Униполярный генератор высокого напряжения

С момента открытия Фарадеем, в 1831 году, униполярные генераторы носили различные названия. Список этих названий пропорционален количеству учёных, которые работали над улучшением конструкции генератора...

Униполярный генератор, динамо машина, диск Фарадея: не важно, как вы его называете, в любом случае, униполярный генератор — это интересное устройство. В отличии от большинства других устройств того же назначения, униполярные генераторы способны вырабатывать большой ток при низком напряжении и выделять большое количество электроэнергии. Из-за таких характеристик, учёные работали над улучшением этого устройства с момента его изобретения. Вы также можете провести анализ рабочих характеристик униполярного генератора с использованием программного обеспечения COMSOL Multiphysics®.

Краткая история униполярных генераторов

Спустя 10 лет после прорыва в области электродвигателей в 1831 году Майкл Фарадей создал свой первый генератор. Первая установка (которую позже назвали униполярным генератором) была очень простой. Она состояла из медного диска, который вращался между полюсами постоянного магнита. Несмотря на то, что генератор Фарадея успешно демонстрировал принцип действия электромагнитной индукции, на практике он был слишком неэффективен из-за больших потерь и возникновения противотоков.


Схематичное изображение одного из первых униполярных генераторов, также известного, как диск Фарадея. Изображение имеется в свободном доступе в США, взято из Wikimedia Commons.

На протяжении многих лет учёные пытались улучшить производительность униполярных генераторов. Одним из самых известных примеров является разработанная Николой Теслой конструкция, в которой металлический ремень разделял параллельные диски на параллельных валах. Такая конструкция помогла уменьшить потери на трение, что значительно повысило эффективность устройства.

В 1950-е годы было обнаружено, что униполярные генераторы отлично очень полезны для импульсных силовых установок, так как они могут запасать энергию в течении длительного периода и практически мгновенно выделять её. Данное открытие возобновило интерес к генераторам, а учёные начали создавать масштабные конструкции генераторов. Один из них был создан сэром Майклом Олифантом в австралийском Национальном университете. Этот огромный генератор использовался на протяжении 20 лет и мог выдавать ток до 2 МА.


Некоторые элементы созданного сэром Олифантом униполярного генератора, который был разобран и выставлен на всеобщее обозрение. Изображение предоставлено Martyman, взято из англоязычной Википедии. Доступно по лицензии CC BY-SA 3.0 из Wikimedia Commons.

Не смотря на то, что униполярные генераторы прошли долгий путь и назывались различными именами изобретателей, учёные и инженеры до сих пор продолжают работать над улучшением производительности этих устройств. Одним из подходов к такой модернизации, конечно, является численное электродинамическое моделирование…

Моделирование простого униполярного генератора с использованием модуля AC/DC пакета COMSOL Multiphysics®

Давайте рассмотрим учебный пример, в котором представлена простая 3D модель униполярного генератора. Он состоит из вращающегося диска радиусом 10 см, который помещён в однородное магнитное поле величиной 1 Тл. Медный проводник соединяет край диска с его центром, чтобы создать замкнутую цепь для протекания тока, вызванного вращением проводника в постоянном магнитном поле (Lorentz current).


Геометрия модели униполярного генератора.

Обратите внимание, что угловая скорость диска — 1200 об/мин, а протекающий через проводник ток равен примерно 45.16 кА. Для моделирования вращающегося диска можно использовать узел Lorentz term (вклад силы Лоренца) по двум причинам:

  1. В диске нет магнитных источников, которые вращаются вместе с ним
  2. Диск ничем не ограничен и направление его движения не изменяется

В данном случае распределение тока не изменяется при вращении диска.

Анализ результатов электродинамического расчета

После проведения стационарного расчёта можно проанализировать распределение тока в диске и проводнике. Анализируя полученные результаты для нормы плотности тока и его направления, вы можете найти способы улучшения конструкции униполярного генератора.

Норма плотности тока (слева) и направление тока (справа) в медном проводнике и в диске.

Более того, можно изучить влияние магнитного поля, например, на вращение. Ниже приведён график распределения общей и индуцированной магнитной индукции в системе.


Из векторной диаграммы можно заметить, что униполярный генератор влияет на магнитное поле вокруг (возмущает его). Скорость колеса изображена бирюзовыми стрелками на поверхности.

Резистивные потери играют ключевую роль в эффективности таких генераторов, поэтому важно их минимизировать. На графике ниже продемонстрированы расчетные потери в проводящих частях генератора, которые легко получить в результате моделирования.


Резистивные потери в диске и в проводнике.

Используя электродинамическое моделирование, инженеры могут модернизировать конструкции униполярных генераторов, улучшать их производительность путём уменьшения потерь на трение или изменения распределения магнитного поля.

Дальнейшие шаги

Чтобы скачать учебный пример, представленный в этой заметке, нажмите на кнопку ниже. Вы окажетесь в Галерее приложений, где сможете войти в свою учетную запись COMSOL Access и загрузить MPH-файл, а также ознакомиться с пошаговыми инструкциями по сборке модели.

Глава 12 Униполярные машины

Глава 12 Униполярные машины

Первый униполярный генератор изобрел Майкл Фарадей. Суть эффекта, открытого Фарадеем, заключается в том, что при вращении диска в поперечном магнитном поле, на электроны в диске действует сила Лоренца, которая смещает их к центру или к периферии, в зависимости от направления поля и вращения, рис. 175. Благодаря этому, возникает электродвижущая сила, и через токосъемные щетки, касающиеся оси и периферии диска, можно снимать значительный ток и мощность, хотя напряжение небольшое (обычно, доли Вольта).

Рис. 175. Принцип униполярной индукции

Позднее, было обнаружено, что относительное вращение диска и магнита не является необходимым условием. Два магнита и токопроводящий диск между ними, вращающиеся вместе, также показывают наличие эффекта униполярной индукции. Магнит, сделанный из электропроводящего материала, при вращении, также может работать, в качестве униполярного генератора: он сам является и диском с которого щетками снимаются электроны, и он же является источником магнитного поля. В связи с этим, принципы униполярной индукции развиваются в рамках концепции движения свободных заряженных частиц относительно магнитного поля, а не относительно магнитов. Магнитное поле, в таком случае, считается неподвижным.

Споры о таких машинах шли долго. Понять, что поле есть свойство «пустого» пространства, физики, отрицающие существование эфира, не могли. Это правильно, поскольку «пространство не пустое», в нем есть эфир, и именно он обеспечивает среду существования магнитного поля, относительно которого вращаются и магниты, и диск. Магнитное поле можно понимать, как замкнутый поток эфира. Поэтому, относительное вращение диска и магнита не является обязательным условием.

В работах Тесла, как мы уже отмечали, были сделаны усовершенствования схемы (увеличен размер магнитов, а диск сегментирован), что позволяет создавать самовращающиеся униполярные машины Тесла, показанные на рис. 68. Странно, что нет информации о современных разработчиках таких генераторов.

Группа исследователей данного направления в Индии, под руководством Парамаханза Тевари (Paramahansa Tewari), сайт http://tewari.org получает 250 % эффективность с обычным электропроводящим диском. На рис. 176 показан их униполярный генератор с повышающим трансформатором.

Рис. 176. Униполярный генератор Тевари

Другой автор аналогичных разработок, Брюс Де Палма (Bruce De Palma) называл свой проект N-машина. Брюс был профессиональный инженер, закончил Гарвард и 15 лет занимался темой униполярных генераторов. На рис. 177 показана его схема, в которой и магниты, и токопроводящий диск вращаются вместе.

Рис. 177. N-машина Брюса де Палма

Испытания различных конструкций N-машины проводили профессионалы, в течении многих лет. Метод перспективный, обеспечивается эффективность, как соотношение затраченной мощности привода и создаваемой электрической мощности, не менее 200 %.

Недостатки, как и у других униполярных генераторов, состоят в том, что мощность на выходе имеет вид постоянного тока низкого напряжения. Однако, их применение, уже 20 лет назад, планировалось в системах низковольтного электролиза, с целью получения дешевого водорода из воды, в том числе, морской воды.

Из работ других авторов отметим статьи и эксперименты Николаева Г.В., Гуала-Валверде (Jorge Guala-Valverde) и Педро Маззони (Pedro Mazzoni).

Конструктивное решение, позволяющее увеличить не только мощность, но и рабочее напряжение, получаемое на выходе униполярного генератора, было мной предложено в 2001 году. В течении 2002–2003 годов, мы провели ряд экспериментов, успешно доказав возможность использования принципа униполярной индукции для случая токопроводящего ротора, представляющего собой катод электронной лампы ГУ-74. Суть эксперимента состояла в следующем.

Радиатор с корпуса лампы ГУ-74 удаляется, а на его место одевается кольцевой магнит осевой намагниченности, как показано на рис. 178.

Рис. 178. Униполярный генератор Фролова

Магнит и электронно-вакуумная лампа вращаются вместе, при этом на катод подается обычное напряжение накала. Термическая эмиссия электронов, обычно, не приводит к появлению тока между анодом и катодом. Для этого надо также приложить высокое напряжение между ними. В предлагаемом униполярном генераторе, при вращении в магнитном поле, сила Лоренца обеспечивает движение электронов от катода к аноду. Выходная мощность снимается с выводов «анод» и «катод». Напряжение на выходе обеспечивается постоянное, измерения показали, что в отличие от обычных униполярных генераторов, оно составляет десятки Вольт. Теоретически, поскольку в данной схеме принципиально нет торможения ротора при подключении нагрузки, мощность на выходе не зависит от потребляемой мощности. Небольшие затраты нужны на разогрев катода и поддержание вращения.

В 2004 мы провели конструкторские работы с предприятием, производящим электронно-вакуумные приборы, по разработке мощного генератора для коммерциализации данной концепции, но проект был остановлен на стадии документации. Предлагается лицензия на данную технологию.

Мы рассмотрели много конструкций, имеющих разные достоинства, но у всех есть один недостаток, а именно, в них используются вращающиеся части и механизмы. Применение таких генераторов энергии может быть ограничено в ряде случаев, поэтому перспективными разработками можно полагать такие генераторы, в которых нет подвижных или вращающихся частей. Перейдем к следующей главе.

Читайте также

Боевые машины

Боевые машины Эйфория 1950-х годов с созданием мощного ракетного оружия на шасси обычного грузовика ЯАЗ-214 завершилась безрезультатно, и с появлением нового автомобиля КрАЗ-214 почти все предыдущие проекты в этой сфере были свернуты. По наследству от ЯАЗа новой машине

Электрические машины

Электрические машины Вопрос. При каких условиях электрические машины с классами напряжения до 10 кВ могут применяться в пожароопасных зонах любого класса?Ответ. Могут применяться при условии, что их оболочки имеют степень защиты по ГОСТ 17494-72 не менее указанной в табл. 7.4.1

Глава I Весла и метательные машины

Глава I Весла и метательные машины Саламинская битва Это было за двадцать четыре века до наших дней. Армия персидского царя Ксеркса пришла к берегам Геллеспонта. Так назывался в те времена узкий пролив, ведущий из Мраморного в Эгейское море. В наши дни этот узкий пролив

НОВЫЕ МАШИНЫ

НОВЫЕ МАШИНЫ С началом эксплуатации S-29A дела пошли на поправку. Первые деньги ушли на выплату неотложных платежей, ни о каком расширении производства нечего было и думать. Завод по-прежнему располагался в двух старых деревянных ангарах. В них не было дверей и температура

Глава III Советские легкие танки и боевые машины десанта

Глава III Советские легкие танки и боевые машины

Глава первая ВЕСЛА И МЕТАТЕЛЬНЫЕ МАШИНЫ

Глава первая ВЕСЛА И МЕТАТЕЛЬНЫЕ МАШИНЫ Первые плавающие крепости древние века, за сотни лет до нашей эры, на острове Сицилия в центре Средиземного моря существовало небольшое, рабовладельческое государство Сиракузы, основанное выходцами из Греции. Столица этого

ХИМИЧЕСКИЕ МАШИНЫ

ХИМИЧЕСКИЕ МАШИНЫ На базе лёгких и средних танков в Японии создавались огнемётные танки, вооружённые двумя-тремя огнемётами и двумя пулемётами. Часть этих танков оснащалась плужными тралами, что превращало их в средство для штурма позиций, прикрытых минными полями.На

ИНЖЕНЕРНЫЕ МАШИНЫ

ИНЖЕНЕРНЫЕ МАШИНЫ На основе среднего танка «89» в 1931 году была разработана инженерная машина, упоминаемая в литературе как «SS». Компоновка машины была той же, что и «89», но объём корпуса увеличен. В лобовом листе имелась дверь и пулемёт в шаровой опоре. Командирский купол

ОЦЕНКА МАШИНЫ

ОЦЕНКА МАШИНЫ В 1967 году в своей книге «Конструкции и развитие боевых машин» британский танковый теоретик Ричард Огоркевич изложил любопытную теорию существования промежуточного класса «лёгких-средних» танков. По его мнению, первой машиной в этом классе стал советский

Глава IV Советские бронеавтомобили, бронетранспортеры и боевые машины пехоты

Глава IV Советские бронеавтомобили, бронетранспортеры и боевые машины

Глава 20. Инфинитезимальные машины

Глава 20. Инфинитезимальные машины Ричард ФейнманЗапись беседы с Ричардом Фейнманом 23 февраля 1983 года в Лаборатории реактивного движения (Пасадена, Калифорния). Печатается с разрешения IEEE Log Number 9210135. Беседа начинается с вводных слов друга и коллеги Р. Фейнмана, известного

Читайте также  Щетки генератора мазда капелла

«Адские машины»

«Адские машины» В средние века территория нынешних Бельгии и Голландии называлась Нидерландами. Испанские короли завоевали эту страну, превратили ее в свою колонию. Жители Нидерландов восстали, и началась война, которая длилась несколько десятков лет.В 1585 г. испанское

ОЦЕНКА МАШИНЫ

ОЦЕНКА МАШИНЫ Традиционно считается, что Т-34 — это первый в мире массовый средний танк с рациональными углами наклона броневых листов корпуса и башни, дизельным двигателем и длинноствольной 76-мм пушкой. Всё это верно, как верно и то, что по своим ТТХ «тридцатьчетвёрку» на

ОЦЕНКА МАШИНЫ

ОЦЕНКА МАШИНЫ Созданные в начале 30-х годов (в первую очередь для учебных целей) лёгкие немецкие танки Pz.I имели ограниченную боеспособность. С одной стороны, это обуславливалось чисто пулемётным вооружением, бесперспективность которого была очевидной уже в то время и

10. ЭЛЕКТРИЧЕСКИЕ МАШИНЫ

10. ЭЛЕКТРИЧЕСКИЕ МАШИНЫ Указания по ТО и ремонту приведены для следующих типов электрических машин: асинхронные, синхронные и постоянного

Униполярный генератор высокого напряжения

Удивительная униполярная машина.

Униполярным двигателям и генераторам, как в прошлом, так и в настоящем, уделяется большое внимание. Хотя используются такие моторы и генераторы в специфических условиях. Например, когда надо получить постоянный электрический ток большой величины, но при малом напряжении. Или получить мотор, работающий от мощных аккумуляторов с небольшим напряжением, таких как магнето на автомобилях, тракторах и т.п.

Униполярный электродвигатель — разновидность электрических машин постоянного тока . Содержит проводящий диск, постоянное магнитное поле, параллельное оси вращения диска, 1-й токосъёмник на оси диска и 2-ой токосъёмник у края диска.

Рис. 1. Простой униполярный двигатель.

Вот наглядная демонстрация работы униполярного электродвигателя (рис.1). На головке шурупа находится постоянный магнит, сила которого удерживает шуруп притянутым к полюсу батарейки. При соединении свободного полюса батарейки с краем магнита магнит вместе шурупом начинает довольно резво вращаться.

Первый униполярный двигатель, колесо Барлоу, создал Питер Барлоу , описав его в книге «Исследование магнитных притяжений», опубликованной в 1824 году . Колесо Барлоу представляло собой два медных зубчатых колеса, находящихся на одной оси. В результате взаимодействия тока, проходящего через колёса с магнитным полем постоянных магнитов колёса вращаются. Барлоу выяснил, что при перемене контактов или положения магнитных полюсов происходит смена направления вращения колёс на противоположное.

Униполярный генератор — разновидность электрической машины постоянного тока. Содержит проводящий диск, постоянное магнитное поле, параллельное оси вращения диска, 1-й токосъёмник на оси диска и 2-й токосъёмник у края диска.

Рис.2. Диск Фарадея, первый униполярный генератор

С позиций официальной электродинамики принцип действия униполярного генератора простой. Есть смысл его привести. На электроны, находящиеся в диске, действует Сила Лоренца , являющаяся векторным произведением напряжённости магнитного поля и скорости перемещения электрона вместе с проводником в результате вращения диска. Сила эта направлена вдоль радиуса диска. В результате при вращении диска возникает ЭДС между его центром и краем.

В отличие от других электрических машин, такой генератор имеет чрезвычайно низкую ЭДС (от долей до единиц вольт) при низком внутреннем сопротивлении и большом токе; равномерность получаемого тока, отсутствие необходимости коммутировать его коллектором ротора, или выпрямлять полученный другими машинами переменный ток внешними коммутирующими или электронным приборами; большие собственные потери энергии из-за протекающих по диску обратных токов, его бесполезно нагревающих. Эта проблема частично решается в конструкциях двигателей и генераторов с жидким проводящим токосъёмником по всему периметру диска; Сочетание этих свойств обусловило очень узкие сферы применения этого типа генераторов.

Чтобы принцип работы униполярного мотора и генератора был более понятным, воспользуемся рис.3. Данный рисунок составлен из двух рисунков, взятых с одного форума в Интернете.

Рис.3. Объяснение работы униполярного мотора и генератора.

Рис.4. Еще одна схема для ознакомления с принципами работы униполярного двигателя и генератора.

В данных схемах предполагается, что магнит одновременно является как носителем магнитного поля, так и проводником электрического тока. Хотя с таким же успехом функции магнита можно разделить между диском из материала с высокой проводимостью и отдельным магнитом для создания магнитного поля. В этом случае необязательно, чтобы магнитное поле покрывало весь диск, достаточно, чтобы магнитное поле присутствовало пространственно только над тем сектором диска, где будет протекать электрический ток в случае, если мы имеем мотор, или над тем сектором, с которого мы будет этот ток получать в случае, если будем использовать конструкцию в качестве генератора. Это позволяет упрощать конструкцию, обеспечивая над нужными участками вращающего диска магнитное поле нужной напряженности, использую магниты (электромагниты) меньших габаритов при той же напряженности создаваемого магнитного поля.

Но вернёмся к униполярному динамо или мотору. Как для униполярного мотора, так и для униполярного генератора важно, чтобы вращался электропроводный диск, который должен обладать небольшим внутренним сопротивлением (золото, серебро, медь). Магнит может не вращаться или он может вращаться как вместе с диском, так и сам по себе, но исключительно параллельно вращающемуся диску. Данное открытие было сделано А. Родиным. Им обнаружено, что реакция на цилиндрическом магните-статоре при вращающемся диске-роторе в униполярном двигателе полностью отсутствует (рис.5). С другой стороны вращение постоянного магнита никак не влияло на вращение диска. Важен лишь факт наличия магнитного поля, его напряженность и направление силовых линий.

Рис. 5. Схема опыта А.Родина.

Внимательно посмотрим на рис.5. А теперь мысленно разделим диск над магнитом на множество мелких секторов. При вращении такого разрезанного на сектора диска каждый сектор превращается в самый обыкновенный проводник, который движется перпендикулярно силовым линиям магнитного поля. Но из курса физики средней школы мы прекрасно знаем, что в таком проводнике на его концах появляется разность потенциалов, а если по такому проводнику пропускать ток, то он будет двигаться в магнитном поле в плоскости, перпендикулярной направлению силовых линий магнитного поля. Т.е., поведение диска, как совокупности секторов круга, соединенных с центре вокруг оси и ободом на периферии, прекрасно объясняется хорошо известными нам со школьной скамьи законами. Получается, что вместо одного контакта на периферии диска можно использовать несколько контактов, равномерно разместив их по краю диска и соединив их параллельно. Или использовать один кольцевой контакт, обеспечив при этом малое трение между ним и краем диска (ртуть, графит, специальные смазки на основе графита и т.п.).

Никола Тесла в качестве одного из вариантов повышения выходы электроэнергии из униполярного генератора также предложил разбивать диск на секторы, но только не прямые, а в виде своеобразной спирали (рис.6). Тесла, похоже, предложил такую конструкцию для того, чтобы при вращении диска токи, протекающие по секторам, создавали своеобразную плоскую катушку, а значит и магнитное поле. Причем в зависимости от направления спиральных секторов эти токи могли создавать магнитные поля, которые усиливали, либо ослабляли магнитное поле основного магнита.

Но этот способ имеет недостаток в том, что совокупный ток разбивается на потоки по секторам, в самих секторах растет сопротивление, что ведет к снижению мощности генератора. Вместо того чтобы подразделять диск или цилиндр по спирали, как обозначено в Рис.6, более удобно вставить один или более витков между диском и контактным кольцом на периферии, как показано на Рис.7.

Поступить можно немного по-иному. Щётку B’ можно оставить к контакте с диском, а к ней уже присоединить проводник, образующий вокруг диска один или несколько витков вокруг диска. Тогда ток, прежде чем попасть в нагрузку, успевает в силу своего большого значения создать внутри витков (селеноида) мощное магнитное поле, которое, если правильно подобрать направление витков, будет суммироваться с магнитным полем магнита и приводить к увеличению тока, снимаемого с вращающегося диска. Если выбрать другое направление для витков, то можно создать генератор, у которого сила тока на выходе будет при увеличении частоты вращения уменьшаться. Такой генератор, не исключаю, мог бы найти применение в электротехнике, как элемент, свойства которого будут аналогичны такому элементу, как отрицательное сопротивления. Можно в качестве элемента отрицательной связи направлять в такую спираль (катушку) только часть тока, снимаемого с диска. Это позволит ограничить максимальный ток, снимаемый в нагрузку с такого генератора, что позволит предотвратить возможную аварию.

Многие изобретатели пытаются создать тандем из униполярного генератора и униполярного мотора, чтобы частью мощности униполярного генератора питать униполярный мотор, который в свою очередь будет вращать диск униполярного генератора. Теоретически это сделать можно. Но надо не мудрить, а посадить на общую ось и униполярный генератор, и униполярный мотор. Так как для вращения всей конструкции потребуется преодолевать только силу трения, то униполярный мотор должен иметь должную для этого мощность, для чего потребуется подобрать магнит(ы), между которыми будет вращаться диск униполярного мотора. А вот для диска (дисков) униполярного генератора магниты надо брать более мощные и дополнять их витками проводника для усиления магнитного поля, в котором будут вращаться диски униполярного генератора.

Николу Тесла сделанные усовершенствования полностью не удовлетворили, поэтому он предложил еще один вариант униполярного динамо, в котором постарался в максимальной степени избавиться от недостатков, связанных с контактами (щетками). Дело в том, что любая щетка мешает диску вращаться, так как между щеткой и диском неизбежно трение и искрообразование, которые вместе снижают эффективность и надежность униполярной машины. На рис.8 показано, как Тесла решил эту задачу.

На этом рисунке два униполярных генератора объединены в одно целое устройство. Диски H и K генераторов вращаются в одну сторону, будучи связанные гибким металлическим (электропроводным) поясом L. А вот направление магнитных полей магнитов, между которыми вращаются диски генераторов, противоположное. Поэтому в одном из них токи текут от центра в периферии, а у другого от периферии к центру. Электропроводный пояс L позволяет току с одного диска свободно перейти на другой диск. Остается теперь только снимать ток с валов генераторов, для чего служат контакты F и P, а также зажимы N. Такие контакты (токосъёмы) уже более надежны и проще в изготовлении и эксплуатации, так как линейная скорость вращения вала заметно меньше, чем на краю диска. Естественно данный генератор можно использовать в качестве униполярного двигателя. Никола Тесла предусмотрел шкивы управления M, чтобы можно было вращать один из валов G .

Одним из недостатков униполярного двигателя является получаемое небольшое напряжение – максимум чуть больше 1 вольта. Для удвоения напряжения можно применить такую схему (рис.9).

Рис.9. Униполярка с удвоением напряжения.

В качестве магнитов можно использовать два подковообразных магнита, тогда в области дуг этих магнитов придется просверлить отверстия для вала диска. Данный вариант, наверное, будет самым лучшим, так как позволит замкнуть силовые линии магнитов в максимальной степени, что позволит продлить срок эксплуатации магнитов, так как не исключено, что со временем магниты могут размагничиваться. Но можно взять два магнита «Сибирский Коля». Один разместить сверху диска, а второй снизу так, чтобы магниты «смотрели» друг на друга участками с различными полюсами. Можно из магнита «Сибирский Коля» сделать что-то похожее на подковообразный магнит, если полюса, не обращенные к диску замкнуть между собой «скобой» из магнитомягкого железа.

Разместив щетки на противоположных концах диаметров диска, как это показано на рис.9 мы сможем получать постоянный ток, напряжение которого будет примерно в 2 раза больше, чем, если бы ток снимался с оси и одной из щеток. Действительно, на одной половине диска (справа) направление магнитного поля будет сверху вниз, а слева магнитное поле будет направлено снизу вверх. Значит, при выборе направления вращения ток в одной из половин диска будет течь от щетки к оси, а на другой половине диска – от оси к другой щетке. Конечно, при этом увеличится вдвое сопротивление, а значит, ток не изменится по сравнению с классическим униполярным двигателем, но это уже инженерам решать, когда им важнее ток, а когда напряжение.

Также как и в случае с классическим униполярным генератором можно сделать «шашлык» из магнитов и дисков. И собрать конструкцию, в котором можно диски соединить либо последовательно, либо параллельно. В первом случае можно получить на выходе напряжение, повышенное во столько раз, сколько дисков будет включено в цепочку. А во втором случае мы получим увеличение тока согласно числу подключенных дисков.

Читайте также  Что может быть с генератором возбуждение идет

Униполярный генератор

Униполярный генератор — разновидность электрической машины постоянного тока. Содержит проводящий диск, постоянное магнитное поле, параллельное оси вращения диска, 1 токосъёмник на оси диска и 2-й токосъёмник у края диска.

Содержание

Принцип действия

На электроны, находящиеся в диске, действует Сила Лоренца, являющаяся векторным произведением напряжённости магнитного поля и скорости перемещения электрона вместе с проводником в результате вращения диска. Сила эта направлена вдоль радиуса диска. В результате при вращении диска возникает ЭДС между его центром и краем.

В отличие от других электрических машин, такой генератор имеет:

  • чрезвычайно низкую ЭДС (от долей до единиц вольт) при низком внутреннем сопротивлении и большом токе;
  • равномерность получаемого тока, отсутствие необходимости коммутировать его коллектором ротора, или выпрямлять полученный другими машинами переменный ток внешними коммутирующими или электронным приборами;
  • большие собственные потери энергии из-за протекающих по диску обратных токов, его бесполезно нагревающих. Эта проблема частично решается в конструкциях двигателей и генераторов с жидким проводящим токосъёмником по всему периметру диска;
  • Опыты с двумя дисками, вращающихся навстречу и касающимися друг-друга — показали лучшие результаты.

Сочетание этих свойств обусловило очень узкие сферы применения этого типа генераторов.

История

Диск Фарадея

В 1831 году Майкл Фарадей, открыв закон электромагнитной индукции, помимо прочих экспериментов, построил наглядное устройство преобразования механической энергии в электрическую — диск Фарадея. Это было чрезвычайно неэффективное устройство, однако оно имело значительную ценность для дальнейшего развития науки.

Закон электромагнитной индукции, сформулированный Фарадеем, рассматривал проводящий контур, пересекающий линии магнитного поля. Однако в случае диска Фарадея магнитное поле было направлено вдоль оси вращения, контур относительно поля не перемещался. Наибольшее же удивление вызвал тот факт, что вращение магнита вместе с диском также приводило к появлению ЭДС в неподвижной внешней цепи. Так появился парадокс Фарадея, разрешённый только через несколько лет после его смерти с открытием электрона — носителя электрического заряда, движение которого обуславливает электрический ток в металлах.

Наглядно видимая парадоксальность униполярной индукции выражается следующей таблицей, в которой описаны различные комбинации из вращения и неподвижности частей установки, и восклицательным знаком отмечен результат, интуитивно не объяснимый — возникновение тока в неподвижной внешней цепи при одновременном вращении диска и закреплённого вместе с ним магнита.

магнит диск внешняя цепь есть ли напряжение?
неподвижен неподвижен неподвижен отсутствует
неподвижен вращается неподвижен Есть
неподвижен неподвижен вращается Есть
неподвижен вращается вращается не определено
вращается неподвижен неподвижен отсутствует
вращается вращается неподвижен Есть (!)
вращается неподвижен вращается Есть
вращается вращается вращается не определено

Последовательное же объяснение явления униполярной индукции даётся теорией относительности.

Патенты и некоторые практические конструкции

  • Charles E. Ball (US238631; March 1881), en:Sebastian Ziani de Ferranti, en:Charles Batchelor получили самые ранние известные патенты на конструкции униполярных генераторов.
  • Никола Тесла ( U.S. Patent 406 968 ) разработал конструкцию, в которой вращались на параллельных осях два диска в разных по направлению магнитных полях связаные металлическим ремнем.
  • В 1989 году в Австралии действовал униполярный генератор, вырабатывавший ток 1500 кА при напряжении 800 В.

Физика плазмы, МГД генераторы

Астрофизика

Наиболее существенной сферой современного применения представления об униполярном генераторе является астрофизика. В ряде звёздных систем в космосе наблюдаются природные магнитные поля и проводящие диски из плазмы, поведение которых как бы повторяет опыты Фарадея и Теслы.

Псевдонаучное шарлатанство

Данный тип электрических машин неоднократно использовался для построения вечного двигателя, источника даровой энергии и тому подобных мистификаций.

Наиболее известна история так называемой «N-машины» Брюса де Пальма (2 октября 1935 — октябрь 1997), который декларировал, что в его конструкции произведённая диском Фарадея энергия будет в пять раз больше, чем затраченная на его вращение. Однако в 1997 году, уже после смерти Брюса де Пальма, построенный экземпляр его машины был официально испытан с отрицательным результатом. Произведённая энергия рассеивалась в виде тепла, и величина её не превышала затраченной.

Основой для таких спекуляций служит неверное понимание известного «парадокса Фарадея» и представление о том, что разрешение этого «парадокса» кроется в каких-то особых полях и свойствах пространства (например, «торсионных»).

Также встречаются конструкции «униполярных генераторов» и двигателей, авторы которых рекламируют колоссальный выигрыш по сравнению с традиционными электрическими машинами.

Также муссируется неверно применённый к данному классу устройств термин «униполярный» (homopolar). На самом деле эти устройства следовало бы правильнее называть «устройствами однородного магнитного поля, постоянного тока и некоммутируемого соединения ротора», так как в прочих электрических машинах используется и/или неоднородное магнитное поле и/или переменный ток и/или коммутация частей обмотки ротора.

Дополнительные сложности при объяснении работы униполярных электрических машин вызывает представление о движении носителей заряда, электронов, в частности термин «скорость». Во-первых, сразу возникает вопрос о том, скорость относительно чего мы рассматриваем в данном случае. Во-вторых, ознакомление невнимательного энтузиаста со специальной теорией относительности может привести его к запутывающему жонглированию понятиями «наблюдатель», «скорость» и тому подобными.

Ссылки

  • И. Е. Тамм. Основы теории электричества. § 112
  • Физическая энциклопедия, т.5, стр.224, стр.225, статья «Униполярная индукция», авторы Г. В. Пермитин, Ю. В. Чугунов.
  • Л. А. Суханов. Электрические униполярные машины, 1964 г.

См. также

  • Униполярная индукция
  • Из-за принципа обратимости электрических машин возможен и униполярный электродвигатель.

Wikimedia Foundation . 2010 .

  • Сенья ди Бонавентура
  • Андроник Палеолог

Полезное

Смотреть что такое «Униполярный генератор» в других словарях:

УНИПОЛЯРНЫЙ ГЕНЕРАТОР — бесколлекторная электрическая машина постоянного тока, действие которой основано на явлении униполярной индукции. Униполярный генератор позволяет получать постоянный ток большой величины (до 105 А) низкого напряжения (десятки В). Применяется в… … Большой Энциклопедический словарь

униполярный генератор — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN acyclic generatorhomopolar generatorunipolar generator … Справочник технического переводчика

униполярный генератор — бесколлекторная электрическая машина постоянного тока, действие которой основано на явлении униполярной индукции. Униполярный генератор позволяет получать постоянный ток большой величины (до 105 A) низкого напряжения (десятки В). Применяется в… … Энциклопедический словарь

Униполярный генератор — бесколлекторный генератор постоянного тока, действие которого основано на явлении униполярной индукции (См. Униполярная индукция). На статоре У. г. (рис.) расположены (соосно с валом генератора) две тороидальные катушки возбуждения,… … Большая советская энциклопедия

Униполярный электродвигатель — Униполярный электродвигатель разновидность электрических машин постоянного тока. Содержит проводящий диск, постоянное магнитное поле, параллельное оси вращения диска, 1 токосъёмник на оси диска и 2 ой токосъёмник у края диска … Википедия

Генератор — (от лат. generator производитель) устройство, аппарат или машина: производящие какие либо продукты (генератор ацетиленовый, лёдогенератор, парогенератор, газогенератор, генератор водорода) вырабатывающие электрическую энергию… … Википедия

Электрический генератор — Основная статья: Электрогенераторы и электродвигатели Электрогенераторы в начале XX века Электрический генератор это устройство, в котором неэлектрические ви … Википедия

Диск Фарадея — Униполярный генератор разновидность электрической машины постоянного тока. Содержит проводящий диск, постоянное магнитное поле, параллельное оси вращения диска, 1 токосъёмник на оси диска и 2 й токосъёмник у края диска. Диск Фарадея, первый… … Википедия

Колесо Барлоу — Униполярный электродвигатель разновидность электрических машин постоянного тока. Содержит проводящий диск, постоянное магнитное поле, параллельное оси вращения диска, 1 токосъёмник на оси диска и 2 ой токосъёмник у края диска. Наглядная… … Википедия

Электрогенератор — Электрогенераторы в начале XX века Электрический генератор это устройство, в котором неэлектрические виды энергии (механическая, химическая, тепловая) преобразуются в электрическую энергию. Содержание 1 История … Википедия

Униполярный генератор: устройство, история создания, применение

Он также известен как униполярный генератор Фарадея. Напряжение, как правило, низкое, порядка нескольких вольт в случае небольших демонстрационных моделей, но большие исследовательские машины могут генерировать сотни вольт, а некоторые системы имеют несколько последовательных генераторов для получения еще большего напряжения. Они необычны тем, что могут генерировать электрический ток, который способен превышать миллион ампер, поскольку униполярный генератор вовсе не обязательно имеет высокое внутреннее сопротивление.

История изобретения

Первый гомополярный механизм был разработан Майклом Фарадеем во время его экспериментов в 1831 году. Его часто называют диском или колесом Фарадея в его честь. Это было начало современных динамо-машин, то есть электрических генераторов, работающих на магнитном поле. Он был очень неэффективным и не использовался в качестве практического источника энергии, но показал возможность выработки электричества с помощью магнетизма и проложил путь к коммутируемым динамо-источникам постоянного тока, а затем к генераторам переменного тока.

Недостатки первого генератора

Диск Фарадея был в первую очередь неэффективен из-за встречных потоков тока. Принцип работы униполярного генератора будет описан как раз на его примере. В то время как поток тока индуцировался непосредственно под магнитом, ток циркулировал в обратном направлении. Противоток ограничивает выходную мощность для приемных проводов и вызывает ненужный нагрев медного диска. Более поздние гомополярные генераторы могли бы решить эту проблему с помощью набора магнитов, расположенных по периметру диска, для поддержания постоянного поля по окружности и устранения областей, в которых может возникнуть противоток.

Секрет магнитного генератора Перендева. Делаем своими руками

Секрет магнитного генератора Перендева. Делаем своими руками

Всем доброго вечера, мы с отцом уже давно ломаем голову над знаменитым двигателем Perendev перепробовали много вариантов, был у нас один двигатель суть его в том чтобы на роторе разместить магниты как можно плотнее и все с одним полюсом наружу а на статоре разместить три полюса магнитов которые будут сдвинуты друг от друга (во общем то что Perendev сделал за счет трех дисков): https://www.fdp.nu/perendev/thomas.asp https://www.fdp.nu/perendev/simreplication.asp Вот статья неплохая по поводу принципа роботы двигателя Perendev которая дает ответы на многие вопросы. При внимательном изучении патента перендева (ссылка на патент находится на российский странице, вход с немецкого сайта) обнаружился рисунок собственно «единичного элемента», то-бишь экранированного магнита. Судя по чертежу, цилиндрический магнит находится внутри не просто толстостенного железного цилиндра, а внутри цилиндра, на торце которого добавлено кольцо металла. Таким образом края магнита, (с максимальными магнитными потоками) спрятаны в железо. Для взаимодействия оставлена только площадка в . Видимо, для проверки принципа достаточно промоделировать несколько вариантов единичного элемента — учесть геометрию цилиндра, изображенного в патенте, и изготовить его из нержавейки (как утверждает автор) и из обычного магнитомягкого железа. Скорее всего, сам магнит должен удерживаться внутри цилиндра неким кольцом из изолятора, чтобы не соприкасался с железом, иначе пойдет намагничивание цилиндра со всеми последствиями. Что касается графита, согласно утверждению автора, то я сомневаюсь, чтобы сочетание нержавейки с графитом в любых геометрических положениях смогло хотя бы частично экранировать магнит. Однако, можно попробовать проверить и это. Я проверил с обычным цилиндром из нержавейки с таблеткой внутри, экранирования нету. ——————————— В интервью Брэди нашел фразу, что все магниты срезаны на конус, изолированы прослойкой и вставлены в экранирующие цилиндры. ….. Основная идея в следующем: Поясню без рисунка. На пальцах. Возьмем отрезок времени 5 секунд, (для простоты). на цилиндрическом роторе находится скажем 9 или 11 магнитов. а на статоре соответственно 8 или 10. в первую секунду 1й магнит ротора находится в мертвой точке. На него действует максимальная сила противодействия движению =х. В эту-же секунду магнит 2 уже прошел свою мертвую точку,и тянет с некоторым плюсовым усилием . соответственно №3 тоже находится после мертвой точки, и тоже в плюсе. и так до №9. во вторую секунду в мертвую точку входит №2, а все остальные в эту же вторую секунду (или любую другую минимальную единицу времени) тянут с положительным усилием, компенсируя мертвую точку. Смысл в том, что при разном количестве магнитов в статоре и роторе, их расположение должно быть таким, чтобы в ЛЮБОЙ момент времени в МТ находился ТОЛЬКО ОДИН магнит, а все остальные, количество которых не может быть меньше какого-то определенного чмсла, должны своим суммарным тяговым усилием компенсировать прохождение этой единичной мертвой точки. Количество магнитов нужно подсчитывать в каждом конкретном случае отдельно. Несомненно одно, построить модель на 3-5 магнитах не получится по определению. Количество роторных должно быть таким, чтобы сумма находящихся в разном положении магнитов ротора относительно статора была БОЛЬШЕ усилия мертвой точки для единичного магнита, или, если угодно, пары ротор-статор, зависших в МТ. Нужно просто понять этот принцип. Три кольца прототипа у Perendev создаст только повышенную мощность, для раскрутки генератора в 20 квт (видео). Но каждое отдельно взятое кольцо, вернее- пара, ротор-статор имеют как раз такой расклад сил. Безусловно, нужно очень точно позиционировать магниты на кольце, чтобы соблюсти это условие. а добавки Perendev в виде изолирующих железных цилиндров просто убирают паразинтые влияния магнитов друг на друга, оставляя в голом виде этот самый принцим, поскольку при подходе к МТ , имея экран, магнит ротора взаимодействует только со своим статорным магнитом, не чувствуя паразитных полей соседних магнитов статора и ротора. Т.е принцип в чистом виде. Совершенно понятно, что такие конструкции возможны только в цилиндрических формах, однако проверить правильность этого моего утверждения можно и на линейной модели. Для этого расстояния между магнитами ротора на линейке должны быть больше на какую-то величину, чем расстояние между магнитами статора на другой линейке. Но ни в коем случае НЕ равными. Для примера можно разместить на линейном статоре 30 магнитов с интервалом 10 мм, а на роторной линейке штук 9-11 с интервалом в 11 мм.

Читайте также  Что делают щетки генератора

Вот наша модель магнитного двигателя:

Принцип двигателя был основан на статье которую я опубликовал выше, но модель так и не заработала. Вот еще одна модель магнитного двигателя на тему Perendev которая не работает. https://quanthomme.free.fr/qhsuite/2007News/PrototypePerendev.htm Анализируя статьи в интернете по поводу двигателя Perendev я сделал для себя не мало важные как на мой взгляд заключения, первое то что когда использовать магниты на статоре с диаметральной намагниченностью а на роторе с поперечной (может и из за этого очень трудно найти магниты в продаже с диаметральной намагниченностью), то тогда экраны для магнитов не нужны, разве что могут быть использованы на роторе для того что бы каждый магнит работал отдельно как один магнит а не сливался со всеми магнитами на роторе в один большой магнит. Соответственно модель должна производится на трех роторах и трех статорах которые сдвинуты друг от друга на некоторый угол (он высчитывается при настройке двигателя), да вот еще не мало важный фактор (почему то все на него не обращают внимание) то что расстояние между магнитами на роторе должно быть равно радиусу магнита на роторе. Что касается угла наклона магнитов то я считаю что их можно поставить даже в лоб, ели модель рабочая то двигатель закрутится, угол нам дает мощность двигателя, судя по моделям которые делают ребята в нете то он варьируется от 31-24 градуса, на данный момент работа ведется над моделью этого вариант магнитного двигателя. Вот верный, на мой взгляд вариант рабочего двигателя Perendev:

Я поделился своим опытом в разработке двигателя Perendev и хотел бы послушать мнения людей их варианты и результаты которые было достигнуты в разработках магнитных двигателей, заранее благодарен.

Скачать фото чертежей от Перендева:

Униполярный генератор высокого напряжения


Рис. 17. Униполяр]]ЫЙ генератор Леру с колоколооб-разным ротором

Рис. 18. Униполярный генератор мощностью 90 кет с Т-образным сечением ротора

; — токосъемное кольцо; 2 — обмотка возбуждения; j- контактное кольцо; 4 — щетки

лярной машины с симметричным ротором может служить генератор, построенный в 30-х годах двадцатого столетия со следующими номинальными данными: Р = 90 кет, п = 750 об/мин, и=6 в, /=15 ка. Поперечный разрез генератора вдоль оси вала показан на рис. 18.

На обод массивного ротора диаметром 710 м.ч с двух сторон насажены в горячем состоянии бронзовые кольца (ширина каждого 152 мм), ток с которых снимался при помощи бракетов щеток. При этом средняя плотность тока под щетками составляла около 18 а/см при удельном давлении 0,07 кГ/см. Две кольцевые обмотки возбуждения располагались вблизи боковых магнитопроводов. Ширина среднего сердечника составляла 318 мм, а воздушный зазор под ним был равен 1,5-2 мм. Вес машины достигал 11 г, что дает вес на единицу мощности 122 кГ/квт.

Целесообразно упомянуть генератор, у которого сплошной ротор в виде колокола был заменен беличьей клеткой (1899г.). Комценсацио,нная обмотка также была выполнена стержневой.

Машины с ротором в виде колокола не получили существенного развития. Однако в последние годы к ним снова вернулись [53], так как наряду с малой механической инерционностью ротора они позволяют осуществить конструкции с двумя вращающимися в противоположные стороны колоколами и, кроме того, применить удобные жядкометаллнческие токосъемники при вертикальном расположении оси вала ротора.

УНИПОЛЯРНЫЕ МАШИНЫ С ПОВЫШЕННЫМ НАПРЯЖЕНИЕМ

Униполярные машины, как было показано выше, являются низковольтными. В связи с этим термин повышенное напряжение является условным и характеризует машины, напряжение которых измеряется сотнями вольт.

Электродвижущая сила униполярной машины нормальной конструкции определяется скоростью вращения ротора и величиной полного магнитного потока. Механические нагрузки ротора, рост потерь в токосъемных устройствах, большие вес и габариты ограничивают возможности увеличения напряжения, только за счет выбора предельных значений окружной скорости ротора и магнитного потока. В настоящее время, когда для современных униполярных машин достигнуты высокие технико-экономические показатели, широко применяется последовательное соединение нескольких генераторов (до 6 шт., как это показано на рис. 1).

Представляет интерес рассмотреть возможные способы повышения напряжения за счет конструкции самой машины. Соответствующие попытки были сделаны уже в ранних униполярных генераторах. На рис. 19 эскизно показан способ повышения напряжения за счет последовательного электрического соединения изолированных между собой коаксиальных цилиндров, образующих ротор. На этом рисунке показано два цилиндра (третьим является вал). Последовательное включение щеток осуществляется системой соединительных стержней.

Рассмотренный способ был положен в основу проекта Негге-рата, по которому американской Всеобщей компанией электричества был построен в 1904 г. генератор мощностью 300 кет, на- пряжением 500 е при скорости вращения 3000 об/мин (рис. 20).

Цилиндрический якорь из литой стали охватывается стальным ярмом, выступы двух крайних кольцевых полюсов поддерживают катушки возбуждения (Е). Путь прохождения магнит-

Рис. 19. Машина с многослойным ротором для повышения напряжения

Рис. 20. Униполярный генератор Неггерата

Рис. 21. Элементарный контур ротора машины Неггерата

иого потока показан прерывистой линией. По окружности якоря размещены двенадцать изолированных стерлней, каждый из которых присоединен к своей паре изолированных стальных олец Р, Р. С помощью пары щеток S, S и обратного проводника (R) образуется контур, который показан на рис. 21. При длине стержня ротора в 30 см <КК) индуктируемая э.д.с. составляла 42 в. Система из двенадцати подобных контуров, соединенных последовательно, обеспечивала напряжение в 500 в.

Так как щетки разделяют кольца при вращении на две неравные изменяющиеся части между точками S и К, го в кольцах появляются колебания тока, которые обусловливают возникновение дополнительных потерь в массивных частях машин. Для уменьшения потерь предусматривается сдвиг на постоянные углы как точек присоединения стержней к своим кольцам, так и щеток на кольцах [79]. Реакцию тока, протекающего по якорю и кольцам, в рассматриваемой машине удалось достаточно хорошо скомпенсировать. В результате величина посадки напряжения от реакции стала близкой к величине падения напряжения на сопротивлении.

Испытания униполярного генератора Неггерата показали, что потери локализуются главным образом на щетках. При этом для тока 1300 а падение напряжения под щетками составляло 0,82 в. Общие электрические потери были равны 28 кет.

Впоследствии упомянутой компанией были построены несколько униполярных генераторов подобной конструкции (например, генератор на 2000 кет, 600 в при 48 стержнях на роторе и 96 щетках). Усовершенствования коснулись главным образом способа вентиляции машин.

В последующие годы был изготовлен ряд униполярных генераторов с повышенным напряжением по проектам Ламме (1906 г.), Штейнметца (1907 г.), Томпсона (1907 г.), Барбура (1911 г.), авторы которых, однако, не внесли принципиально новых усовершенствований в конструкцию. Затем интерес к униполярным машинам в значительной мере пропал вплоть до 30-х годов двадцатого столетия.

МАШИНЫ ПУАРСОНА И СОМЕДА

Стремление повысить напряжение униполярной машины со щетками конструктивными способами приводило, как это следует из приведенного выше анализа, к весьма сложным устройствам с относительно низким коэффициентом полезного действия.

Положительные качества униполярной машины (простота, надежность, низкая стоимость) проявляются в большей степени при низком напряжении, измеряемом десятками вольт. Поэтому сконструированный в 1930 г. Пуарсоном чрезвычайно простой низковольтный генератор на ток 15 ка дал новый толчок развитию униполярных машин.

На рис. 22 приведен эскиз такого генератора. Система щеток соединялась шинами с токосборными кольцами.

В 1937 г. на Международной выставке в Париже Пуарсон представил генератор уже на ток в 50 ка, развивающий напряжение 14 в при скорости вращения 750 об/мин [74] (рис. 23).

Рис. 22. пиполярный генератор Пуарсона на ток 15 ка

Рис. 23. Униполярный генератор Пуарсона на ток 50 ка

Для съема тока, использовались по 200 шт. меднографитных ш,еток с каждой торцевой поверхности ротора. Такое размещение щеток обеспечивало равномерное растекание тока в роторе и снижало их механическую вибрацию. Плотность тока под щетками составляла 25 а/см. На статоре были размещены стальные компенсационные цилиндры, изолированные друг от друга и от статора. По каждому цилиндру от щеток одной полярности проходила половина тока якоря, что обеспечивало необходимую компенсацию его магнитного поля. Катушки возбуждения намотаны из медных полос и через реостат подключены к зажимам якоря, что обеспечивало протекание тока в 400 а.

Общие потери при испытании генератора составили 54 кет. им соответствует к.п.д. машины 92%. Распределение потерь в киловаттах: электрические (под щетками) — 30; от механического трения щеток-14;. трение в подшипниках и вентиляция-?; возбуждение -2,8; прочие -0,2.

Из приведенных данных видно, что в униполярных машинах токосъем по-прежнему остается неразрешенной проблемой.

Наиболее удачным низковольтным генератором (7,2 в при 514 об/мин) с твердым контактом на большой ток (150 ка), ве-

Рис. 24. Продольный разрез н inn-ляриой машины Сомеда

роятно, был генератор, построенный п 1934 г. фирмой Вестин-гауз [45]. Он предназначался для контактной сварки стальных труб большого диаметра, допуская перегрузку по току до 270 ка. Токосъемныс кольца охлаждались водой, которая подавалась через вал. Общая площадь скользящей поверхности ще- ток составляла 2 .ui

Заслуживает внимания униполярная машина, построенная фирмой Пеллицуари (Италия) в 1941 г. по проекту Сомеда. Продольный разрез машины дай на рис. 24, а внешний видна рис. 25. При скорости вращения в 1000 об/мин она генерировала ток 15 ка при напряжении 6 в.

Компенсация реакции якоря, так же как в генераторе Пуар-сона, осуществлялась прн помощи двух стальных цилиндров.

Отличительной особенностью конструкции генератора Сомеда являлась подвижность этих цилиндров, установленных в воздушном зазоре машины с некоторым эксцентриситетом и связанных с поворотным устройством, которое было смонтировано на корпусе статора. Такая конструкция позволила одновременно осуществлять компенсацию магнитной асимметрии машины, которая неизбежно возникает из-за неточности сборки и неоднородности структуры материала магнитопровода.

Кроме того, на скользящей поверхности мсднографитных щеток (общее их число 256 шт.) были нанесены в виде сетки канавки с шагом 8 м.и. Опыты показали, что это дало некоторое снижение падения напряжения под щетками. Плотность тока в них была немного более 13 а/см-.

Общие потери в машине -25,4 кет, из них иа токосъемное устройство приходится 22 кет. В результате к.п.д. машины при полной нагрузке составлял всего 78%.

ПАРАМЕТРЫ И КОНСТРУКЦИЯ БОЛЕЕ ПОЗДНИХ УНИПОЛЯРНЫХ МАШИН

На рис. 26 дан общий вид статора и ротора высокоскоростного униполярного генератора на 3000 o6/m.iih, 70 140 в, 9/4,5 ка, который был построен фирмой Сименс-Шуккерт .

Рис. 25. Внешний вид генератора Сомеда на 15 ка

Рис. 26. Ротор и статор униполярного генератора фир,мы Сименс-Шуккерт

Яков Кузнецов/ автор статьи

Приветствую! Я являюсь руководителем данного проекта и занимаюсь его наполнением. Здесь я стараюсь собирать и публиковать максимально полный и интересный контент на темы связанные ремонтом автомобилей и подбором для них запасных частей. Уверен вы найдете для себя немало полезной информации. С уважением, Яков Кузнецов.

Понравилась статья? Поделиться с друзьями:
NEVINKA-INFO.RU
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: