Устройства генераторы постоянные магниты

Описание основных моделей бестопливных электрогенераторов. Принцип работы устройств. Создание аппарата своими руками. Наиболее популярные модели и рекомендации по выбору.

Устройства генераторы постоянные магниты

Генераторы на магнитах, работающие без топлива

28 сентября 2018

Время на чтение:

Всё большую популярность набирают генераторы, которые способны вырабатывать электричество без использования бензина или дизельного топлива, так как они гораздо экономичнее. Также эти устройства не выделяют токсичных веществ и не загрязняют окружающий мир. Генераторы на магнитах, работающие без топлива, применяют не только в домашнем хозяйстве, но и в некоторых отраслях промышленности.

Бестопливные генераторы

Многие государства сейчас делают упор на разработку альтернативных источников энергии, а также на экономию полезных ископаемых. Достигается это благодаря использованию магнитных электрогенераторов. Принцип их работы заключается в элементарных законах физики. Наиболее успешными видами устройств считаются такие:

  1. Бестопливный генератор на магнитах Адамса. На сегодняшний день является наиболее популярным магнитным двигателем. У него довольно простая конструкция, но при этом очень высокий коэффициент полезного действия.
  2. Мотор Дудышева. В основе его работы применяется магнитный ток, который видоизменяется в электрический импульс.
  3. Соленоидальный мотор Дудышева. В его конструкцию включён магнитный ротор. Наибольшую эффективность показывает на малых мощностях.
  4. Двигатель Минато. КПД устройства составляет 100%. Это достигается благодаря использованию усилителей мощности.
  5. Мотор Джонсона. Это довольно популярный тип устройств, но в промышленности его не применяют из-за малой мощности.

Большинство видов агрегатов можно успешно применять в разных отраслях промышленности. Это позволит не только экономить на топливе, но и снизить уровень загрязнения окружающей среды.

Прибор Вега и его особенности

Бтг работают по схеме захвата свободной энергии, после чего идёт её преобразование в индукционный ток. Адамс и Бедини посвятили свою жизнь изучению этого физического явления. Приборы можно применять как автономное обеспечение электроснабжением для:

  • частных домов;
  • фермерских или же лесных угодий;
  • судоходства;
  • автомобилестроения;
  • самолётостроения и космонавтики.

Эффективность бестопливных генераторов на магнитах зачастую проявляется в местах, которые не получается обеспечить топливом, а силы природной энергии недостаточно для полного обеспечения электричеством. Следует понимать, что устройство Адамса не является вечным генератором электричества. При эксплуатации ему необходим периодический ремонт. Также агрегат требует постоянного обслуживания.

Бестопливный генератор на магнитах от производителя «Вега» имеет ряд преимуществ:

  1. Прибор можно использовать в любых погодных условиях, а также вдали от сетей электроснабжения.
  2. Топливом является кинетическая энергия.
  3. Ограничения по производству электричества отсутствуют.
  4. Полностью безопасен для организма человека и природы.
  5. Сделать бестопливный генератор можно своими руками.
  6. Агрегат очень компактный.
  7. Минимальный срок эксплуатации составляет 20 лет.

Основное преимущество заключается в том, что не нужно самостоятельно придавать движение валу. Весь процесс автоматизирован, благодаря преобразованию кинетической энергии в электрический импульс.

Принцип работы

Работа генератора заключается в гибридной в системе. Переменный ток получается после преобразования кинетической энергии. Ротор вращается благодаря силе магнитного поля, которое исходит от торцов электромагнитов. Таким образом, магнитные колебания позволяют создать электрический импульс. Самая простая конструкция содержит в себе:

  1. Генератор. Это цилиндрическая ёмкость, которая обязательно должна герметично закрываться. Внутри возникает электромагнитное поле, благодаря направленному воздействию катушек.
  2. Конвектор-преобразователь. Продуцирует электроэнергию из магнитных импульсов. На выходе получается переменный ток.
  3. Аккумуляторы. Необходимы для накапливания заряда. Благодаря им можно пользоваться электричеством в любое время.

Главным элементом в конструкции является многополюсный генератор прямого вращения. Снаружи располагаются магниты. Их количество зависит от необходимой мощности. Минимальный коэффициент полезного действия такого устройства составляет 90%. Из генераторов можно создать электрические сети, соединяя несколько устройств между собой. Это выгодно, если мощность аппарата составляет, например, 5 киловатт, а требуется мощность в 10 киловатт.

Создание аппарата своими руками

Получение электрической энергии в огромных количествах без затрат топлива — идея заманчивая и вполне выполнимая. Создание такого устройства можно рассмотреть на примере генератора Адамса. Для самостоятельной сборки понадобятся:

  1. Магниты. Чем больше магнит, тем сильнее он воздействует на индукционное поле, а также на количество вырабатываемой энергии. Для генератора небольшой мощности подойдут маленькие куски. Желательно, чтобы размеры были одинаковыми. Для нормальной работы достаточно 15 штук. Плюсовой полюс одного магнита должен устанавливаться напротив плюса другого. Если не соблюсти это условие, то индукционного поля не будет.
  2. Медные провода.
  3. Две катушки. Их можно достать из старых двигателей или же намотать проволоку самостоятельно.
  4. Листовая сталь для изготовления корпуса.
  5. Болты, шайбы, шурупы и гвозди. Они необходимы для крепежа небольших элементов.

Сначала магнит нужно закрепить на основании катушки. Сделать это можно, если высверлить в нём отверстие, а затем закрепить болтами. Провода на катушках должны быть толщиной в 1,25 мм и иметь слой изоляции. Катушки следует крепить на металлической раме так, чтобы между торцами были небольшие зазоры. Это требуется для свободного вращения основного элемента.

На этом этапе аппарат уже можно использовать. Проверить правильность сборки довольно просто: следует вручную прокрутить магниты. Если конструкция собрана правильно, то на концах обмотки возникнет напряжение.

Это наиболее примитивный генератор, работающий от магнитов. Но на основе такой схемы можно создать устройство, которое будет способно обеспечить электроэнергией весь дом. Также можно приобрести уже готовые аппараты от проверенных производителей.

Наиболее популярные модели

На текущий момент наиболее популярными генераторами являются модели от производителей «Энерджистем», «U-Polemag», «Вега», а также «Верано-Ко». Они занимают обширную часть рынка устройств.

«Вега» производит аппараты, которые работают исходя из принципа магнитной индукции. Эту идею смог воплотить знаменитый физик Адамс. Цена зачастую зависит от мощности и размеров аппарата. Минимальная стоимость составляет 45 тыс. руб. У этого производителя есть ряд преимуществ:

  1. Продукция от компании «Вега» очень экологична.
  2. Генераторы полностью бесшумны, что позволяет их устанавливать в любом месте.
  3. Аппараты сравнительно компактные.
  4. У производителя довольно много моделей, мощность которых начинается от 1,5 кВт и достигает до 10 кВт.

Минимальный эксплуатационный срок составляет 20 лет. Аккумуляторы необходимо заменять через каждые 3−4 года.

«Верано-Ко» — это украинский производитель, использующий для своей продукции только качественные комплектующие. Производит генераторы как для бытовых нужд, так и для промышленных целей. Принцип работы альтернативного источника энергии такой же, как и у других магнитных агрегатов. Самая дешёвая модель стоит 50 тыс. руб. Цены на устройства достигают 200 тыс. руб.

«U-Polemag» является китайским производителем. Представляет наибольшее разнообразие моделей генераторов. Стандартное КПД устройств составляет 93%. Максимальные потери энергии — 1%. Зачастую приобретается для бытового использования. Имеет компактные габариты, низкий уровень шума и небольшой вес. В комплектацию входят системы охлаждение. Максимальная длительность использования достигает 15 лет. Цены на модельный ряд начинаются от 30 тыс. руб. и достигают 90 тыс. руб.

«Энерджисистем» производит устройства вертикального типа. Однозначного мнения о качестве и мощности аппаратов у потребителей нет. Цены на генераторы немного завышены и начинаются от 50 тыс. руб.

Рекомендации по выбору

Любые подобные устройства (особенно магнитные генераторы) стоят довольно много. Зачастую потребители хотят купить качественную модель, но при этом потратить минимальное количество денег. В последнее время люди начали приобретать товары из Китая. Это обусловлено тем, что продукция стоит дешёво и имеет вполне терпимое качество. Генераторы или же элементы конструкции можно купить за границей, но есть определённые риски, которые следует учитывать:

  1. Приходится платить за товар до его получения.
  2. Часто случается, что продукция не соответствует описанию на сайте.
  3. Иногда посылка не доходит до адресата, а деньги при этом никто не вернёт.

Часто такая экономия оказывается ложной. Есть возможность покупки генератора напрямую от производителя. Но при таком варианте необходимо знать все тонкости конструкции аппарата, чтобы опытный продавец не смог «втюхать» генератор, не соответствующий требованиям, поэтому перед покупкой следует:

  1. Досконально изучить рынок таких устройств. Это позволит обнаружить лидеров среди производителей.
  2. Правильно рассчитать мощность. Так можно сэкономить, не переплачивая за ненужные характеристики.

Желательно убедиться, что к товару выписывается гарантийный талон. У каждой модели должен быть лист испытаний, который может подтвердить качество.

Генератор на постоянных магнитах

В современных условиях предпринимаются постоянные попытки усовершенствования электромеханических устройств, снижения их массы и габаритных размеров. Одним из таких вариантов является генератор на постоянных магнитах, представляющий собой достаточно простую конструкцию с высоким коэффициентом полезного действия. Основная функция данных элементов заключается в создании вращающегося магнитного поля.

  1. Виды и свойства постоянных магнитов
  2. Принцип работы устройств
  3. Постоянные магниты в конструкциях генераторов

Виды и свойства постоянных магнитов

С давних пор были известны постоянные магниты, получаемые из традиционных материалов. В промышленности впервые начал использоваться сплав алюминия, никеля и кобальта (алнико). Это дало возможность применять постоянные магниты в генераторах, двигателях и других видах электрооборудования. Особенно широкое распространение получили ферритовые магниты.

Впоследствии были созданы самарий-кобальтовые жесткие магнитные материалы, энергия которых обладает высокой плотностью. Вслед за ними произошло открытие магнитов на основе редкоземельных элементов – бора, железа и неодима. Плотность их магнитной энергии значительно выше, чем самарий-кобальтового сплава при значительно низкой стоимости. Оба вида искусственных материалов успешно заменяют электромагниты и применяются в специфических областях.Неодимовые элементы относятся к материалам нового поколения и считаются наиболее экономичными.

Принцип работы устройств

Главной проблемой конструкции считался возврат вращающихся деталей в исходной положение без существенных потерь крутящего момента. Данная проблема была решена с помощью медного проводника, по которому был пропущен электрический ток, вызывающий притяжение. При отключении тока, действие притяжения прекращалось. Таким образом, в устройствах этого типа использовалось периодическое включение-отключение.

Читайте также  Чехол для генератора honda eu10i

Повышенный ток создает увеличенную силу притяжения, а та, в свою очередь, участвует в выработке тока, проходящего через медный проводник. В результате циклических действий, устройство, кроме совершения механической работы, начинает производить электрический ток, то есть выполнять функции генератора.

Постоянные магниты в конструкциях генераторов

В конструкциях современных устройств, кроме постоянных магнитов применяются электромагниты с постоянным электрическим током в катушке. Такая функция комбинированного возбуждения позволяет получить необходимые регулировочные характеристики напряжения и частоты вращения при пониженной мощности возбуждения. Кроме того, уменьшается величина всей магнитной системы, что делает подобные устройства значительно дешевле по сравнению с классическими конструкциями электрических машин.

Мощность устройств, в которых используются данные элементы может составлять только несколько киловольт-ампер. В настоящее время ведутся разработки постоянных магнитов с лучшими показателями, обеспечивающими постепенный рост мощности. Подобные синхронные машины используются не только в качестве генераторов, но и как двигатели различного назначения. Они широко применяются в горнодобывающей и металлургической отрасли, тепловых станциях и других сферах. Это связано с возможностью работы синхронных двигателей с различными реактивными мощностями. Сами они работают с точной и постоянной скоростью.

Станции и подстанции функционируют вместе со специальными синхронными генераторами, которые в режиме холостого хода обеспечивают выработку только реактивной мощности. В свою очередь, реактивная мощность обеспечивает работу асинхронных двигателей.

Генератор на постоянных магнитах работает по принципу взаимодействия магнитных полей движущегося ротора и неподвижного статора. Не до конца изученные свойства этих элементов позволяют работать над изобретением других электротехнических устройств, вплоть до создания безтопливного вечного двигателя.

Синхронный двигатель с постоянными магнитами

  • Управление синхронным электродвигателем с постоянными магнитами
    • Трапециидальное управление
    • Полеориентированное управление

Главное отличие между синхронным двигателем с постоянными магнитами (СДПМ) и асинхронным электродвигателем заключается в роторе. Проведенные исследования 1 показывают, что СДПМ имеет КПД примерно на 2% больше, чем высоко эффективный (IE3) асинхронный электродвигатель, при условии, что статор имеет одинаковую конструкцию, а для управления используется один и тот же частотный преобразователь. При этом синхронные электродвигатели с постоянными магнитами по сравнению с другими электродвигателями обладают лучшими показателями: мощность/объем, момент/инерция и др.

Конструкции и типы синхронного электродвигателя с постоянными магнитами

Синхронный электродвигатель с постоянными магнитами, как и любой вращающийся электродвигатель, состоит из ротора и статора. Статор — неподвижная часть, ротор — вращающаяся часть.

Обычно ротор располагается внутри статора электродвигателя, также существуют конструкции с внешним ротором — электродвигатели обращенного типа.

Ротор состоит из постоянных магнитов. В качестве постоянных магнитов используются материалы с высокой коэрцитивной силой.

Электродвигатель с неявно выраженными полюсами имеет равную индуктивность по продольной и поперечной осям Ld = Lq, тогда как у электродвигателя с явно выраженными полюсами поперечная индуктивность не равна продольной Lq ≠ Ld.

    Также по конструкции ротора СДПМ делятся на:
  • синхронный двигатель c поверхностной установкой постоянных магнитов
    (англ. SPMSM — surface permanent magnet synchronous motor);
  • синхронный двигатель со встроенными (инкорпорированными) магнитами
    (англ. IPMSM — interior permanent magnet synchronous motor).

Статор состоит из корпуса и сердечника с обмоткой. Наиболее распространены конструкции с двух- и трехфазной обмоткой.

    В зависимости от конструкции статора синхронный двигатель с постоянными магнитами бывает:
  • с распределенной обмоткой;
  • с сосредоточенной обмоткой.

Распределенной называют такую обмотку, у которой число пазов на полюс и фазу Q = 2, 3. k.

Сосредоточенной называют такую обмотку, у которой число пазов на полюс и фазу Q = 1. При этом пазы расположены равномерно по окружности статора. Две катушки, образующие обмотку, можно соединить как последовательно, так и параллельно. Основной недостаток таких обмоток — невозможность влияния на форму кривой ЭДС [2].

    Форма обратной ЭДС электродвигателя может быть:
  • трапецеидальная;
  • синусоидальная.

Форма кривой ЭДС в проводнике определяется кривой распределения магнитной индукции в зазоре по окружности статора.

Известно, что магнитная индукция в зазоре под явно выраженным полюсом ротора имеет трапециидальную форму. Такую же форму имеет и наводимая в проводнике ЭДС. Если необходимо создать синусоидальную ЭДС, то полюсным наконечникам придают такую форму, при которой кривая распределения индукции была бы близка к синусоидальной. Этому способствуют скосы полюсных наконечников ротора [2].

Принцип работы синхронного двигателя

Принцип действия синхронного электродвигателя основан на взаимодействии вращающегося магнитного поля статора и постоянного магнитного поля ротора. Концепция вращающегося магнитного поля статора синхронного электродвигателя такая же, как и у трехфазного асинхронного электродвигателя.

Принцип работы синхронного двигателя основан на взаимодействии вращающегося магнитного поля статора и постоянного магнитного поля ротора.

Магнитное поле ротора, взаимодействуя с синхронным переменным током обмоток статора, согласно закону Ампера, создает крутящий момент, заставляя ротор вращаться (подробнее).

Постоянные магниты, расположенные на роторе СДПМ, создают постоянное магнитное поле. При синхронной скорости вращения ротора с полем статора, полюса ротора сцепляются с вращающимся магнитным полем статора. В связи с этим СДПМ не может сам запуститься при подключении его напрямую к сети трехфазного тока (частота тока в сети 50Гц).

Управление синхронным двигателем с постоянными магнитами

Для работы синхронного двигателя с постоянными магнитами обязательно требуется система управления, например, частотный преобразователь или сервопривод. При этом существует большое количество способов управления реализуемых системами контроля. Выбор оптимального способа управления, главным образом, зависит от задачи, которая ставится перед электроприводом. Основные методы управления синхронным электродвигателем с постоянными магнитами приведены в таблице ниже.

Управление Преимущества Недостатки
Синусоидальное Скалярное Простая схема управления Управление не оптимально, не подходит для задач, где нагрузка меняется, возможна потеря управляемости
Векторное Полеориентированное управление С датчиком положения Плавная и точная установка положения ротора и скорости вращения двигателя, большой диапазон регулирования Требуется датчик положения ротора и мощный микроконтроллер системы управления
Без датчика положения Не требуется датчик положения ротора. Плавная и точная установка положения ротора и скорости вращения двигателя, большой диапазон регулирования, но меньше, чем с датчиком положения Бездатчиковое полеориентированное управление во всем диапазоне скоростей возможно только для СДПМ с ротором с явно выраженными полюсами, требуется мощная система управления
Прямое управление моментом Простая схема управления, хорошие динамические характеристики, большой диапазон регулирования, не требуется датчик положения ротора Высокие пульсации момента и тока
Трапециидальное Без обратной связи Простая схема управления Управление не оптимально, не подходит для задач, где нагрузка меняется, возможна потеря управляемости
С обратной связью С датчиком положения (датчиками Холла) Простая схема управления Требуются датчики Холла. Имеются пульсации момента. Предназначен для управления СДПМ с трапециидальной обратной ЭДС, при управлении СДПМ с синусоидальной обратной ЭДС средний момент ниже на 5%.
Без датчика Требуется более мощная система управления Не подходит для работы на низких оборотах. Имеются пульсации момента. Предназначен для управления СДПМ с трапециидальной обратной ЭДС, при управлении СДПМ с синусоидальной обратной ЭДС средний момент ниже на 5%.

Для решения несложных задач обычно используется трапециидальное управление по датчикам Холла (например — компьютерные вентиляторы). Для решения задач, которые требуют максимальных характеристик от электропривода, обычно выбирается полеориентированное управление.

Трапециидальное управление

Одним из простейших методов управления синхронным двигателем с постоянными магнитами является — трапецеидальное управление. Трапециидальное управление применяется для управления СДПМ с трапециидальной обратной ЭДС. При этом этот метод позволяет также управлять СДПМ с синусоидальной обратной ЭДС, но тогда средний момент электропривода будет ниже на 5%, а пульсации момента составят 14% от максимального значения. Существует трапециидальное управление без обратной связи и с обратной связью по положению ротора.

Управление без обратной связи не оптимально и может привести к выходу СДПМ из синхронизма, т.е. к потери управляемости.

    Управление с обратной связью можно разделить на:
  • трапециидальное управление по датчику положения (обычно — по датчикам Холла);
  • трапециидальное управление без датчика (бездатчиковое трапециидальное управление).

В качестве датчика положения ротора при трапециидальном управлении трехфазного СДПМ обычно используются три датчика Холла встроенные в электродвигатель, которые позволяют определить угол с точностью ±30 градусов. При таком управление вектор тока статора принимает только шесть положений на один электрический период, в результате чего на выходе имеются пульсации момента.

Полеориентированное управление

Полеориентированное управление позволяет плавно, точно и независимо управлять скоростью и моментом бесщеточного электродвигателя. Для работы алгоритма полеориентированного управления требуется знать положение ротора бесщеточного электродвигателя.

    Существует два способа определения положения ротора:
  • по датчику положения;
  • без датчика — посредством вычисления угла системой управления в реальном времени на основе имеющейся информации.

Полеориентированное управление СДПМ по датчику положения

    В качестве датчика угла используются следующие типы датчиков:
  • индуктивные: синусно-косинусный вращающийся трансформатор (СКВТ), редуктосин, индуктосин и др.;
  • оптические;
  • магнитные: магниторезистивные датчики.

Полеориентированное управление СДПМ без датчика положения

Благодаря бурному развитию микропроцессоров с 1970-х годов начали разрабатываться бездатчиковые векторные методы управления бесщеточными электродвигателями переменного тока. Первые бездатчиковые методы определения угла были основаны на свойстве электродвигателя генерировать обратную ЭДС во время вращения. Обратная ЭДС двигателя содержит в себе информацию о положении ротора, поэтому вычислив величину обратной ЭДС в стационарной системе координат можно рассчитать положение ротора. Но, когда ротор не подвижен, обратная ЭДС отсутствует, а на низких оборотах обратная ЭДС имеет маленькую амплитуду, которую сложно отличить от шума, поэтому данный метод не подходит для определения положения ротора двигателя на низких оборотах.

Читайте также  Шаблон генератора случайных чисел

    Существует два распространенных варианта запуска СДПМ:
  • запуск скалярным методом — запуск по заранее определенной характеристики зависимости напряжения от частоты. Но скалярное управление сильно ограничивает возможности системы управления и параметры электропривода в целом;
  • метод наложения высокочастотного сигнала – работает только с СДПМ у которого ротор имеет явно выраженные полюса.

На текущий момент бездатчиковое полеориентированное управление СДПМ во всем диапазоне скоростей возможно только для двигателей с ротором с явно выраженными полюсами.

ГЕНЕРАТОР НА ПОСТОЯННЫХ МАГНИТАХ (аксиальный или дисковый)

Трехфазный синхронный генератор переменного тока без магнитного залипания с возбуждением от постоянных неодимовых магнитов, 12 пар полюсов.

Очень давно еще в советские времена в журнале «Моделист Конструктор» была опубликована статья посвященная построению ветряка роторного типа. С тех пор у меня появилось желание построить что то подобное на своем дачном участке, но до реальных действий дело так и не дошло. Все изменилось с появлением неодимовых магнитов. Собрал кучу информации в интернете и вот что получилось.
Устройство генератора: Два стальных диска из низкоуглеродистой стали с наклеенными магнитами жестко соединены между собой через распорную втулку. В зазоре между дисками расположены неподвижные плоские катушки без сердечников. ЭДС индукции возникающая в половинках катушки противоположна по направлению и суммируется в общую ЭДС катушки. ЭДС индукции возникающая в проводнике движущемся в постоянном однородном магнитном поле определяется по формуле E=B·V·L где: B -магнитная индукция V -скорость перемещения L -активная длина проводника. V=π·D·N/60 где: D -диаметр N -скорость вращения. Магнитная индукция в зазоре между двумя полюсами обратно пропорциональна квадрату расстояния между ними. Генератор собран на нижней опоре ветряной турбины.

Схема трехфазного генератора, для простоты развернута на плоскость.

На рис. 2 показана схема расположения катушек когда их количество в два раза больше, правда в этом случае увеличивается и зазор между полюсами. Катушки перекрываются на 1/3 от ширины магнита. Если ширину катушек уменьшить на 1/6 тогда они встанут в один ряд и зазор между полюсами не изменится. Максимальный зазор между полюсами равен высоте одного магнита.

ОДНОФАЗНЫЙ ГЕНЕРАТОР

Однофазный синхронный генератор переменного тока и одна волновая катушка.

Встречно намотанная катушка уменьшает индуктивное сопротивление генератора. Величина встречной ЭДС самоиндукции прямо пропорциональна величине индуктивности катушки генератора и зависит от тока в нагрузке. Индуктивность катушки прямо пропорциональна линейным размерам, квадрату числа витков и зависит от способа намотки.

Схема однофазного генератора рис. 1, для простоты развернута на плоскость.

Для повышения КПД на рис. 2 показана схема генератора состоящая из двух одинаковых катушек. Чтобы зазор между полюсами не увеличился кольцевые обмотки необходимо вставить друг в друга.

Однофазный синхронный генератор и петлевые распределенные катушки.

ВЕТРЯНАЯ ТУРБИНА (ветродвигатель)

Ветряная турбина с вертикальной осью вращения и шестью лопастями.

Устройство турбины: Состоит из статора, шесть неподвижных лопастей (для экранирования и форсирования поступающего ветра) и ротора, шесть вращающихся лопастей. Сила ветра оказывает влияние на лопасти ротора и на входе в турбину и на выходе из неё. Для верхней и нижней опоры используются ступицы от автомобиля. Не создает шума, не идет в разнос при сильном ветре, не требует ориентирования на ветер, не требует высокой мачты. Большой коэффициент использования ветра, большой крутящий момент, вращение начинается при очень слабом ветре.

ИНДУКТОРНЫЙ ГЕНЕРАТОР

Однофазный синхронный генератор переменного тока с обмоткой возбуждения на статоре без щеток, 12 пар полюсов.

Долго думал над тем как предотвратить перезаряд аккумулятора не применяя в конструкции механические устройства для повышения надежности. Индукторный генератор выполняет функцию сброса лишней энергии. В качестве нагрузки используется элемент нагревания, можно нагреть воду или кафельные полы.
Устройство генератора: Генератор собран на верхней опоре ветряной турбины. К неподвижному кольцу из низкоуглеродистой стали крепятся 24 стальных сердечника с катушками, между катушек на кольцо намотана обмотка возбуждения. Возбуждение на генератор подается через электрическую схему от нижнего генератора. Генератор использует от 3% до 5% вырабатываемой мощности на возбуждение. Любой электромагнит является усилителем мощности источника тока. Генератор также является электромагнитной муфтой скольжения уменьшая нагрузку на подшипники. На каждом подшипнике теряется 5% вращающего момента, на шестерне 7-10%. Частота переменного тока вычисляется по формуле f=p·n/60 где: p -количество пар полюсов n -скорость вращения. Например: f=p·n/60=12·250/60=50 Гц.

Схема индукторного генератора, для простоты развернута на плоскость.

На рис. 2 показана схема индукторного генератора с использованием меньшего количества железа, следовательно и потери в железе будут меньше. Обмотка возбуждения состоит из 12 последовательно соединенных катушек.

ЭЛЕКТРИЧЕСКАЯ СХЕМА

Электрическая принципиальная схема устройства для подключения обмотки возбуждения генератора.

Ток возбуждения начинает поступать на генератор только при достижении на выходе трехфазного выпрямителя напряжения 14 вольт.

МАГНИТНЫЙ ДВИГАТЕЛЬ

Магнитный двигатель будет вращать генератор если нет ветра.

Электромагнитное поле создается электрическим током т.е. направленным движением электрических зарядов (свободных электронов). Физическими опытами было подтверждено, что магнитное поле постоянного магнита также создается направленным движением электрических зарядов (свободных электронов). Учитывая общие электромагнитные закономерности, можно по аналогии с электродвигателем создать магнитный двигатель для преобразования магнитной энергии в механическую энергию вращения. Основным условием для роторных двигателей является взаимодействие магнитных полей по круговым замкнутым траекториям. Этим требованиям отвечает составной магнит «Сибирский Коля».

НЕПОДВИЖНЫЙ ГЕНЕРАТОР НА ПОСТОЯННЫХ МАГНИТАХ

Неподвижный генератор — это статический электромагнитный усилитель мощности.

Уже давно известно, что изменение магнитного поля проходящего через провод будет генерировать в нем электродвижущую силу (ЭДС). Изменение магнитного потока от постоянного магнита в сердечнике неподвижного генератора создается с помощью электронного управления, а не механическим движением. Магнитным потоком в сердечнике управляет автогенератор. Работает автогенератор в режиме резонанса и потребляет от источника питания ничтожно малую мощность.

Колебания автогенератора отклоняют по очереди магнитные потоки от постоянных магнитов в левую и правую сторону сердечника из наборного железа или феррита. Мощность генератора увеличивается с повышением частоты колебаний автогенератора. Запуск осуществляется подачей кратковременного импульса на выход генератора. Очень важно чтобы постоянный магнит не вызвал переход материала сердечника в область магнитного насыщения. Неодимовые магниты имеет магнитную индукцию в диапазоне 1,15-1,45 Тл. Трансформаторное железо имеет индукцию насыщения 1,55-1,65 Тл. Сердечники на основе порошка из железа имеет индукцию насыщения 1,5-1,6 Тл., и потери меньше чем у трансформаторного железа. Сердечники из магнитомягких ферритов марганец-цинковых марок имеют индукцию насыщения 0,4-0,5 Тл., для борьбы с насыщением необходим воздушный зазор.

Схема генератора с перемагничиванием сердечника силовой катушки.

Схема неподвижного генератора на тороидальных (кольцевых) сердечниках.

Три кольца, восемь магнитов, четыре катушки управления, восемь силовых катушек.

ВОЗНАГРАЖДЕНИЕ

На все составные части могу выслать чертежи и подробное описание за вознаграждение.

Двигатель на постоянных магнитах

Согласно закону сохранения энергии, любой современный эл. привод не может иметь КПД выше 100%, потому как часть энергии нужно потратить на собственные нужды. Решить этот вечный вопрос призван двигатель на постоянных магнитах (униполярный, линейный, роторный, гравитационный и т. п), в котором механическое перемещение компонентов происходит за счет их взаимодействия на уровне магнитных свойств.

Принцип действия вечного магнитного движителя

Большинство современных эл. двигателей используют принцип трансформации эл. тока в механическое вращение ротора, а вместе с ним и приводного вала. Это значит, что любой расчет покажет КПД меньше 100%, а сам агрегат является зависимым, а не автономным. Та же ситуация наблюдается в случае генерирующего устройства. Здесь уже момент вращения вала, которое происходит за счет тепловой, ядерной, кинетической или потенциальной энергии движения среды, приводит к выработке электрического тока на коллекторных пластинах.

Двигатель на постоянных магнитах использует совершенно иной подход к работе, который нивелирует или сводит к минимуму необходимость в сторонних источниках энергии. Описать принцип работы такого двигателя можно на примере «беличьего колеса». Для изготовления демонстративной модели не требуются особые чертежи или расчет надежности. Необходимо взять один постоянный магнит тарельчатого (дискового) типа, полюса которого располагаются на верхней и нижней плоскостях пластин. Он будет служить основой конструкции, к которой нужно добавить два кольцевых барьера (внутренний, внешний) из немагнитных, экранирующих материалов. В промежуток (дорожку) между ними помещается стальной шарик, который будет играть роль ротора. В силу свойств магнитного поля, он сразу же прилипнет к диску разноименным полюсом, положение которого не будет меняться при движении.

Статор представляет собой условно пластину из экранируемого материала, на которую по кольцевой траектории крепят постоянные магниты, например, неодимовые. Их полюса расположены перпендикулярно по отношению к полюсам дискового магнита и ротора. В результате, когда статор приближается к ротору на определенное расстояние, возникает поочередное притяжение, отталкивание в магнитном поле, которое формирует момент затем перерастает во вращение шарика по кольцевой траектории (дорожке). Пуск и остановка происходят за счет приближения или отдаления статора с магнитами. Этот вечный двигатель на постоянных магнитах будет работать до тех пор, пока они не размагнитятся. Расчет ведется относительно размера коридора, диаметров шарика, пластины статора, а также цепи управления на реле или катушках индуктивности.

Читайте также  Что такое генератор внешнего поля

На подобном принципе действия было разработано немало моделей действующих образцов, например, синхронных двигателей, генераторов. Наиболее известными среди них являются двигатели на магнитной тяге Тесла, Минато, Перендев, Говарда Джонсона, Лазарева, а также линейные, униполярные, роторные, цилиндровые и т. д.

Рассмотрим каждый из примеров подробнее.

Магнитный униполярный двигатель Тесла

Выдающийся ученый, ставший в свое время пионером в области снабжения эл. током, асинхронных электродвигателей на переменном токе, не обделил своим вниманием и расчетом вопрос вечного источника энергии. В научной среде это изобретение именуется иначе, как униполярный генератор Тесла.

Первоначально расчет данного типа устройства вел Фарадей, но его прототип при сходном принципе действия не обладал должной эффективностью, стабильностью работы, то есть не достиг цели. Термин «униполярный» означает, что в схеме агрегата кольцевой, дисковый (пластина) или цилиндровый проводник расположен в цепи между полюсами постоянного магнита.

Магнитный двигатель Тесла и его схема

На схеме, которая была представлена в оригинальном патенте, есть конструкция с двумя валами, на которых размещаются две пары магнитов: В, В создают условно положительное поле, а С, С – отрицательное. Между ними располагаются униполярные диски с отбортовкой, используемые в качестве генерирующих проводников. Оба униполярных диска связаны между собой тонкой металлической лентой, которая может быть в принципе использована, как проводник (в оригинале) или для вращения диска.

Двигатель Минато

Еще одним ярким примером использования энергии магнетизма для самовозбуждения и автономной работы является сегодня уже серийный образец, разработанный более тридцати лет назад японцем Кохеи Минато. Его отличают бесшумность и высокая эффективность. По собственным заявлениям Минато, самовращающийся магнитный двигатель подобной конструкции имеет КПД выше 300%.

Двигатель Минато

Ротор имеет форму диска или колеса, на котором под определенным углом располагаются магниты. Когда к ним подводится статор с большим магнитом, возникает момент и колесо Минато начинает вращаться, используя попеременное сближение и отталкивание полюсов. Чем ближе статор к ротору, тем выше момент и скорость вращения. Питание осуществляется через цепь реле прерывателя.

Для предотвращения импульсов и биения при вращении колеса Минато, используют реле стабилизаторы и сводят к минимуму потребление тока управляющего эл. магнита. Недостатком можно считать отсутствие данных по нагрузочным характеристикам, тяге, используемых реле цепи управления, а также необходимость периодического намагничивания, о которой, кстати, тоже от Минато информации нет.

Может быть собран, как и остальные прототипы, экспериментально, из подручных средств, например, деталей конструктора, реле, эл. магнитов и т. п.

Двигатель Лазарева

Устройство двигателя Лазарева

Отечественный разработчик Николай Лазарев создал работающий и довольно простой вариант агрегата, использующего магнитную тягу. Его двигатель или роторный кольцар, состоит из емкости, разделенной пористой перегородкой потока на верхнюю и нижнюю части. Они сообщаются между собой за счет трубки, по которой из нижней камеры в верхнюю идет поток воды/жидкости. В свою очередь поры обеспечивают гравитационное перетекание вниз. Если под потоком жидкости поместить колесико, на лопастях которого будут закреплены магниты, то получиться добиться цели потока – вращения и создания постоянного магнитного поля. Схема роторного двигателя Николая Лазарева используется для расчета и сборки простейших самовращающихся устройств.

Магнитный мотор Говарда Джонсона

Магнитный мотор Говарда Джонсона

В своей работе и следующем за ней патенте на изобретение, Говард Джонсон использовал энергию, генерируемую потоком непарных электронов, присутствующих в магнитах для организации цепи питания мотора. Статор Джонсона представляет собой совокупность множества магнитов, дорожка расположения и движения которых будет зависеть от конструктивной компоновки агрегата Говарда Джонсона (линейной или роторной). Они закрепляются на специальной пластине с высокой степенью магнитной проницаемости. Одноименные полюса статорных магнитов направляются в сторону ротора. Это обеспечивает поочередное притяжение и отталкивание полюсов, а вместе с ними, момент и физическое смещение элементов статора и ротора относительно друг друга.

Организованный Говардом Джонсоном расчет воздушного зазора между ними позволяет корректировать магнитную концентрацию и силу взаимодействия в большую или меньшую сторону.

Генератор Перендева

Генератор Перендева

Еще одним неоднозначным примером действия магнитных сил является самовращающийся магнитный двигатель Перендев. Его создатель Майк Брэди, до того, как в его отношении начали уголовное производство, даже успел обзавестись патентом, создать одноименную фирму (Перендев) и поставить дело на поток. Если анализировать представленную в патенте схему и принцип, или чертежи самодельных эл. двигателей, то ротор и статор имеют форму диска и внешнего кольца. На них по кольцевой траектории размещают отдельные магниты, соблюдая определенный угол относительно центральной оси. За счет взаимодействия поля отдельных магнитов статора и ротора Перендев, возникает момент и происходит их взаимное перемещение (вращение). Расчет цепи магнитов сводится к определению угла расхождения.

Синхронный двигатель на постоянных магнитах

Устройство синхронного двигателя на магнитах

Одним из основных видов электродвигателей является синхронный, частота вращения магнитных полей статора и ротора которого равны. У обычного электромагнитного мотора обе эти части состоят из обмоток на пластинах. Но если конструкцию якоря поменять и вместо катушки поставить постоянные магниты, то можно получить интересную, эффективную, действующую модель синхронного двигателя. Статор имеет привычную компоновку магнитопровода из пластин и обмоток, в которых способно генерироваться вращающееся магнитное поле от электрического тока. Ротор создает постоянное поле, которое взаимодействует с предыдущим, и создает крутящий момент.

Также следует отметить, что в зависимости от схемы, относительное расположение статора и якоря могут меняться, например, последний будет выполнен в форме внешней оболочки. Для пуска мотора от тока из сети используется цепь из магнитного пускателя (реле, контактора) и теплового защитного реле.

Устройства генераторы постоянные магниты

Текущее время: Пт окт 08, 2021 23:32:14

Часовой пояс: UTC + 3 часа

генераторы на постоянных магнитах, или на электромагнитах

Страница 1 из 1 [ Сообщений: 7 ]

JLCPCB, всего $2 за прототип печатной платы! Цвет — любой!

Зарегистрируйтесь и получите два купона по 5$ каждый:https://jlcpcb.com/cwc

Сборка печатных плат от $30 + БЕСПЛАТНАЯ доставка по всему миру + трафарет

_________________
[ Всё дело не столько в вашей глупости, сколько в моей гениальности ] [ Правильно заданный вопрос содержит в себе половину ответа ]
Могу не отвечать пару месяцев, не беспокойтесь.

Приглашаем всех желающих 13 октября 2021 г. посетить вебинар, посвященный искусственному интеллекту, машинному обучению и решениям для их реализации от Microchip. Современные среды для глубинного обучения нейронных сетей позволяют без детального изучения предмета развернуть искусственную нейронную сеть (ANN) не только на производительных микропроцессорах и ПЛИС, но и на 32-битных микроконтроллерах. А благодаря широкому портфолио Microchip, включающему в себя диапазон компонентов от микроконтроллеров и датчиков до ПЛИС, средств скоростной передачи и хранения информации, возможно решить весь спектр задач, возникающий при обучении, верификации и развёртывании модели ANN.

Этим уже занимаются ГАЭС, основная проблема которых необходимость в огромном водохранилище. Место то есть под него?

Слышал о новой разработке механических аккумуляторов. Там энергия запасается в инерции маховика. Сами же маховики установлены на магнитных подшипниках.
Есть еще разработки с катушками индуктивности, но там проблема в постепенной выдачи энергии. Сразу все выдать можно, а вот постепенно проблема.
В солнечные электростанции охотно вкладываются в ЕС.

Компания TRACO представила ультракомпактные ИП, монтируемые на печатную плату. В семейство входят три серии с выходной мощностью 3, 5 и 10 Вт. Особенность серий – малогабаритность; серии на 3 и 5 Вт имеют посадочный размер 1″x1″ (25,4×25,4 мм), а модели на 10 Вт имеют размер 1,5″х1″ (38,5х25,4 мм). При этом эти серии ИП обладают усиленной изоляцией и предназначены для широкого применения в различных приложениях.

Нужно смастерить вертикальный ветряк на электромагнитах
Допустим, есть стартор 9 катушек 40 витков в каждой, проводом 1,3 мм, катушки по 3 шт. (последовательно), схема звезда на выходе 3-и фазы и т.д.

Простите за такой вопрос, но куда ставить электромагниты? На концы лопастей? К чему присоединять? Как это работать будет?

В интернете ничего толкового мною найдено не было на эту тему. Объясните пожалуйста, если не трудно, или ссылками поделитесь.

В интернете на ютубе полно всяких опытов по получению энергии от ветряков и зарядке аккумуляторов и попутное объяснение теории. Смотрел как то для интереса около года назад.
Ищите на ютубе.

Искать что то типа:
Мужик типа «знающий профессор» берет в качестве ветряка велосипедное колесо с прикрученным к нему пропеллером от бытового вентилятора, напротив ставит обычный вентилятор в качестве источника ветра. Далее присандаливает или динамомашину или обычный асинхронник. Далее пляски с бубном как при помощи этого зарядить аккумулятор. Попутно объяснения что и как можно улучшить и сразу эти советы реализуются на этом макете.

Яков Кузнецов/ автор статьи

Приветствую! Я являюсь руководителем данного проекта и занимаюсь его наполнением. Здесь я стараюсь собирать и публиковать максимально полный и интересный контент на темы связанные ремонтом автомобилей и подбором для них запасных частей. Уверен вы найдете для себя немало полезной информации. С уважением, Яков Кузнецов.

Понравилась статья? Поделиться с друзьями:
NEVINKA-INFO.RU
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: