Уравнение постоянного тока для генератора постоянного тока - NEVINKA-INFO.RU

Уравнение постоянного тока для генератора постоянного тока

Уравнение постоянного тока для генератора постоянного тока УРАВНЕНИЯ ГЕНЕРАТОРОВ ПОСТОЯННОГО ТОКА Основные соотношения, характеризующие работу машины в качестве генератора, можно представить

Уравнение постоянного тока для генератора постоянного тока

Уравнение постоянного тока для генератора постоянного тока

УРАВНЕНИЯ ГЕНЕРАТОРОВ ПОСТОЯННОГО ТОКА

Основные соотношения, характеризующие работу машины в качестве генератора, можно представить в виде приведенных ниже уравнений. Эти уравнения справедливы для всех генераторов независимо от способа их возбуждения.

Уравнение равновесия напряжения. Напряжение на выводах генератора U всегда меньше наводимой в обмотке якоря ЭДС Е на значение падения напряжения, т. е.

U = E IaΣra ΔUщ.

Падение напряжения в цепи якоря состоит из двух составляющих: IaΣra падение напряжения в обмотках и ΔUщ. — падение напряжения в щеточном контакте. Сопротивление Σra включает в себя сопротивления обмотки якоря и всех последовательно соединенных с ней обмоток. В общем случае

Σra = ra + rд.+ rс + rк,

где ra, rд, rс, rк сопротивления обмоток: якоря, дополнительных полюсов, последовательной и компенсационной.

В зависимости от конкретной схемы генератора часть сопротивлений в (2) будет отсутствовать.

Для приближенных расчетов уравнение (1) можно упростить:

U = E Ia Ra,

(3)

где Ra=Σra+rщ. Переходное сопротивление щеточного контакта rщ приближенно принимается постоянным и равным

rщ = ΔUщ/ Ia, ном.

Ток якоря генератора Ia обусловлен ЭДС E и всегда имеет с ней одинаковое направление:

Ia = (E U)/Ra.

(4)

Уравнение баланса мощностей. Это уравнение получим, если правую и левую части (1) умножим на ток Ia:

Произведение E Ia=Pэм называется электромагнитной мощностью и представляет собой суммарную электрическую мощность, которая получается в результате преобразования механической мощности. Часть этой мощности расходуется в цепи якоря на электрические потери в обмотках (I 2 aΣra= Pэ,а) и в переходном сопротивлении щеточного контакта (ΔUщIa= Pэ,щ).

Остальная часть мощности, равная произведению UIa, является отдаваемой мощностью генератора. В генераторах независимого возбуждения эта мощность поступает во внешнюю сеть и представляет собой полезную мощность генератора P2:

(5)

В генераторах параллельного и смешанного возбуждения полезная мощность P2, отдаваемая в сеть, меньше на значение мощности, затрачиваемой на возбуждение:

P2 = UIa Pв.

К генератору от двигателя, приводящего во вращение его якорь ,подводится механическая мощность P1. Большая часть этой мощности преобразуется в электромагнитную Pэм, а другая ее часть расходуется в генераторе на покрытие механических потерь Pмх(трение в подшипниках, вентиляцию), магнитных потерь в стали якоря Pм и добавочных потерь Pд:

P1 = Pэм + Pмх.+ Pм + Pд.

Для генераторов независимого возбуждения мощность, затрачиваемая на возбуждение, поступает от постороннего источника, поэтому в левой части (7) следует принимать

P1 = Pэм + Pмх.+ Pм + Pд + Pв.

Отношение P2/P1=η представляет собой КПД генератора.

Рассмотренное преобразование мощности в генераторах постоянного тока для наглядности можно представить в виде энергетической диаграммы (рис. 2). Эта диаграмма построена для генератора параллельного возбуждения.

Уравнение равновесия моментов. Поделив правую и левую части уравнения (7) на угловую скорость якоря Ω=2πn/60, получим уравнение момента:

P1 = Pэм/Ω + (Pмх.+ Pм + Pд)/Ω,

М1 = М + (Pмх.+ Pм + Pд)/Ω.

Электромагнитный момент М в генераторе направлен против вращения и равен М=cMIaФ. При увеличении тока Ia возрастает электромагнитный момент и, следовательно, момент и мощность, поступаемая от приводного двигателя.

Генератор постоянного тока ГПТ: основные понятия.

В процессе работы генератора постоянного тока в обмотке якоря индуцируется ЭДС Ea. При подключении к генератору нагрузки в цепи якоря возникает ток, а на выводах генератора устанавливается напряжение, определяемое уравнением напряжений для цепи якоря генератора:

сумма сопротивлений всех участков цепи якоря: обмотки якоря ra , обмотки добавочных полюсов rД , компенсационной обмотки rк., последовательной обмотки возбуждения и переходного щеточного контакта rщ.

При отсутствии в машине каких-либо из указанных обмоток в (28.2) не входят соответствующие слагаемые.

Якорь генератора приводится во вращение приводным двигателем, который создает на валу генератора вращающий момент М1 Если к генератору не подключена нагрузка (работает в режиме х.х. Ia=0 ), то для вращения его якоря нужен сравнительно небольшой момент холостого хода M. Этот момент обусловлен тормозными моментами, возникающими в генераторе при его работе в режиме х.х.: моментами от сил трения и вихревых токов в якоре.

При работе генератора с подключенной нагрузкой в проводах обмотки якоря появляется ток, который, взаимодей­ствуя с магнитным полем возбуждения, создает на якоре электромагнитный момент М. В генераторе этот момент направлен встречно вра­щающему моменту приводного двигателя ПД (рис. 28.1), т. е. он является нагрузочным (тормозящим).

Рис. 28.1. Моменты, действующие в генераторе постоянного тока

При неизменной частоте вращения n = const вра­щающий момент приводного двигателя M1 уравнове­шивается суммой противодействующих моментов: мо­ментом х.х. M и электромагнитным моментом М, т. е.

Выражение (28.3) —называется уравнением моментов для генератора при постоянной частоте нагрузки. Умножив члены уравнения (28.3) на угловую скорость вращения якоря ω, получим уравнение мощностей:

, (28.4)

где P1 = M1ω — подводимая от приводного двигателя к генератору мощность (меха­ническая); P = Mω мощность х.х., т. е. мощность, подводимая к генератору в режиме х.х. (при отключен­ной нагрузке); PЭМ = Mω— электромагнитная мощность генератора.

Согласно (25.27), получим

или с учетом (28.1)

где P2 — полезная мощность генератора (электрическая), т. е. мощ­ность, отдаваемая генератором нагрузке; PЭa — мощность потерь на нагрев обмоток и щеточного контакта в цепи якоря .

Учитывая потери на возбуждение генератора PЭВ, получим уравнение мощностей для генератора постоянного тока:

Следовательно, механическая мощность, развиваемая приводным двигателем P1, преобразуется в генераторе в полезную электрическую мощность P2, передаваемую нагрузке, и мощ­ность, затрачиваемую на покрытие потерь

Так как генераторы обычно работают при неизменной частоте вращения, то их характеристики рассматривают при условии n = const.

Рассмотрим основные характеристики генераторов посто­янного тока.

Характеристика холостого хода — зависимость напряжения на выходе генератора в режиме х.х. U от тока возбуждения IВ:

Нагрузочная характеристика зависимость напряжения на выходе генератора U при работе с нагрузкой от тока возбу­ждения IВ:

Внешняя характеристика — зависимость напряжения на выходе генератора U от тока нагрузки I:

Регулировочная характеристика — зависимость тока возбуж­дения IВ от тока нагрузки I при неизменном напряжении на выходе генератора

Вид перечисленных характеристик определяет рабочие свой­ства генераторов постоянного тока которые во многом зависят от способа включения генератора в схему, поэтому мы рассмотрим каждый способ включения по отдельности.

Уравнения генераторов постоянного тока

Основные соотношения, характеризующие работу машины в качестве генератора, можно представить в виде приведенных ниже уравнений. Эти уравнения справедливы для всех генераторов независимо от способа их возбуждения.

Уравнение равновесия напряжения. Напряжение на выводах генератора U всегда меньше наводимой в обмотке якоря ЭДС Е на значение падения напряжения:

U = E — IaΣra — ΔUщ. (1)

Падение напряжения в цепи якоря состоит из двух составляющих: IaΣra падение напряжения в обмотках и ΔUщ. — падение напряжения в щеточном контакте. Сопротивление Σra включает в себя сопротивления обмотки якоря и всех последовательно соединенных с ней обмоток. В общем случае

Σra = ra + rд.+ rс + rк , (2)

где ra, rд, rс, rк сопротивления обмоток: якоря, дополнительных полюсов, последовательной и компенсационной.

Читайте также  Электромеханический счетчик моточасов для генератора

В зависимости от конкретной схемы генератора часть сопротивлений в (2) будет отсутствовать.

Для приближенных расчетов уравнение (1) можно упростить:

U = E — Ia Ra, (3)

где Ra=Σra+rщ. Переходное сопротивление щеточного контакта rщ приближенно принимается постоянным и равным

rщ = ΔUщ/ Ia, ном.

Ток якоря генератора Ia обусловлен ЭДС E и всегда имеет с ней одинаковое направление:

Ia = (E — U)/Ra. (4)

Уравнение баланса мощностей. Это уравнение получим, если правую и левую части (1) умножим на ток Ia:

UIa = EIa. — I 2 aΣra — ΔUщIa.

Произведение E Ia=Pэм называется электромагнитной мощностью и представляет собой суммарную электрическую мощность, которая получается в результате преобразования механической мощности. Часть этой мощности расходуется в цепи якоря на электрические потери в обмотках (I 2 aΣra= Pэ,а) и в переходном сопротивлении щеточного контакта (ΔUщIa= Pэ,щ).

Остальная часть мощности, равная произведению UIa, является отдаваемой мощностью генератора. В генераторах независимого возбуждения эта мощность поступает во внешнюю сеть и представляет собой полезную мощность генератора P2:

P2 = UIa. (5)

В генераторах параллельного и смешанного возбуждения полезная мощность P2, отдаваемая в сеть, меньше на значение мощности, затрачиваемой на возбуждение:

P2 = UIa — Pв. (6)

К генератору от двигателя, приводящего во вращение его якорь ,подводится механическая мощность P1. Большая часть этой мощности преобразуется в электромагнитную Pэм, а другая ее часть расходуется в генераторе на покрытие механических потерь Pмх (трение в подшипниках, вентиляцию), магнитных потерь в стали якоря Pм и добавочных потерь Pд:

P1 = Pэм + Pмх.+ Pм + Pд. (7)

Для генераторов независимого возбуждения мощность, затрачиваемая на возбуждение, поступает от постороннего источника, поэтому в левой части (7) следует принимать

P1 = Pэм + Pмх.+ Pм + Pд + Pв. (8)

Отношение P2/P1 представляет собой КПД генератора.

Рассмотренное преобразование мощности в генераторах постоянного тока для наглядности можно представить в виде энергетической диаграммы (рис. 2). Эта диаграмма построена для генератора параллельного возбуждения.

Уравнение равновесия моментов. Поделив правую и левую части уравнения (7) на угловую скорость якоря Ω=2πn/60, получим уравнение момента:

P1/Ω = Pэм/Ω + (Pмх.+ Pм + Pд)/Ω, (8)
М1 = М + (Pмх.+ Pм + Pд)/Ω.

Электромагнитный момент М в генераторе направлен против вращения и равен М=cMIaФ. При увеличении тока Ia возрастает электромагнитный момент и, следовательно, момент и мощность, поступаемая от приводного двигателя.

Генераторы переменного тока

Переменный ток – движущая сила многих производств и транспорта, в частности, автомобилей. Существуют как небольшие модели величиной с кулак, так и гигантские устройства несколько метров в высоту.

Как бы не был устроен генератор, в основе его действия лежит процесс электромагнитной индукции – появление в замкнутом контуре электрического тока под воздействием измененного магнитного потока. Принцип устройства генератора переменного тока приведен на рисунке 3.1. Индуцированный ток возникает в тех сторонах витка, которые пересекаются силовыми линиями поля магнита.

В зависимости от количества обмоток на статоре генератора можно получить несколько отдельных фаз синусоидального напряжения. Если количество витков обмоток одинаково, то амплитуды синусоидальных напряжений также будут одинаковыми, но фазы напряжений будут отличаться.

Генератор однофазного тока

Генератор двухфазного тока

Генератор трехфазного тока

Трехфазная цепь состоит из трех основных элементов: трехфазного генератора, в котором механическая энергия преобразуется в электрическую с трехфазной системой ЭДС; линии передачи со всем необходимым оборудованием; приемников (потребителей), которые могут быть как трехфазными (например, трехфазные асинхронные двигатели), так и однофазными (например, лампы накаливания).

Трехфазный генератор представляет собой синхронную машину нескольких типов: турбогенератор и гидрогенератор, дизельгенераторы и др. . Модель трехфазного генератора схематически изображена на рис. 3.1.

На статоре 1 генератора размещается обмотка 2, состоящая из трех частей или, как их принято называть, фаз. Обмотки фаз располагаются на статоре таким образом, чтобы их магнитные оси были сдвинуты в пространстве относительно друг друга на угол 2π/3, т.е. на 120°. На рис. 3.1 каждая фаза обмотки статора условно показана состоящей из одного витка. Начала фаз обозначены буквами A, B и C, а концы – X, Y, Z. Ротор 3 представляет собой электромагнит, возбуждаемый постоянным током обмотки возбуждения 4, расположенной на роторе.

При вращении ротора турбиной с равномерной скоростью в обмотках фаз статора индуктируются периодически изменяющиеся синусоидальные ЭДС одинаковой частоты и амплитуды, но отличающиеся друг от друга по фазе на 120° вследствие их пространственного смещения.

На рис. 3.1.б. приведен график ЭДС, вырабатываемые трехфазным генератором

На схеме обмотку (или фазу) источника питания изображают как показано на рис. 3.2.

За условное положительное направление ЭДС в каждой фазе принимают направление от конца к началу. Обычно индуктированные в обмотках статора ЭДС имеют одинаковые амплитуды и сдвинуты по фазе относительно друг друга на один и тот же угол 120°. Такая система ЭДС называется симметричной.

Трехфазная симметричная система ЭДС может изображаться графиками, тригонометрическими функциями, векторами и функциями комплексного переменного.

Для получения ЭДС необходим мой частоты f = 50 Гц ротор генератора рис. 3.1 должен вращаться со скоростью 3000 об/мин. Для уменьшения скорости вращения ротора генератора увеличивают число пар полюсов электромагнита ротора. Трехфазная обмотка статора выполнена с таким же числом полюсов, как и ротора.

Ротор служит для создания основного магнитного потока. По конструкции различают роторы с явно и неявно выраженными полюсами.

Ротор с явно выраженными полюсами (рис 3.3,а) состоит из стального вала, роторной звезды и полюсов возбуждения с полюсными катушками, укрепленными на ободе роторной звезды.

При больших частотах вращения (3 тыс. об/мин), исходя из соображений механической прочности, ротор выполняют неявнополюсным (рис 3.3,6) с выфрезерованнымн на его поверхности продольными пазами, в которые закладывают обмотку возбуждения.

На валу ротора устанавливают контактные кольца, к которым присоединяют выводы обмотки возбуждения. Кольца надежно изолируют от вала и друг от друга. К кольцам прилегают щетки, укрепленные в щеткодержателях, образуя скользящий контакт. Через скользящий контакт обмотка возбуждения подключается к источнику постоянного тока. При подключении обмотки возбуждения вращающегося ротора к источнику постоянного тока создается вращающийся вместе с ротором магнитный поток Ф, пересекающий трехфазную обмотку статора и по закону электромагнитной индукции в каждой фазной обмотке образуется наводящий э д с.

Э д с статора составляет симметричную трехфазную э д с, и при подключении к обмотке статора симметричной нагрузки эта обмотка нагружается симметричной системой токов. Машина при этом работает в режиме генератора

Уравнение постоянного тока для генератора постоянного тока

Вал генератора принудительно вращается. По обмотке возбуждения (ОВ) протекает ток и создается магнитный поток. Проводники якоря при вращении пересекают силовые магнитные линии поля и в них индуцируется ЭДС, которая через щетки снимается с генератора.

Классификация генераторов по способу подключения обмоток возбуждения:

1. Генератор с независимым возбуждением (ГНВ). Обмотка возбуждения подключается к отдельному независимому источнику (рис. 3.42, а).

2. Генератор с параллельным возбуждением, шунтовой (ГПВ). Обмотка возбуждения подключается параллельно якорю (рис. 3.42, в).

Читайте также  Хонда стид 400 генератор

3. Генератор со смешанным возбуждением, компаундный (ГСВ). Магнитный поток создается двумя обмотками возбуждения. Одна из них (ОВ1) подключается параллельно якорю, другая (ОВ2) – последовательно (рис. 3.42, б).

Используя второй закон Кирхгофа, получаем уравнение электрического равновесия для якорной цепи:

Рис. 3.42. Схемы включения генераторов

.

В двигателях , в генераторах .

1. Характеристика холостого хода при . Так как , то вид характеристики холостого хода (рис. 3.43, а) определяется видом зависимости магнитного потока Ф от тока возбуждения i в (рис. 3.43, б).

Ветвь 1 снимается при первом испытании машины, ветвь 2 при последующих испытаниях. Остаточная ЭДС Е возникает из-за остаточной намагниченности, которая является свойством всех ферромагнитных материалов.

Рис. 3.43. Характеристика холостого хода ( а)

и кривая намагничивания стали ( б)

2. Внешняя характеристика . Вид характеристики определяется уравнением электрического равновесия для якорной цепи U = E – I я R я .

Рис. 3.44. Внешние характеристики генераторов с независимым (ГНВ)

и параллельным (ГПВ) возбуждением ( а) и смешанным возбуждением ( б)

У ГПВ уменьшение напряжения вызывает уменьшение тока возбуждения, а следовательно, уменьшение Ф и Е. У ГНВ Ф и Е неизменны (реакцией якоря пренебрегаем).

3. Регулировочная характеристика при показывает, как нужно принудительно изменять ток возбуждения при изменении тока якоря, чтобы напряжение на выходе осталось неизменным (рис. 3.45). Из уравнения электрического равновесия для якорной цепи видно, что при увеличении I я для поддержания постоянного U следует увеличивать Е за счет увеличения i в . Регулирование величины выходного напряжения осуществляется изменением величины тока в обмотке возбуждения.

Изменение полярности целесообразно производить изменением направления тока в обмотке возбуждения.

Принцип действия генератора с параллельным возбуждением. При вращении якоря в начальный момент присутствует только остаточный магнитный поток, который вызывает небольшую остаточную ЭДС. Под влиянием ее появляется ток возбуждения, создающий магнитный поток, который складывается с остаточным. Повышаются результирующий магнитный поток, ЭДС, i в и др., пока генератор не выйдет на установившийся режим. Процесс прекращается, когда происходит насыщение магнитной цепи генератора.

Условия самовозбуждения генератора:

1. Наличие остаточного магнитного потока.

2. Магнитный поток обмотки возбуждения и остаточный магнитный поток должны быть направлены согласно.

3. Суммарное сопротивление в цепи обмотки возбуждения должно быть меньше критического.

Генератор постоянного тока.

Давайте разберем принцип действия генератора постоянного тока, познакомимся с его конструктивными особенностями и принципом действия.

Генератор постоянного тока работает основываясь на использовании закона электромагнитной индукции. Согласно этому закону, в проводнике, который движется в магнитном поле и пересекает магнитный поток, индуцируется ЭДС.

Магнитопровод по которому замыкается магнитный поток является одной из основных частей генератора постоянного тока.

Магнитная цепь генератора постоянного тока (изображен на рисунке 1) состоит из неподвижной части — статора (1) и вращающейся части — ротора (4).

Статор представляет собой стальной корпус, к которому присоединены остальные детали машины, в том числе магнитные полюсы (2). На магнитные полюсы насажена обмотка возбуждения (3), которая питается постоянным током и создает основной магнитный поток Ф0.

Магнитная цепь генератора постоянного тока с четырьмя полюсами.

Листы, из которых собирается магнитная цепь ротора: а — с открытыми пазами, б — с полузакрытыми пазами

Ротор машины собирают из штампованных стальных листов с пазами по окружности и с отверстиями, предназначенными для вала и вентиляции. Рабочая обмотка генератора постоянного тока вставляется в пазы ротора (5 на изображении 1). Этой обмоткой индуцируется ЭДС основным магнитным потоком. Обмотку также называют обмоткой якоря, поэтому ротор генератора постоянного тока принято называть якорем.

Значение ЭДС генератора постоянного тока может изменяться, но ее полярность остается величиной постоянной. Принцип действия генератора постоянного тока изображен на рисунке 3.

Магнитный поток создается полюсами постоянного магнита. Допустим, обмотка якоря состоит из одного витка, у которого концы присоединены к различным полукольцам, находящимся в изоляции друг от друга. Из этих полуколец формируется коллектор, совершающий вращения вместе с витком обмотки якоря. Одновременно с этим вдоль коллектора двигаются неподвижные щетки.

При вращении витка в магнитном поле в нем индуцируется ЭДС: e = B*l*v

  • где В — магнитная индукция, l — длина проводника, v — его линейная скорость.

При совпадении плоскости витка с плоскостью осевой линии полюсов (при этом виток расположен вертикально), проводники пересекают максимальный магнитный поток. В это время в них индуцируется максимальный показатель ЭДС. В том случае когда виток принимает горизонтальное положение, ЭДС в проводниках равна нулю.

В проводнике направление ЭДС определяется по правилу правой руки (на рисунке 3 оно показано в виде стрелок). Когда при вращении витка проводник переходит под другой полюс, направление ЭДС в нем меняется на обратное. Но поскольку коллектор вращается вместе с витком, а щетки неподвижны, то к верхней щетке всегда присоединен проводник, который находится под северным полюсом, ЭДС которого направлена от щетки. В результате полярность щеток остается неизменной, а следовательно, остается неизменной по направлению ЭДС на щетках — е (рисунок 4).

Простейший генератор постоянного тока.

Изменение во времени ЭДС простейшего генератора постоянного тока.

Несмотря на то что ЭДС простейшего генератора постоянного тока постоянна в направлении, по своему значению она изменяется. Поскольку за один оборот витка ЭДС принимает 2 раза значение равное нулю и 2 раза максимальное. Для большинства приемников постоянного тока ЭДС с такой большой пульсацией непригодна и, строго говоря, ее нельзя назвать постоянной.

Чтобы уменьшить пульсацию, обмотку якоря генератора постоянного тока делают из большого числа витков (катушек), а коллектор из большого числа коллекторных пластин, которые изолированы друг от друга.

Для того чтобы рассмотреть подробнее процесс сглаживания пульсаций возьмем в качестве примера обмотку кольцевого якоря (рисунок 5). Она состоит из четырех катушек (1, 2, 3, 4), по два витка в каждой. Якорь двигается по направлению часовой стрелки с частотой n и в проводниках обмотки якоря, которые расположены на внешней стороне якоря, индуцируется ЭДС (направление движения указано стрелками).

Обмотка якоря представляет собой замкнутую цепь, которая состоит из последовательно соединенных витков. При этом обмотка якоря относительно щеток представляет собой две параллельные ветви. На рисунке 5а одна параллельная ветвь состоит из катушки 2, вторая из катушки 4 (в катушках 1 и 3 ЭДС не индуцируется, и они обеими концами соединены с одной щеткой). На рисунке 5б якорь изображен в положении, которое он занимает через 1/8 оборота. В этом положении одна параллельная ветвь обмотки якоря состоит из последовательно включенных катушек 1 и 2, а вторая из последовательно включенных катушек 3 и 4.

Схема простейшего генератора постоянного тока с кольцевым якорем.

При вращении якоря по отношению к щеткам каждая катушка имеет постоянную полярность.

На рисунке 6а показано как при вращении якоря изменяется ЭДС катушек во времени. ЭДС на щетках равна ЭДС каждой из параллельных ветвей обмотки якоря.

Читайте также  Чем отличается дизель от дизель генератора

Из рисунка 5 видно, что ЭДС параллельной ветви равна или сумме ЭДС двух соседних катушек или ЭДС одной катушки:

Как результат этого, заметно уменьшаются пульсации ЭДС обмотки якоря (рисунок 6б). А значит увеличивая количество витков и коллекторных пластин можно получить практически постоянную ЭДС обмотки якоря.

Изменение во времени ЭДС катушек и обмотки кольцевого якоря.

Общие сведения о генераторах постоянного тока

Автор: Евгений Живоглядов.
Дата публикации: 25 января 2013 .
Категория: Статьи.

Хотя в промышленности применяется главным образом переменный ток, генераторы постоянного тока широко используются в различных промышленных, транспортных и других установках (для питания электроприводов с широким регулированием скорости вращения, в электролизной промышленности, на судах, тепловозах и так далее). В этих случаях генераторы постоянного тока обычно приводятся во вращение электродвигателями переменного тока, паровыми турбинами или двигателями внутреннего сгорания.

Классификация генераторов постоянного тока по способу возбуждения

Различаются генераторы независимого возбуждения и генераторы с самовозбуждением.

Генераторы независимого возбуждения делятся на генераторы с электромагнитным возбуждением (рисунок 1, а), в которых обмотка возбуждения ОВ питается постоянным током от постороннего источника (аккумуляторная батарея, вспомогательный генератор или возбудитель постоянного тока, выпрямитель переменного тока), и на магнитоэлектрические генераторы с полюсами в виде постоянных магнитов. Генераторы последнего типа изготавливаются только на малые мощности. В данной главе рассматриваются генераторы с электромагнитным возбуждением.

В генераторах с самовозбуждением обмотки возбуждения питаются электрической энергией, вырабатываемой в самом генераторе.

Во всех генераторах с электромагнитным возбуждением на возбуждение расходуется 0,3 – 5% номинальной мощности машины. Первая цифра относится к самым мощным машинам, а вторая – к машинам мощностью около 1 кВт.

Генераторы с самовозбуждением в зависимости от способа включения обмоток возбуждения делятся на 1) генераторы параллельного возбуждения, или шунтовые (рисунок 1, б), 2) генераторы последовательного возбуждения, или сериесные (рисунок 1, в), и 3) генераторы смешанного возбуждения, или компаундные (рисунок 1, г).

Генераторы смешанного возбуждения имеют две обмотки возбуждения, расположенные на общих главных полюсах: параллельную и последовательную. Если эти обмотки создают намагничивающую силу одинакового направления, то их включение называется согласным; в противном случае соединение обмоток называется встречным. Обычно применяется согласное включение обмоток возбуждения, причем основная часть намагничивающей силы возбуждения (65 – 80%) создается параллельной обмоткой возбуждения.

Рисунок 1. Схемы генераторов и двигателей независимого (а), параллельного (б), последовательного (в), смешанного (г) возбуждения (сплошные стрелки – направления токов в режиме генератора, штриховые – в режиме двигателя)

На рисунке 1, г конец параллельной обмотки возбуждения (от реостата возбуждения) подключен за последовательной обмоткой возбуждения («длинный шунт»), однако этот конец может быть присоединен и непосредственно к якорю («короткий шунт»). Существенной разницы в этих вариантах соединения нет, так как падение напряжения в последовательной обмотке составляет только 0,2 – 1,0% от Uн и ток iв мал. Обычно применяется соединение, изображенное на рисунке 1, г.

В генераторе параллельного возбуждения ток возбуждения составляет 1 – 5% от номинального тока якоря Iан или тока нагрузки Iн = Iанiв. В генераторах последовательного возбуждения эти токи равны друг другу: iв = Iа = I и падение напряжения на обмотке возбуждения при номинальной нагрузке составляет 1 – 5% от Uн. Обмотки возбуждения у генераторов параллельного возбуждения имеют большое число витков малого сечения, а у генераторов последовательного возбуждения – относительно малое число витков большого сечения.

В цепях обмоток параллельного возбуждения, а часто также в цепи обмотки независимого возбуждения для регулирования тока возбуждения включают реостаты Rр.в (рисунок 1, а, б, и г).

Крупные машины постоянного тока работают с независимым возбуждением. Машины малой и средней мощности большей частью имеют параллельное или смешанное возбуждение. Генераторы с последовательным возбуждением менее распространены.

Рисунок 2. Энергетическая диаграмма генератора независимого возбуждения

Энергетическая диаграмма

Энергетическая диаграмма генератора независимого возбуждения представлена на рисунке 2. Получаемая от первичного двигателя механическая мощность P1 за вычетом потерь механических pмх, магнитных pмг и добавочных pд преобразуется в якоре в электромагнитную мощность Pэм. Мощность Pэм частично тратится на электрические потери pэла в цепи якоря (в обмотках якоря, добавочных полюсов и компенсационной и в переходном сопротивлении щеточного контакта), а остальная часть этой мощности представляет собой полезную мощность P2, отдаваемую потребителям. Потери на возбуждение pв в генераторе независимого возбуждения покрываются за счет постороннего источника тока.

На основании изложенного для генератора независимого возбуждения имеем уравнение мощностей

P2 = P1pмхpмгpдpэла = Pэмpэла (1)

Можно написать также следующее уравнение мощностей:

P1 = pмх + pмг + pд + Pэм (2)

Аналогичные энергетические диаграммы можно построить и для других типов генераторов.

Уравнение вращающих моментов

Если все члены уравнения (2) разделить на угловую скорость вращения якоря

то получим уравнение вращающих моментов для установившегося режима работы:

(3)
(4)

представляет собой приложенный к валу вращающий момент первичного двигателя,

(5)

– электромагнитный момент, развиваемый якорем, и

(6)

– тормозной момент, соответствующий потерям на трение (Мтр) и магнитным и добавочный потерям (Мс.д), которые покрываются за счет механической мощности.

В неустановившемся режиме, когда скорость вращения изменяется, возникает также так называемый динамический момент вращения

(7)

где J – момент инерции вращающихся частей генератора. Динамический момент соответствует изменению кинетической энергии вращающихся масс. При увеличении скорости вращения момент Mдин > 0 и, как и момент M + Mэм, являются тормозным. В данном случае кинетическая энергия вращающихся масс увеличивается за счет работы первичного двигателя. Если момент Mдин div > .uk-panel’>» data-uk-grid-margin>

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: