Электродвигатель в паре с генератором - NEVINKA-INFO.RU

Электродвигатель в паре с генератором

Как переделать асинхронный трехфазный электродвигатель в мощный электрогенератор на неодимовых магнитах своими руками

Электродвигатель в паре с генератором

Как переделать асинхронный электродвигатель в мощный электрогенератор

Многие задумываются о получении бесплатной электроэнергии, преображая в нее кинетическую энергию ветра или воды. Продаваемые для этого ветрогенераторы или мини ГЭС достаточной мощности стоят очень дорого. Чтобы сэкономить, генератор для своей установки по производству бесплатной энергии можно сделать на базе обычного электродвигателя.

Что потребуется:

  • асинхронный трехфазный электродвигатель;
  • неодимовые прямоугольные магниты — http://ali.pub/4yy1yd
  • эпоксидная смола.

Процесс изготовления генератора

Чтобы сделать генератор, нужно разобрать асинхронный трехфазный мотор. У него извлекается ротор, чтобы оснастить его в дальнейшем постоянными магнитами.

Далее нужно определиться с количеством и размером магнитов. Они должны быть в виде прямоугольников. Причем по ширине каждый магнит должен полностью перекрывать 2 паза на сердечнике статора, то есть ложиться на 3 шипа. В таком случае он будет воздействовать своим полем сразу на 3 катушки обмотки статора. Для двигателя из данного примера подходит магнит шириной 25 мм.

Сердечник данного статора состоит из 12 групп, в которые входят по 3 шипа. Таким образом, на ротор нужно прикрепить соответственно 12 рядов магнитов. Между ними чередуется полярность. Магниты каждого ряда должны выстраиваются в линию соответствующую по длине продолжительности сердечника ротора. Так как для изготовления генератора были выбраны магниты 40х25х10 мм, то их помещается по 3 в ряд.

Нужно закрепить магниты на якоре с помощью эпоксидного клея. Так как от этого диаметр ротора увеличится, то его возможно понадобится перед этим проточить, чтобы он после добавления магнитов мог поместиться в статор.

Такое количество неодимовых магнитов на роторе делает проблематичным его установку в статор, так как они притягиваются. Есть риск пораниться при установке, поэтому нельзя помещать пальцы между притягивающимися сердечниками.

Двигатель собирается. После этого нужно доработать его клеммную колодку. В ней имеется 6 выводов обмоток, которые нужно подключить по схеме звезда. Необходимо 3 из них соединить в один узел. Тогда между ним и любым другим оставшийся концом обмотки будет 220В.

После этого генератор можно подключать с помощью редуктора к ветряку или делать из него мини ГЭС. Также возможно напрямую соединить его с двигателем внутреннего сгорания. При достаточных оборотах от него можно питать практически любые бытовые электроприборы.

Смотрите видео

Электродвигатель в паре с генератором

Работа асинхронного двигателя в режиме генератора

В статье рассказано о том, как построить трёхфазный(однофазный) генератор 220/380 В на базе асинхронного электродвигателя переменного тока.

Трехфазный асинхронный электродвигатель, изобретённый в конце 19-го века русским учёным-электротехником М.О. Доливо-Добровольским, получил в настоящее время преимущественное распространение и в промышленности, и в сельском хозяйстве, а также в быту. Асинхронные электродвигатели–самые простые и надёжные в эксплуатации. Поэтому во всех случаях, когда это допустимо по условиям электропривода и нет необходимости в компенсации реактивной мощности, следует применять асинхронные электродвигатели переменного тока.

Различают два основных вида асинхронных двигателей: с короткозамкнутым ротором и с фазным ротором. Асинхронный короткозамкнутый электродвигатель состоит из неподвижной части — статора и подвижной части — ротора, вращающегося в подшипниках, укреплённых в двух щитах двигателя. Сердечники статора и ротора набраны из отдельных изолированных один от другого листов электротехнической стали. В пазы сердечника статора уложена обмотка, выполненная из изолированного провода. В пазы сердечника ротора укладывают стержневую обмотку или заливают расплавленный алюминий. Кольца-перемычки накоротко замыкают обмотку ротора по концам (отсюда и название-короткозамкнутый). В отличие от короткозамкнутого ротора, в пазах фазного ротора размещают обмотку, выполненную по типу обмотки статора. Концы обмотки подводят к контактным кольцам, укреплённым на валу. По кольцам скользят щетки, соединяя обмотку с пусковым или регулировочным реостатом. Асинхронные электродвигатели с фазным ротором являются более дорогостоящими устройствами, требуют квалифицированного обслуживания, менее надёжны, а потому применяются только в тех отраслях производства, в которых без них обойтись нельзя. По этой причине они мало распространены, и мы их в дальнейшем рассматривать не будем.

По обмотке статора, включенной в трехфазную цепь, протекает ток, создающий вращающее магнитное поле. Магнитные силовые линии вращающегося поля статора пересекают стержни обмотки ротора и индуктируют в них электродвижущую силу (ЭДС). Под действием этой ЭДС в замкнутых накоротко стержнях ротора протекает ток. Вокруг стержней возникают магнитные потоки, создающие общее магнитное поле ротора, которое, взаимодействуя с вращающим магнитным полем статора, создает усилие, заставляющее ротор вращаться в направлении вращения магнитного поля статора. Частота вращения ротора несколько меньше частоты вращения магнитного поля, создаваемого обмоткой статора. Этот показатель характеризуется скольжением S и находиться для большинства двигателей в пределах от 2 до 10%.

В промышленных установках наиболее часто используются трёхфазные асинхронные электродвигатели, которые выпускают в виде унифицированных серий. К ним относится единая серия 4А с диапазоном номинальной мощности от 0,06 до 400 кВт, машины которой отличаются большой надёжностью, хорошими эксплуатационными качествами и соответствуют уровню мировых стандартов.

Автономные асинхронные генераторы — трёхфазные машины, преобразующие механическую энергию первичного двигателя в электрическую энергию переменного тока. Их несомненным достоинством перед другими видами генераторов являются отсутствие коллекторно-щеточного механизма и, как следствие этого, большая долговечность и надежность. Если отключенный от сети асинхронный двигатель привести во вращение от какого-либо первичного двигателя, то в соответствии с принципом обратимости электрических машин при достижении синхронной частоты вращения, на зажимах статорной обмотки под действием остаточного магнитного поля образуется некоторая ЭДС. Если теперь к зажимам статорной обмотки подключить батарею конденсаторов С, то в обмотках статора потечёт опережающий ёмкостный ток, являющийся в данном случае намагничивающим. Ёмкость батареи С должна превышать некоторое критическое значение С0, зависящее от параметров автономного асинхронного генератора: только в этом случае происходит самовозбуждение генератора и на обмотках статора устанавливается трёхфазная симметричная система напряжений. Значение напряжения зависит, в конечном счёте, от характеристики машины и ёмкости конденсаторов. Таким образом, асинхронный короткозамкнутый электродвигатель может быть превращен в асинхронный генератор.

Рис.1 Стандартная схема включения асинхронного электродвигателя в качестве генератора.

Можно подобрать емкость так, чтобы номинальное напряжение и мощность асинхронного генератора равнялись соответственно напряжению и мощности при работе его в качестве электродвигателя.

В таблице 1 приведены емкости конденсаторов для возбуждения асинхронных генераторов (U=380 В, 750….1500 об/мин). Здесь реактивная мощность Q определена по формуле:

Электродвигатель в паре с генератором

Электрики давно научились извлекать пользу из принципа обратимости электрических машин: когда попадает в руки вроде бы ненужный трехфазный движок, то его можно раскрутить от бытовой сети или вырабатывать бесплатную электрическую энергию.

Но в данном материале мы не собираемся «вешать лапшу» про свободную и бесплатную энергию или про «гениев», подключивших лампочку к батарейке. И так:

Асинхронные электродвигатели

В статье рассказано о том, как построить трёхфазный (однофазный) генератор 220/380 В на базе асинхронного электродвигателя переменного тока. Трехфазный асинхронный электродвигатель, изобретённый в конце 19-го века русским учёным-электротехником М.О. Доливо-Добровольским, получил в настоящее время преимущественное распространение и в промышленности, и в сельском хозяйстве, а также в быту.

Асинхронные электродвигатели – самые простые и надёжные в эксплуатации. Поэтому во всех случаях, когда это допустимо по условиям электропривода и нет необходимости в компенсации реактивной мощности, следует применять асинхронные электродвигатели переменного тока.

Различают два основных вида асинхронных двигателей: с короткозамкнутым ротором и с фазным ротором. Асинхронный короткозамкнутый электродвигатель состоит из неподвижной части — статора и подвижной части — ротора, вращающегося в подшипниках, укреплённых в двух щитах двигателя. Сердечники статора и ротора набраны из отдельных изолированных один от другого листов электротехнической стали. В пазы сердечника статора уложена обмотка, выполненная из изолированного провода. В пазы сердечника ротора укладывают стержневую обмотку или заливают расплавленный алюминий. Кольца-перемычки накоротко замыкают обмотку ротора по концам (отсюда и название — короткозамкнутый). В отличие от короткозамкнутого ротора, в пазах фазного ротора размещают обмотку, выполненную по типу обмотки статора. Концы обмотки подводят к контактным кольцам, укреплённым на валу. По кольцам скользят щетки, соединяя обмотку с пусковым или регулировочным реостатом.

Читайте также  Чертеж съемника для подшипника генератора

Асинхронные электродвигатели с фазным ротором являются более дорогостоящими устройствами, требуют квалифицированного обслуживания, менее надёжны, а потому применяются только в тех отраслях производства, в которых без них обойтись нельзя. По этой причине они мало распространены, и мы их в дальнейшем рассматривать не будем.

Генератор асинхронного или индукционного типа представляет собой особую разновидность устройств, использующую переменный ток и имеющую способность воспроизведения электроэнергии. Главной особенностью является совершение довольно быстрых поворотов, которые делает ротор, по скорости вращения этого элемента он в значительной степени превосходит синхронную разновидность.

Одним из главных преимуществ является возможность использования данного устройства без существенных преобразований схемы или длительного настраивания.

Однофазную разновидность индукционного генератора можно подключить путем подачи на него необходимого напряжения, для этого потребуется подсоединение его к источнику питания. Однако, ряд моделей производит самовозбуждение, эта способность позволяет им функционировать в режиме, независимом от каких-либо внешних источников.

Осуществляется это благодаря последовательному приведению конденсаторов в рабочее состояние.

Схема генератора из асинхронного двигателя


Нажмите на изображение чтобы увеличить

В фактически любой машине электрического типа, сконструированной по типу генератора, имеются 2 разные активные обмотки, без которых невозможно функционирование устройства:

  • Обмотка возбуждения, которая находится на специальном якоре.
  • Статорная обмотка, которая отвечает за образование электрического тока, данный процесс происходит внутри нее.

Для того, чтобы наглядно представить и точнее понять все процессы, происходящие во время функционирования генератора, наиболее оптимальным вариантом будет подробнее рассмотреть схему его работы:

  • Напряжение, которое подается от аккумулятора или любого иного источника, создает магнитное поле в якорной обмотке.
  • Вращение элементов устройства вместе с магнитным полем можно реализовать разными способами, в том числе и вручную.
  • Магнитное поле, вращающееся с определенной скоростью, порождает электромагнитную индукцию, благодаря чему в обмотке появляется электрический ток.
  • Подавляющее большинство используемых на сегодняшний день схем не имеет возможностей для обеспечения якорной обмотки напряжением, это связано с наличием в конструкции короткозамкнутого ротора. Поэтому, вне зависимости от скорости и времени вращения вала, питающие клеммы устройства все равно будут обесточены.

При переделывании двигателя в генератор, самостоятельное создание движущегося магнитного поля является одним из основных и обязательных условий.

Устройство генератора


Нажмите на изображение чтобы увеличить

Перед тем, как предпринимать какие-либо действия по переделыванию асинхронного двигателя в генератор, необходимо понять устройство данной машины, которое выглядит следующим образом:

  • Статор, который оснащен сетевой обмоткой с 3 фазами, размещенной по его рабочей поверхности.
  • Обмотка организована таким образом, что напоминает по своей форме звезду: 3 начальных элемента соединяются между собой, а 3 противоположных стороны соединены с контактными кольцами, которые не имеют никаких точек соприкосновений между собой.
  • Контактные кольца имеют надежный крепеж к валу ротора.
  • В конструкции имеются специальные щетки, которые не совершают никаких самостоятельных движений, но способствуют включению реостата с тремя фазами. Это позволяет осуществлять изменение параметров сопротивления обмотки, находящейся на роторе.
  • Нередко, во внутреннем устройстве присутствует такой элемент, как автоматический короткозамыкатель, необходимый для того, чтобы закоротить обмотку и остановить реостат, находящийся в рабочем состоянии.
  • Еще одним дополнительным элементом устройства генератора может являться специальное приспособление, которое разводит щетки и контактные кольца в тот момент, когда они проходят стадию замыкания. Подобная мера способствует значительному уменьшению потерь, отводимых на трение.

Изготовление генератора из двигателя

Фактически, любой асинхронный электродвигатель можно собственными руками переделать в устройство, функционирующее по типу генератора, который затем допускается использовать в быту. Для этой цели может подойти даже двигатель, взятый из стиральной машинки старого образца или любого иного бытового оборудования.

Чтобы данный процесс был благополучно реализован, рекомендуется придерживаться следующего алгоритма действий:

  • Снять слой сердечника двигателя, благодаря чему будет образовано углубление в его структуре.
  • Осуществить это можно на токарном станке, рекомендуется снять 2 мм. по всему сердечнику и проделать дополнительные отверстия с глубиной около 5 мм.
  • Снять размеры с полученного ротора, после чего из жестяного материала изготовить шаблон в виде полосы, который будет соответствовать габаритам устройства.
  • Установить в образовавшемся свободном пространстве неодимовые магниты, которые необходимо заранее приобрести. На каждый полюс потребуется не менее 8 магнитных элементов.
  • Фиксацию магнитов можно осуществить при помощи универсального суперклея, но необходимо учитывать, что при приближении к поверхности ротора они будут менять свое положение, поэтому их необходимо крепко удерживать руками пока каждый элемент не приклеится. Дополнительно рекомендуется использовать во время этого процесса защитные очки, чтобы избежать попадания брызг клея в глаза.
  • Обернуть ротор обычной бумагой и скотчем, который потребуется для ее фиксации.
  • Торцовую часть ротора залепить пластилином, что обеспечит герметизацию устройства.
  • После совершенных действий необходимо произвести обработку свободных полостей, между магнитными элементами. Для этого оставшееся между магнитами свободное пространство необходимо залить эпоксидной смолой. Удобнее всего будет прорезать специальное отверстие в оболочке, преобразовать его в горлышко и залепить границы при помощи пластилина. Внутрь можно заливать смолу.
  • Дождаться полного застывания залитой смолы, после чего защитную бумажную оболочку можно устранить.
  • Ротор необходимо зафиксировать при помощи станка или тисков, чтобы можно было провести его обработку, которая заключается в шлифовании поверхности. Для этих целей можно использовать наждачную бумагу со средним параметром зернистости.
  • Определить состояние и предназначение проводов, выходящих из двигателя. Двое должны вести к рабочей обмотке, остальные можно обрезать, чтобы не запутаться в дальнейшем.
  • Иногда процесс вращения осуществляется довольно плохо, чаще всего причиной являются старые износившиеся и тугие подшипники, в таком случае их можно заменить новыми.
  • Выпрямитель для генератора можно собрать из специальных кремниевых диодов, которые предназначены именно для этих целей. Также потребуется контроллер для зарядки, подходят фактически все современные модели.

После совершения всех названных действий, процесс можно считать завершенным, асинхронный двигатель был преобразован в генератор такого же типа.

Оценка уровня эффективности – выгодно ли это?

Генерация электрического тока электродвигателем вполне реальна и реализуема на практике, основной вопрос заключается в том, насколько это выгодно?

Сравнение осуществляется в первую очередь с синхронной разновидностью аналогичного устройства, в котором отсутствует электрическая цепь возбуждения, но несмотря на этот факт, его устройство и конструкция не являются более простыми.

Обуславливается это наличием конденсаторной батареи, являющейся крайне сложным в техническом плане элементом, который отсутствует у асинхронного генератора.

Основное преимущество асинхронного устройства заключается в том, что имеющиеся в наличии конденсаторы не требуют какого-либо обслуживания, поскольку вся энергия передается от магнитного поля ротора и тока, который вырабатывается в ходе функционирования генератора.

Создаваемый во время работы электрический ток фактически не имеет высших гармоник, что является еще одним значимым преимуществом.

Иных плюсов, кроме названных, асинхронные устройства не имеют, но зато обладают рядом существенных недостатков:

В ходе их функционирования отсутствует возможность по обеспечению номинальных промышленных параметров электрического тока, который вырабатывается генератором.

Высокая степень чувствительности даже к малейшим перепадам параметров рабочих нагрузок.

Читайте также  Шкив генератора хендай в тихвине

При превышении параметров допустимых нагрузок на генератор, будет зафиксирована нехватка электричества, после чего подзарядка станет невозможной и процесс генерации будет остановлен. Для устранения этого недостатка, часто используют батареи со значительной емкостью, которые имеют особенность изменять свой объем в зависимости от величины оказываемых нагрузок.

Электрический ток, который вырабатывается асинхронным генератором, подвержен частым изменениям, природа которых неизвестна, она носит случайный характер и никак не объясняется научными доводами.

Невозможность учета и соответствующей компенсации таких изменений объясняет то факт, что подобные устройства не обрели популярность и не получили особого распространения в наиболее серьезных отраслях промышленности или бытовых делах.

В заключение несколько общих советов.

1. Генератор переменного тока является устройством повышенной опасности. Применяйте напряжение 380 В только в случае крайней необходимости, во всех остальных случаях пользуйтесь напряжением 220 В.

2. По требованиям техники безопасности электрогенератор необходимо оборудовать заземлением.

3. Обратите внимание на тепловой режим генератора. Он «не любит» холостого хода. Снизить тепловую нагрузку можно более тщательным подбором емкости возбуждающих конденсаторов.

4. Не ошибитесь с мощностью электрического тока, вырабатываемого генератором. Если при работе трёхфазного генератора используется одна фаза, то её мощность будет составлять 1/3 общей мощности генератора, если две фазы — 2/3 общей мощности генератора.

5. Частоту переменного тока, вырабатываемого генератором, можно косвенно контролировать по выходному напряжению, которое в режиме «холостого хода» должно на 4…6 % превышать промышленное значение 220/380 В.

Проверка возможностей автомобильного генератора в качестве электродвигателя.

Решил провести эксперимент, по возможности использования генератора от легкового автомобиля, как тягового двигателя с прямым приводом на колесо, для велосипеда или что-либо подобного.
У меня как раз есть исправный генератор, но использовать его в автомобиль я не могу, как и некоторые другие вещи, но зато попробую провести этот эксперимент сам. В интернете на специализированных форумах есть размышления, что так не делают, что и в конструкции генератора специально особым образом подобраны формы ротора и статора, для работы его как генератора. Да и наличие отдельной катушки возбуждения усложняет конструкцию. Но из достоинств – генератор не создает практически никаких сопротивлений вращению, если на него не подан ток, и он есть за бесплатно. Заниматься самому математическим анализом реализации такой возможности, нет достаточного опыта и данных, пока (если кто разложит все по полочкам — буду признателен).
Схема подключения генератора:

Генератор был аккуратно разобран:

Из него был удален диодный мост и схема регулятора напряжения, подключены провода к обмоткам генератора, и щеточному узлу катушки возбуждения:

Затем все было собрано аккуратно и стало иметь такой вид:

Скрепка – торчащая из задней крышки генератора, фиксирует подпружиненные щетки в заглубленном состоянии, что позволяет правильно установить заднюю крышку, ничего не сломав. Затем скрепка вытягивается, и щетки упираются в коллектор.

Далее, из имеющегося блока электроусилителя руля, работающего на трехфазный мотор, изымаем блок силовых транзисторов. К сожалению, использовать его как полноценный блок управления трехфазным мотором (BLDC) нельзя.

Поэтому подключим блок силовых транзисторов к имеющейся плате 2CAN (описано ранее), через самодельную плату с драйверами управления транзисторами. А так как лето у нас короткое, то плата сделана самым простым и быстрым проверенным способом лазерной печати и утюга:

Общая схема получилась примерно такая:

Так как на плате 2CAN разведены не все выводы платы и микроконтроллера, пришлось добавить соединений навесным монтажом:

Написана простая программа управления трехфазным двигателем, используя таймер №1.Пока решил не использовать датчики положения ротора, ограничившись только регулировкой частоты вращения и заполнением ШИМ (амплитуду синусоид). Если генератор покажет оптимистичные характеристики, то тогда и усложню схему и программу. Форму напряжения выбрал синусоидальную, коэффициенты для таймера рассчитал простой программой на javascript, (позволяет писать программы в любом текстовом редакторе и запускать на выполнение любым браузером), файл sine.html (в zip) прилагаю ниже.

При открытии его браузером, можно просмотреть значения, и скопировать в буфер обмена:

Такая конструкция получилось в итоге:

Форма результирующего напряжения двух фаз такая (осциллограф двухлучевой к сожалению):

(после простого R-C фильтра для щупа осциллографа), а так без фильтра на прямую:

В качестве источника питания был выбран аккумулятор 12В 7А, через предохранитель 30 Ампер питание подавалось на схему. Обороты генератора, которые меня интересовали, были в пределах от 0 до 420 оборотов в минуту. Исходя из того, что если на шкив генератора надеть колесо диаметром 20 см, и при этом скорость максимальную ограничить в 16км/час. Подключим генератор:

Примитивным способом оценить крутящий момент, развиваемый генератором, решили с помощью поднятия груза, подвешенного за веревку к шкиву генератора.

Далее все расчеты довольно примитивны, и возможно есть ошибки. В качестве груза выбрал две 5-литровых емкости с водой. При диаметре шкива 5,5см, генератор с уверенно поднимал этот груз при 50 % заполнении ШИМ таймера на высоту 50 см за 3 секунды. Ток от аккумулятора составлял порядка 16 Ампер, но и напряжение на нем падало до 11 Вольт (слабоват аккумулятор). Получается, гарантирован крутящий момент примерно 2,75 ньютона на метр, при 3 оборотах в секунду. Сила тяги генератора с колесом диаметром 20см, одетого напрямую на вал, составила бы 12,5 ньютона (условная скорость составила бы примерно 7км/час). Для ребёнка, стоящего на роликах может быть и хватит. Для реализации полной мощности потребовался бы аккумулятор большей емкости, и более толстые провода. Без нагрузки, генератор вращается без подачи тока на катушку возбуждения (как несинхронный трехфазный электродвигатель). По идее, учитывая, что при потребляемой мощности в 176 ватт, получаем мощность на совершение работы, очень примерно оцененной в 16 Ватт, КПД полученного устройства не радует. Даже если удастся увеличить КПД использованием датчиков положения ротора в два -три раза, тяга маловата все таки для взрослого человека. Значительная часть тока тратится на катушку возбуждения, при этом, в зависимости от нагрузки, оборотов и температуры генератора составляет это порядка 5 — 12 Ампер. Да и генератор в родном рабочем режиме крутится на горазбо более высоких оборотах (2100 — 18000 об/мин). Выходить на рабочие токи больше 30 Ампер в схеме посчитал нецелесообразным. Конечно, используя мотор с постоянными магнитами, можно значительно поднять КПД устройства. Но все равно, значительные токи в узлах схемы, при напряжении питания в 12 Вольт, не позволяют добиться приемлемых параметров при длительной работе мотора в тяговом режиме. А перематывать катушки статора генератора под другое напряжение, количество оборотов, делать ротор с неодимовыми магнитами — это уже надо быть сильно мотивированным на это. Практичнее переходить на готовые, относительно легко доступные BLDC моторы для велосипедов, скутеров и т.д. с напряжением 36 Вольт и более. Также был подключен оригинальный двигатель, и это совсем другая тема и возможности:

В автомобильных вентиляторах охлаждения, часто применяются двухфазные электродвигатели с постоянными магнитами, выдавая мощность под 300ватт (но коррозия и большие токи зачастую выводят из строя компактную схему управления, встроенную в мотор).

Других целей больше не было, остался удовлетворенным полученным отрицательным результатом :)

Приведу настройки таймера:

Читайте также  Форд фокус 2008 замена ремня генератора

А табличные значения получаем как написано выше (редактируем имя распечатываемого на экран массива ) :) Плохо что видео нельзя тут приложить, довольно забавно. Если есть вопросы – без проблем задавайте, пишите :)

С уважением, Астанин Сергей, ICQ 164487932.

Добавил сам проект, правда внутри много лишнего осталось от проекта общения по CAN, но мотору не мешает.

Асинхронный электродвигатель в качестве генератора

Подписка на рассылку

  • ВКонтакте
  • Facebook
  • ok
  • Twitter
  • YouTube
  • Instagram
  • Яндекс.Дзен
  • TikTok

Рисунок 1. Трехфазная асинхронная электрическая машина Асинхронные электродвигатели были разработаны еще в конце 19-го века М. О. Доливо-Добровольским и с тех пор не претерпели каких-либо действительно значительных изменений. Тем не менее именно такие электрические машины, особенно их модификации с короткозамкнутым ротором, получили наибольшее распространение практически во всех отраслях человеческой деятельности, что объясняется их универсальностью, надежностью и на порядок более низкой ценой в сравнении с двигателями постоянного тока.

С учетом приведенных выше качеств выглядит вполне логичным преимущественное использование именно асинхронных электродвигателей в качестве генераторов. Причем по сугубо экономическим соображениям это делается не только тогда, когда необходимо получить переменный, но и постоянный ток.

Генератор 380 В на базе трехфазной асинхронной электрической машины

Рисунок 2. Стандартная схема подключения асинхронного электродвигателя в качестве генератора Трехфазный генератор 380 В на базе асинхронного электродвигателя переменного тока получают путем отключения питающей сети и подсоединения его рабочего вала к валу механического двигателя. Такая конфигурация благодаря принципу обратимости электрических машин позволяет при достижении синхронной частоты вращения снять с зажимов статорной обмотки некоторую ЭДС, генерируемую остаточным магнитным полем. Если при этом к зажимам статорной обмотки подключить конденсаторную батарею, то в соответствующих обмотках потечет емкостной ток, выполняющий в данном случае роль намагничивающего фактора.

Критическим параметром всей установки является емкость конденсаторной батареи, которая должна превышать некоторое пороговое значение С0 — только при выполнении данного условия возможно самовозбуждение генератора и установление на обмотках его статора симметричной трехфазной системы напряжений.

Нетрудно догадаться, что конденсаторная батарея, точнее — ее емкость, играющая ключевую роль во всей схеме, является самым уязвимым местом. Дело в том, что поддержание заданного напряжения при увеличении нагрузки на генератор, особенно ее реактивной составляющей, для поддержания необходимого напряжения требуется постоянно наращивать емкость конденсаторной батареи путем увеличения подключенных конденсаторов. В цифрах картина выглядит следующим образом:

Стоит отметить, что некоторого смягчения воздействия реактивной составляющей позволяют достигнуть компенсаторы реактивной мощности серий КМ1/КМ2. При желании их аналоги можно изготовить и самостоятельно на основе конденсаторов МБГТ/ МБГП/ МБГО и др. за исключением электролитических.

Однофазный генератор 220 В на базе асинхронного электродвигателя переменного тока

Рисунок 3. Схема подключения однофазного генератора 220 В на базе асинхронного электродвигателя переменного тока Как уже отмечалось выше, трехфазные генераторы используются далеко не только для получения переменного напряжения. Еще одним распространенным способом использования асинхронного электродвигателя в качестве генератора является подключение, подразумевающее использование конденсаторной батареи в тандеме только с одной обмоткой. Такой ход позволяет уменьшить емкость конденсаторов и снизить нагрузку на первичный механический двигатель, что, в свою очередь, позволяет сэкономить недешевое природное топливо, однако и вырабатываемая мощность значительно падает. Экономический эффект наиболее ощутим при частой работе генератора в режиме холостого хода, что особенно актуально для бытового использования.

Емкость используемых в данной схеме конденсаторов напрямую зависит от характера нагрузки: активная нагрузка (СВЧ, освещение помещений, паяльные станции) требует меньшей емкости, индуктивная (телевизоры, холодильники, стиральные машины) — большей.

Можно ли использовать электродвигатель как генератор

Содержание

  1. Законы, позволяющие использовать асинхронный электродвигатель как генератор
  2. Способы переделки электродвигателя в генератор
  3. Торможение реактивной нагрузкой
  4. Самовозбуждение электродвигателя
  5. Что нужно знать, чтобы электродвигатель работал как генератор
  6. Насколько эффективно использование электродвигателя в качестве генератора

Всем известно, что работа электродвигателя – это преобразование электрической энергии в механическую. Удастся ли заставить его преобразовывать механическую энергию в электрическую, чтобы использовать электродвигатель как генератор? Благодаря действующему в электротехнике принципу обратимости это возможно. Но нужно четко знать принцип работы агрегата и создать условия, способствующие превращению.

Законы, позволяющие использовать асинхронный электродвигатель как генератор

В генераторе напряжение, обычно подаваемое с аккумулятора, возбуждает в обмотке якоря магнитное поле, вращение же обеспечивается любым физическим устройством. В электродвигателе возможность подачи напряжения на обмотку якоря не предусмотрена. Чтобы он не поглощал, а вырабатывал электроэнергию, магнитное поле необходимо создать искусственно.

В асинхронном двигателе вращающееся магнитное поле ротора «отстает» от поля статора, обеспечивая процесс перехода электроэнергии в механическую энергию. Следовательно, чтобы запустить обратный процесс, нужно сделать так, чтобы поле статора вращалось медленнее поля ротора, либо чтобы оно вращалось в противоположную сторону.

Способы переделки электродвигателя в генератор

Есть два способа «регулировки» магнитного поля статора.

Торможение реактивной нагрузкой

Сделать это можно с помощью мощной конденсаторной батареи. Включите ее в цепь питания двигателя, который работает в обычном режиме. Заряд, накопленный в батарее, будет в противофазе с зарядом, создаваемым питающим напряжением, что приведет к замедлению последнего. После этого двигатель вместо поглощения тока начинает генерировать его, отдавая в сеть.

Любой транспорт на электротяге работает именно благодаря этому эффекту – при «самостоятельном» движении под уклон механическая энергия не требуется, и конденсаторная батарея автоматически подключается к цепи питания. Вырабатываемая энергия подается в сеть, чтобы затем опять преобразоваться в механическую.

Самовозбуждение электродвигателя

Остаточное магнитное поле ротора может произвести ЭДС, достаточное для зарядки конденсатора. Вследствие этого возникает эффект самовозбуждения, что делает возможным переход двигателя в режим генерации электроэнергии. Непрерывность этого процесса обеспечивает конденсаторная батарея, подпитывающаяся от произведенного тока.

Этот способ является более действенным, и именно он подходит, если вы хотите применить асинхронный электродвигатель как генератор.

Что нужно знать, чтобы электродвигатель работал как генератор

При переделке двигателя в генератор следует учитывать следующие технические детали:

  • Не пытайтесь использовать электролитические конденсаторы – они не пригодны для подключения в цепь. Вам нужны неполярные конденсаторные батареи.
  • В трехфазных машинах конденсаторы могут включаться по схеме «треугольник» или «звезда». В первом случае величина напряжения на выходе выше, а во втором генерация начинается на меньших оборотах ротора. Выбирайте оптимальный для достижения вашей цели вариант.
  • Однофазные асинхронные двигатели с короткозамкнутым ротором тоже могут генерировать электроэнергию. Запуск осуществляется с помощью фазосдвигающего конденсатора.

Поскольку определить необходимую величину емкости конденсаторной батареи невозможно, остается подбирать ее по весу – он должен быть равен весу двигателя или слегка превышать его.

Насколько эффективно использование электродвигателя в качестве генератора

У использования электродвигателя как генератора есть свои «плюсы»:

  • Агрегат достаточно прост в обслуживании и экономичен, поскольку конденсатор получает энергию от остаточного поля ротора и от вырабатываемого тока.
  • Практически отсутствуют «побочные» траты энергии на магнитные поля или бесполезный нагрев.
  • Преобразованный в генератор двигатель чувствителен к перепадам нагрузки.
  • Частота вырабатываемого тока часто нестабильна.
  • Такой генератор не может обеспечить промышленную частоту тока.

Если в вашем случае преимущества перевешивают недостатки, то применение асинхронного генератора целесообразно.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: