пропитываются специальными составами, чтобы тепло равномернее распределялось по устройству, и обмотки не терлись друг об друга от вибрации.

Обмотки статора могут подключаться разными способами в зависимости от назначения и типа электрической машины. Для трехфазных электродвигателей применимы типы подключения звезда и треугольник. Они представлены на схеме:

Для выполнения подключений на корпусе устройства предусмотрена специальная распределительная коробка («борно»). В эту коробку выведены начала и концы трех обмоток и предусмотрены специальные клеммники различных конструкций, в зависимости от мощности и назначения машины.

Существуют серьезные отличия в работе двигателей при разном соединении обмоток. Например, при подключении звездой двигатель будет стартовать плавнее, однако нельзя будет развить максимальную мощность. При присоединении треугольником, электродвигатель будет выдавать весь крутящий момент, заявленный производителем, но пусковые токи в таком случае достигают высоких значений. Электросеть может быть просто не рассчитана на такие нагрузки. Использование устройства в этом режиме чревато нагревом проводов, и в слабом месте (это места соединения и разъемы) провод может отгореть и привести к пожару. Главным преимуществом асинхронных двигателей является удобство в смене направления их вращения, нужно просто поменять местами подключения двух любых обмоток.

Статор и ротор в асинхронных двигателях

Трехфазные асинхронные двигатели имеют свои особенности, ротор и статор в них отличаются от использованных в других типах электродвигателей. Например, ротор может иметь две конструкции: короткозамкнутый и фазный. Рассмотрим особенности строения каждого из них по подробнее. Однако для начала давайте вкратце разберемся, как работает асинхронный двигатель.

В статоре создается вращающееся магнитное поле. Оно наводит на роторе индуцируемый ток и тем самым приводит его в движение. Таким образом ротор всегда пытается «догнать» вращающееся магнитное поле.

Необходимо также упомянуть о такой важной особенности асинхронного двигателя, как скольжение ротора. Это явление заключается в разности частот вращения ротора и магнитного поля, создаваемого статором. Объясняется это как раз тем, что ток индуцируется в роторе только при его движении относительно магнитного поля. И если бы частоты вращения были одинаковы, то этого движения бы просто не происходило. В результате ротор пытается «догнать» по оборотам магнитное поле, и если это происходит, то ток в обмотках перестает индуцироваться и ротор замедляется. В этот момент сила, действующая на него, растет, он начинает опять ускоряться. Так и получается эффект стабилизации частоты вращения, за что эти электродвигатели и пользуются большой востребованностью.

Короткозамкнутый ротор

Он также представляет собой конструкцию, состоящую из металлических пластин, выполняющих функцию сердечника. Однако вместо медной обмотки там установлены стержни или пруты, не касающиеся друг друга и накоротко замкнутые между собой металлическими пластинами на торцах. При этом стержни не перпендикулярны пластинам, а направлены под углом. Это делается для уменьшения пульсаций магнитного поля и момента. Таким образом получаются витки, замкнутые накоротко, от сюда и название.

Фазный ротор

Главное отличие фазного ротора от короткозамкнутого заключается в наличии трехфазной обмотки, уложенной в проточки сердечника и соединяющейся в особом коллекторе с тремя кольцами вместо ламелей. Эти обмотки обычно соединяются «звездой». Такие электродвигатели более трудоемки в производстве за счет усложнения конструкции, однако их пусковые токи ниже, чем у двигателей с короткозамкнутым ротором, а также они лучше поддаются регулировке.

Надеемся, что после прочтения данной статьи у вас больше не осталось вопросов о том, что такое ротор и статор электродвигателя и какой у них принцип работы. Напоследок рекомендуем просмотреть видео, в котором наглядно рассмотрен данный вопрос:

Принцип действия генератора

Принцип действия генератора.

В основе работы генератора лежит эффект электромагнитной индукции. Если катушку, например, из медного провода, пронизывает магнитный поток, то при его изменении на выводах катушки появляется переменное электрическое напряжение. И, наоборот, для образования магнитного потока достаточно пропустить через катушку электрический ток.

Таким образом, для получения переменного электрического тока требуются катушка, по которой протекает постоянный электрический ток, образующий магнитный поток — называемая обмоткой возбуждения, и стальная полюсная система, назначение которой подвести магнитный поток к внешним катушкам, называемым обмоткой статора, в которых наводится переменное напряжение.

Эти катушки помещены в пазы стальной конструкции, магнитопровода (пакета железа) статора. Обмотка статора с его магнитопроводом образует собственно статор генератора, его важнейшую неподвижную часть, в которой образуется электрический ток, а обмотка возбуждения с полюсной системой и некоторыми другими деталями (валом, контактными кольцами) — ротор, его важнейшую вращающуюся часть.

Питание обмотки возбуждения может осуществляться от самого генератора. В этом случае генератор работает на самовозбуждении. При этом остаточный магнитный поток в генераторе,

т. е. поток, который образуют стальные части магнитопровода при отсутствии тока в обмотке возбуждения, невелик и обеспечивает самовозбуждение генератора только на слишком высоких частотах вращения. Поэтому в схему генераторной установки, там, где обмотки возбуждения не соединены с аккумуляторной батареей, вводят такое внешнее соединение, обычно через лампу контроля работоспособного состояния генераторной установки. Ток, поступающий через эту лампу в обмотку возбуждения, после включения зажигания и обеспечивает первоначальное возбуждение генератора.

Сила этого тока не должна быть слишком большой, чтобы не разряжать аккумуляторную батарею, но и не слишком малой, т. к. в этом случае генератор возбуждается при слишком высоких частотах вращения, поэтому фирмы-изготовители оговаривают необходимую мощность контрольной лампы обычно 2. 3 Вт.

Обычно сила тока катушки возбуждения 1..5% от выходного тока. То есть, что получается. На обмотку возбуждения подаем (для примера возят авто генератор) 12В 3…5А, а получаем 13..14В 55А (в зависимости от генератора). Получаемый КПД более 1!

Ага!, скажите вы, а как же мощность, затрачиваемая на то, что бы вращать этот генератор?

Вот это мы и рассмотрим дальше:

При вращении ротора напротив катушек обмотки статора появляются попеременно «северный», и «южный» полюсы ротора, т. е. направление магнитного потока, пронизывающего катушку, меняется, что и вызывает появление в ней переменного напряжения. Частота получаемого напряжения f зависит от частоты вращения ротора генератора N и числа его пар полюсов р: f=p*N/60. За редким исключением зарубежные или отечественные автогенераторы имеют по шесть «южных» и шесть «северных» полюсов в магнитной системе ротора. В этом случае частота f в 6 раз больше частоты вращения ротора генератора.

То есть, что получается: ротор это постоянный магнит и с помощью движения этого магнита воздается вращающееся поле. Получается эффект электромагнитной индукции. Если катушку, например, из медного провода, пронизывает магнитный поток, то при его изменении на выводах катушки появляется переменное электрическое напряжение. Вопрос, а можно ли сделать так, что бы заставить магнитное поле вращаться без механического вращения ротора?

Из физики нам известно, что вращающееся магнитное поле возникает как результирующее поле при наложении двух или более переменных магнитных полей, имеющих одинаковую частоту и сдвинутых одно относительно другого по фазе и в пространстве.

Если поставить две катушки под углом 90 градусов между их осями и подключить к ним два источника постоянного тока, то поля этих катушек, складываясь, будут образовывать результирующее магнитное поле. Общий вектор индукции катушек, будет представлять собой геометрическую сумму векторов индукции полей двух катушек. Поэтому направление результирующего поля можно изменять в пределах 360 градусов путем изменения направления тока в катушках и поочередного их отключения.

Короче, что бы создать вращающее поле, нужно просто переключать пару катушек, что и делается в коллекторных двигателях при вращении ротора. Да, только, что бы переключать катушки не обязательно вращать для этого ротор.

Ведь, что получается? Достаточно вынуть ротор и вставить две катушки развернутых относительно друг друга на 90 градусов, переключая их создать вращающее поле и все. Ни какого вращения не надо.

Да, но почему это не применяют, подумал я, может ошибаюсь? И тогда я провел свой первый эксперимент:

Я взял коллекторный двигатель, подключил к щеткам постоянное напряжение и от руки крутанул. На выходе получил напряжение, естественно малое. То есть, у меня уже как бы был генератор. Потом я взял такой же двигатель, снял с него коллектор и щетки. Щетки насадил на отдельный двигатель и подключил к ним постоянное напряжение, а коллектор спаял с коллектором моего новоиспеченного генератора. Включил двигатель щеток, и все получилось. Мой генератор не вращался и давал напряжение. Вращались только отдельно вынесенные щетки, которые можно заменить на электронный эквивалент, что и было сделано в дальнейшем.

Получается, что достаточно взять щеточный генератор (надо смотреть, как намотан ротор) и не вращать его ротор, а подавать на щетки переключающее напряжение. Да, положение ротора по отношению к статору надо будет выставлять.

Вот вам направление для размышления и без нарушения законов физики. На самом деле вращающие поля это широкое поле для деятельности, о которых говорил в свое время Тесла, а к нему стоит прислушаться. Новый генератор работает по тем же принципам, как и всякий генератор, только мы вращаем не ротор, а поле, а так все тоже самое. Ротор это постоянный магнит и с помощью движения этого магнита воздается вращающее поле. Получается эффект электромагнитной индукции. Если катушку, например, из медного провода, пронизывает магнитный поток, то при его изменении на выводах катушки появляется переменное электрическое напряжение. При вращении ротора, вращаем поле.

Переключая катушки, вращаем поле, вот и вся разница. Заменили вращение ротора на электронное или механическое (что хуже) переключение катушек обмотки (электротехника).

Вращающее магнитное поле возникает как результирующее поле при наложении двух или более переменных магнитных полей, имеющих одинаковую частоту и сдвинутых одно относительно другого по фазе и в пространстве.

Если поставить две катушки под углом 90 градусов между их осями и подключить к ним два источника постоянного тока, то поля этих катушек, складываясь, будут образовывать результирующее магнитное поле. Общий вектор индукции катушек, будет представлять собой геометрическую сумму векторов индукции полей двух катушек. Поэтому направление результирующего поля можно изменять в пределах 360 градусов путем изменения направления тока в катушках или поочередного их отключения.

Читайте также  Форд фокус 2 ремень генератора номер

Теперь нам не надо тратить энергию на вращение ротора преодолевая трение и всякие другие силы и т. д.

Я предлагаю крутить не ротор целиком, а щетки!

Посчитай КПД генератора с вычетом затрачиваемой мощности на вращение. Вот представь, что работает генератор, крутиться, выдает напряжение. Если не брать в расчет вращение, то какой КПД? Что такое генератор? Это магнит, который вращается между обмотками статора.

С помощью вращения этого магнита мы создаем вращающее поле, то есть, тратим энергию вращения на то, Что бы создать вращающее поле. Вопрос, а можно ли создать вращающее поле без вращения? Да. Оказывается можно, и на этом принципе работают все двигатели. Надо только на роторе симулировать процесс создания вращающего поля как в двигателях, то есть, переключением полярности в катушках. Что у нас получиться? Да тоже, самое, будет вращаться поле между обмотками статора, но только при этом мы не будем применять механических усилий на вращение.

Я приводил простой пример автомобильного генератора. Обмотка возбуждения 12В 3А, выход 14В 55А. Вопрос, откуда лишняя мощность? (не считая затрачиваемой на вращение) Описать физику процесса слабо?

Исследуя процесс, на первый взгляд напрашивается решение разделить обмотки ротора и статора на пары. После чего рассмотреть систему из нескольких трансформаторов – но это не правомерно, так как в предложенном генераторе имеется вращающееся магнитное поле, а в трансформаторах используется пульсирующее магнитное поле. Эти поля различны, хотя бы тем что вращающееся поле может работать в режиме перенасыщения сердечника, а пульсирующее на перенасыщаемом сердечнике сильно теряет энергию.

В принципе можно создать трансформатор на вращающемся магнитном поле, но его не следует путать с промышленными 3-х фазными трансформаторами, где магнитное поле все же пульсирует.

Патенты на трансформаторы с вращающемся магнитным полем встречаются, и в них явно намекается на необычные характеристики в отличии от обычных трансформаторов.

Трансформатор на вращающемся магнитном поле интересен еще тем, что имеет возможность выдавать напряжение более высокой частоты, чем подводящее, если добавить дополнительные выходные обмотки с разным пространственным расположением — это похоже основной признак использования вращающегося магнитного поля.

Снимать энергию с вращающегося магнитного поля необходимо с полного круга, иначе часть энергии теряется в пространстве пропорционально пропущенному участку.

Статор генератора: рождающий ток

Каждое современное транспортное средство оснащается электрическим генератором, который вырабатывает ток для работы бортовой электросистемы и всех ее приборов. Одна из основных частей генератора — неподвижный статор. О том, что такое статор генератора, как он устроен и работает — читайте в этой статье.

Назначение статора генератора

В современных автомобилях и других транспортных средствах применяются синхронные трехфазные генераторы переменного тока с самовозбуждением. Типичный генератор состоит из неподвижного статора, закрепленного в корпусе, ротора с обмоткой возбуждения, щеточного узла (подводящего ток к обмотке возбуждения) и выпрямительного блока. Все детали собраны в относительно компактную конструкцию, которая монтируется на двигателе и имеет ременной привод от коленчатого вала.

Статор — неподвижная часть автомобильного генератора, несущая на себе рабочую обмотку. В процессе работы генератора именно в обмотках статора возникает электрический ток, который преобразуется (выпрямляется) и подается в бортовую сеть.

Статор генератора имеет несколько функций:

• Несет на себе рабочую обмотку, в которой генерируется электрический ток;
• Выполняет функцию корпусной детали для размещения рабочей обмотки;
• Играет роль магнитопровода для повышения индуктивности рабочей обмотки и правильного распределения силовых линий магнитного поля;
• Выступает в роли теплоотвода — отводит чрезмерное тепло от нагревающихся обмоток.

Все статоры имеют принципиально одинаковую конструкцию и не отличаются разнообразием типов.

Конструкция статора генератора

Конструктивно статор состоит из трех основных частей:

• Кольцевой сердечник;
• Рабочая обмотка (обмотки);
• Изоляция обмоток.

Сердечник собирается из железных кольцевых пластин с пазами с внутренней стороны. Из пластин формируется пакет, жесткость и монолитность конструкции придается сваркой или клепкой. В сердечнике выполняются пазы для укладки обмоток, а каждый выступ — это ярмо (сердечник) для витков обмотки. Сердечник собирается из пластин толщиной 0,8-1 мм, изготовленных из специальных марок железа или ферросплавов с определенной магнитной проницаемостью. На внешней стороне статора могут присутствовать ребра для улучшения отвода тепла, а также выполняться различные пазы или углубления для стыковки с корпусом генератора.

В трехфазных генераторах используется три обмотки — по одной на фазу. Каждая обмотка изготавливается из медного изолированного провода большого сечения (диаметром от 0,9 до 2 мм и более), которая в определенном порядке укладывается в пазах сердечника. Обмотки имеют выводы, с которых снимается переменный ток, обычно число выводов составляет три или четыре, но бывают статоры с шестью выводами (каждая из трех обмоток имеет свои выводы для выполнения соединений того или иного типа).

В пазах сердечника располагается изоляционный материал, защищающий изоляцию провода от повреждения. Также в некоторых типах статоров в пазы могут вкладываться изоляционные клинья, которые дополнительно выполняют роль фиксатора витков обмоток. Статор в сборе дополнительно может подвергаться пропитке эпоксидными смолами или лаками, что обеспечивает целостность конструкции (предотвращает сдвиг витков) и улучшает ее электроизоляционные свойства.

Статор жестко монтируется в корпусе генератора, причем сегодня чаще всего используется конструкция, в которой сердечник статора выполняет роль корпусной детали. Реализуется это просто: статор зажимается между двумя крышками корпуса генератора, которые стягиваются шпильками — такой «сэндвич» позволяет создавать компактные конструкции с эффективным охлаждением и простотой обслуживания. Популярностью пользуется и конструкция, при которой статор объединен с передней крышкой генератора, а задняя крышка выполнена съемной и обеспечивает доступ к ротору, статору и другим деталям.

Типы и характеристики статоров

Статоры генераторов отличаются числом и формой пазов, схемой укладки обмоток в пазах, схемой подключения обмоток и электрическими характеристиками.

По числу пазов под витки обмоток статоры бывают двух типов:

• С 18 пазами;
• С 36 пазами.

Сегодня наиболее часто используется конструкция с 36 пазами, так как она обеспечивает лучшие электрические характеристики. Генераторы со статорами с 18 пазами сегодня можно встретить на некоторых отечественных автомобилях ранних выпусков.

По форме пазов статоры бывают трех типов:

• С открытыми пазами — пазы прямоугольного сечения, в них требуется дополнительная фиксация витков обмоток;
• С полузакрытыми (клиновидными) пазами — пазы суживаются кверху, поэтому витки обмоток фиксируются вставкой изоляционных клиньев или кембриков (трубок из ПВХ);
• С полузакрытыми пазами для обмоток с одновитковыми катушками — пазы имеют сложное сечение под укладку одного или двух витков провода большого диаметра или провода в виде широкой ленты.

По схеме укладки обмоток статоры бывают трех типов:

• С петлевой (петлевой распределенной) схемой — провод каждой обмотки укладывается в пазы сердечника петлями (обычно один виток укладывается с шагом в два паза, в эти пазы укладываются витки второй и третьей обмоток — так обмотки приобретают сдвиг, необходимый для генерации трехфазного переменного тока);
• С волновой сосредоточенной схемой — провод каждой обмотки укладываются в пазы волнами, обходя их то с одной, то с другой стороны, причем в каждом пазу лежит по два витка одной обмотки, направленных в одну сторону;
• С волновой распределенной схемой — провод также укладывается волнами, однако витки одной обмотки в пазах направлены в разные стороны.

При любом типе укладки каждая обмотка имеет шесть витков, распределенных по сердечнику.

Независимо от способа укладки провода, существует две схемы соединения обмоток:

• «Звезда» — в этом случае обмотки соединены параллельно (концы всех трех обмоток соединены в одной (нулевой) точке, а их начальные выводы свободны);
• «Треугольник» — в этом случае обмотки соединены последовательно (начало одной обмотки с концом другой).

При соединении обмоток «звездой» наблюдается более высокий ток, данная схема применяется на генераторах мощностью не более 1000 Вт, которые эффективно работаю на малых оборотах. При соединении обмоток «треугольником» ток снижается (в 1,7 раз относительно «звезды»), однако генераторы с такой схемой подключения лучше работают на высоких мощностях, а для их обмоток можно использовать проводник меньшего сечения.

Часто вместо «треугольника» используется схема «двойная звезда», в этом случае статор должен иметь уже не три, а шесть обмоток — по три обмотки соединяются «звездой», и две «звезды» подключаются к нагрузке параллельно.

Что касается характеристик, то для статоров наибольшее значение имеет номинальное напряжение, мощность и номинальный ток в обмотках. По номинальному напряжению статоры (и генераторы) делятся на две группы:

• С напряжением в обмотках 14 В — для транспортных средств с напряжением бортовой сети 12 В;
• С напряжением в обмотках 28 В — для техники с напряжением бортовой сети 24 В.

Генератор вырабатывает более высокое напряжение, так как в выпрямителе и стабилизаторе неизбежно происходит падение напряжения, а на входе в бортовую электросеть наблюдается уже нормальное напряжение в 12 или 24 В.

Большинство генераторов для автомобилей, тракторов, автобусов и прочей техники имеет номинальный ток от 20 до 60 А, для легковых автомобилей достаточно 30-35 А, для грузовиков — 50-60 А, для тяжелой техники выпускаются генераторы с током до 150 и более А. При этом мощность генераторов колеблется от 400 до 2500 Вт.

Принцип работы статора генератора

Работа статора и всего генератора основана на явлении электромагнитной индукции — возникновении тока в проводнике, который движется в магнитном поле или покоится в переменном магнитном поле. В автомобильных генераторах используется второй принцип — проводник, в котором возникает ток, покоится, а магнитное поле постоянно изменяется (вращается).

При запуске двигателя ротор генератора начинает вращаться, одновременно на его возбуждающую обмотку подается напряжение от аккумуляторной батареи. Ротор имеет многополюсный стальной сердечник, который при подаче тока на обмотку становится электромагнитом, соответственно, вращающийся ротор создает переменное магнитное поле. Силовые линии этого поля пересекают статор, расположенный вокруг ротора. Сердечник статора определенным образом распределяет магнитное поле, его силовые линии пересекают витки рабочих обмоток — в них за счет электромагнитной индукции генерируется ток, который снимается с выводов обмотки, поступает на выпрямитель, стабилизатор и в бортовую сеть.

При увеличении оборотов двигателя часть тока от рабочей обмотки статора подается на обмотку возбуждения ротора — так генератор переходит в режим самовозбуждения и уже не нуждается в стороннем источнике тока.

В процессе работы статор генератора испытывает нагрев и электрические нагрузки, также он подвергается негативным воздействиям окружающей среды. Это с течением времени может привести к ухудшению изоляции между обмотками и электрическому пробою. В данном случае статор нуждается в ремонте или полной замене. При регулярном техническом обслуживании и своевременной замене статора генератор будет служить надежно, стабильно обеспечивая автомобиль электрической энергией.

Другие статьи

Винты, болты и гайки, разложенные по столу или в пластиковой емкости, легко теряются и повреждаются. Эту проблему при временном хранении метизов решают магнитные поддоны. Все о данных приспособлениях, их типах, конструкции и устройстве, а также о выборе и применении поддонов — читайте в этой статье.

В подвесках грузовых автомобилей, автобусов и другой техники предусмотрены элементы, компенсирующие реактивный момент — реактивные штанги. Соединение штанг с балками мостов и рамой осуществляется с помощью пальцев — об этих деталях, их типах и конструкции, а также о замене пальцев читайте в статье.

Многие модели автомобилей МАЗ оснащаются приводом выключения сцепления с пневматическим усилителем, важную роль в работе которого играет клапан включения привода. Все о клапанах включения привода сцепления МАЗ, их типах и конструкции, а также о подборе, замене и ТО данной детали — узнайте из статьи.

При ремонте поршневой группы двигателя возникают сложности с установкой поршней — выступающие из канавок кольца не позволяют поршню свободно войти в блок. Для решения этой проблемы используются оправки поршневых колец — о данных приспособлениях, их типах, конструкции и применении узнайте из статьи.

Яков Кузнецов/ автор статьи

Приветствую! Я являюсь руководителем данного проекта и занимаюсь его наполнением. Здесь я стараюсь собирать и публиковать максимально полный и интересный контент на темы связанные ремонтом автомобилей и подбором для них запасных частей. Уверен вы найдете для себя немало полезной информации. С уважением, Яков Кузнецов.

Понравилась статья? Поделиться с друзьями:
NEVINKA-INFO.RU
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: