Частота для генератора тесла

Что представляет собой резонансный осциллятор Николы Тесла? Как работает устройство — базовый принцип, заряд и генерация. Как влияет прибор на организм человека, и на что нужно обращать внимание при создании конструкции?

Частота для генератора тесла

Электрогенератор Николы Тесла

20 октября 2019

Время на чтение:

Изобретения знаменитого сербского учёного Николы Тесла намного опередили развитие науки в области альтернативных источников энергии. Его считают человеком, подарившим электричество людям. Созданные им устройства, в том числе электродвигатель, безтопливный генератор, резонасный трансформатор и другие открытия создали стартовую площадку для перехода на новый этап промышленного развития. Настоящей мечтой гения стала идея подарить людям бесплатное электричество. Генератор Тесла, по замыслу изобретателя, мог передавать энергию электрического тока беспроводным способом на большие расстояния.

Что это такое

Фактически, безтопливный электрический генератор — это вечный двигатель, для работы которого не нужны дополнительные ресурсы. Получение свободной энергии — мечта человечества, которая станет толчком для переустройства общественных отношений общества, приведёт к эволюционному скачку развития.

Эфир Тесла

Реализовать идею получения альтернативной энергии мог бы стать генератор Тесла, который черпает энергию из эфира.

Важно. Много ходят споров, существует ли эфир. По мнению Н. Тесла — это легчайший газ, из почти неуловимо малых частиц. Они движутся с невообразимой скоростью. Н. Тесла считал, что каждый вид волны работает на своей частоте и в определённой среде. Эфир — среда для почти мгновенной передачи электромагнитных волн. Его поле способно переносить на громадные расстояния электромагнитные, гравитационные волны.

Принцип действия безтопливного генератора

Эфир — источник неограниченной энергии. Электромагнитные волны пронизывает окружающую нас атмосферу. У земли низкий энергетический потенциал, у света, солнечных лучей — высокий. Если установить улавливатель между положительно заряженными частицами света и отрицательно заряженным потенциалом земли, то можно получать электрический ток. В эту цепочку нужно вставить накопитель конденсатор, к примеру, литиевую батарейку. Она будет улавливать и накапливать энергию. В момент подключения к конденсатору источника питания, произойдёт разрядка накопителя.

Основные звенья безтопливного генератора Н. Тесла состоят:

  1. Расположенного над землёй приёмника.
  2. Накопителя-конденсатора.
  3. Заземление.

Обратите внимание! Безтопливный электрогенератор базируется на получении электрического тока из эфира. Используют два разно заряженных потенциала. Земля — ресурс отрицательных электронов, световая волна, в том числе от солнца — положительных. Один из электродов заземляется, другой — выводится на экранированный экран. В качестве накопителя в цепи устанавливают конденсатор, который аккумулирует энергию.

Генератор тесла своими руками на 220 вольт

  • диэлектрическая основа для экрана (плотный картон, пластиковая панель, фанера);
  • фольгированный материал;
  • провод;
  • электролитический конденсатор (напряжение от180 до400 В);
  • для регуляции напряжения возможна установка резистора (сопротивления).

Подобный набор материалов почти всегда есть в доме.

Заземление

Достаточно соединить провод с металлическим стержнем, заглубить его в землю. На даче можно бросить провод на любую металлическую трубу в земле. В квартире подсоединяют провод к водопроводным, газовым металлическим трубам, фазе заземления в розетке.

Экран генератора Тесла

Принимает от источников световое излучение с положительно заряженными частицами (от источника света, солнца).

Сделать его несложно, достаточно обтянуть диэлектрическую панель фольгой. Слои накладывают внахлёст. Чем больше экран для улавливания положительно заряженных частиц, тем выше напряжение в цепи. Соединяют между собой и несколько экранированных поверхностей. Они образуют цепь экранов безтопливного генератора Тесла. Соответственно расширению площади улавливающих панелей, нужно увеличивать ёмкость конденсатора, мощность рассеивания резистора.

Нужно соединить и подключить элементы схемы безтопливного генератора Тесла. Один провод (контакт) соединяют с фольгированным экраном, второй ведут от заземления. Контакты замыкают на полюсах конденсатора. В момент замыкания цепи, начинается зарядка батареи.

Материалы для безтопливного генератора Тесла

Безтопливный генератор Тесла готов. Проверить его можно, если контакты лампочки подсоединить к батарейке, она загорится.

Устройство и принцип действия

Еще одним изобретением Н. Тесла стал «резонаторный трансформатор Тесла». Он предназначен для преобразования первоначального электрического импульса в высокочастотный ток. В результате на входе трансформатора величина составляет 24 Вольта, а на выходе получают 220 Вольт. Результат фиксируется осциллографом. Показатели могут отличаться, в зависимости от конструкции, мощности трансформатора.

Резонаторный трансформатор Тесла

Резонансный трансформатор Тесла — отсциллятор (колебательная система), в которой трансформирует, изменяет напряжение переменного электрического тока в высокочастотный.

Основу трансформатора Тесла составляют два контура, из первичной и вторичной катушки. Именно в этой колебательной системе происходит трансформация первоначального импульса электротока.

Составляющие элементы катушки Тесла:

  • катушки (первичная, вторичная);
  • накопитель-конденсатор;
  • разрядник-вентилятор (предохраняет от перенапряжения);
  • защитный контур или кольцо с заземлением;
  • тороид.

Сборка всех этих элементов в единое устройство позволит низкочастотный импульс электрического тока преобразовать в высокочастотное напряжение.

Схема высокочастотного трансформатора

Назначение элементов высокочастотного трансформатора Тесла

Тороид. Вращающийся по прямой линии круг образует форму тора. Это геометрическая форма тороида. Для трансформатора Тесла используют гофрированную металлической трубу.

  • снижает частоту колебаний второго контура;
  • увеличивает выходное напряжение;
  • создаёт электростатическое поле вторичной обмотки;
  • защищает от пробоя вторичную обмотку.

Первичная обмотка или резонансный контур

Проводник с небольшим сопротивлением. Для его изготовления используют медную трубку с диаметром 6 мм. С помощью дополнительных устройств меняют частоту резонанса контура.

Вторичная катушка

Основной элемент резонансного трансформатора — вторичная катушка с обмоткой. Длина обмотки в экспериментальных установках к диаметру составляет 5/1. Оптимальное количество витков медной обмотки 1000 — 1200 оборотов. Наматывают их на диэлектрические ПВХ трубы.

Материалы для изготовления высокочастотного трансформатора Тесла:

  • в качестве источника питания используют трансформатор для неоновой подсветки (до 35 мА/напряжения на выходе меньше 4 кВ);
  • конденсатор;
  • провод из меди толщиной (от 0,3 до 0,6 мм) ;
  • пластиковая труба (75 мм);
  • заземление (металлический прут);
  • металлическая вентиляционная труба:
  • шар из металла, полый внутри (тороид);
  • медная трубка для кондиционера (6 мм).
  • шарик из металла, крепёж.

Монтаж системы генератора по схеме.

Система состоит из следующих блоков:

  1. Разрядник. 2 металлических болта, прикручивают к основе из пластика, между ними фиксируют металлический шарик. В момент подключения к трансформатору в разряднике возникает искра.
  2. Конденсатор. Состоит из 1 блока или составных элементов. Конденсатор накапливает заряд, чтобы пробить разрядник.
  3. Резонансный трансформатор, подает первичный электрический импульс.
  4. Вторичная катушка индуктивного контура. Медный провод наматывают на пластиковую трубу, витки должны плотно прилегать друг к другу (количество витков от 900 до 1200). Обмотку, если это не эмалированный медный провод, покрывают несколькими слоями лака, эпоксидной смолы. К вторичной катушке подсоединяют провод и выводят заземление.
  5. Первичный контур. Изготавливают из медной трубы, которую сгибают в несколько витков. Чтобы она не треснула, в момент изгибания, внутрь предварительно нужно насыпать песок. Между витками оставляют расстояния до 5 мм. Соединяют все элементы по схеме.

Обратите внимание! Тороид необходим, чтобы предотвратить попадание стимера на первичную обмотку. Искра выводит электронику из строя. Тороид заземляют путём соединения с основным проводом.

Принцип действия трансформатора Тесла

От трансформатора подаётся импульс, который заряжает конденсаторы. При достижении нужного напряжения, происходит пробой газа на разряднике, искра. Первичный контур в момент замыкания генерирует высокочастотное колебание. Электромагнитные волны переходят на вторичную катушку. Возникает резонансное колебание, которое продуцирует токи высокой частоты и напряжения.

Газовые разряды

Работа высокочастотного трансформатора Теслы сопровождается интересными эффектами. Образуются различные газовые разряды и свечения:

  • Стимеры. Ионизированное свечение газов в воздухе.
  • Спарки. Вспыхивающие и гаснущие искровые каналы.
  • Коронное свечение. Возникает вокруг искривленных частей трансформатора (голубого цвета).
  • Дуга. Появляется, если в высоковольтное поле ввести заземлённый предмет, возникает светящаяся дуга.

Подобные эффекты широко используют для создания различных эстрадных, цирковых шоу.

Ионизированное свечение трансформатора Тесла

Воздействие на человека

В отличие от низкочастотного тока, высоко частотный не проникает вглубь тканей человека, стекая по поверхности тела. ВЧ ток исключает электротравму.

УВЧ аппарат

Используется в медицине для лечения:

  • ультра частотная терапия, аппараты УВЧ;
  • диатермия, прогревание ВЧ токами;
  • индуктотермия, лечение высокочастотным магнитным полем;
  • оздоровление органов с помощью микроволнового аппарата;
  • дарсонваль, воздействие на части тела высоковольтными разрядами.

В повседневной жизни пользуются микроволновой печью с СВЧ излучением.

Дарсонваль

Н. Теслу по праву считают гением своего времени. Существуют мнение, что его теория эфира, гениальные разработки блокировались. Тесла мечтал обеспечить человечество бесплатной энергией, создать антигравитационный двигатель, путём преобразования энергии эфира. Бестопливный генератор, резонансный трансформатор Н. Тесла собирают своими руками даже школьники. А это значит, что кто-то продолжит его дело.

Трансформатор Теслы

Резонансный генератор, катушка или трансформатор Теслы — гениальное изобретение великого хорватского изобретателя, физика и инженера. В статье будет рассмотрен один из простых вариантов реализации проекта — трансформатор Тесла.
В конструкции не использован МОТ трансформатор (почти во всех схемах трансформатора Теслы, именно МОТ служит источником питания), пришлось также создать отдельную схему преобразователя, но обо всем по порядку.

Основные части:
1) Блок питания
2) Преобразователь напряжения и высоковольтная цепь
3) Катушка

Блок питания

Для питания такой схемы нужен достаточно мощный блок питания. К счастью, уже имелся готовый блок питания на 500 Ватт. Напряжение на вторичной обмотке трансформатора 14 Вольт, при токе в 20 Ампер. Для запитки устройства не желательно использовать импульсные источники питания.

Диодный выпрямитель использован готовый, хотя можно собрать мост из мощных отечественных диодов серии КД2010, укрепленных на теплоотвод. Для сглаживания помех использован конденсатор на 25 Вольт 2200 микрофарад (этого хватит, поскольку на схеме преобразователя уже есть конденсатор на 4700 микрофарад и дроссель для сглаживания высокочастотных помех). Подойдут похожие трансформаторы от 300 до 600-700 Ватт.

Преобразователь и высоковольтная цепь

Увидев схему преобразователя, многие зададут себе вопрос — зачем умощнять однотактный преобразователь, если можно сделать двухтактный? Вопрос конечно к месту, если бы не одно но! Дело в том, что в интернете нигде ранее не опубликованы варианты умощнения обратноходовых преобразователей, вот и было решено совместить этот вариант и найти устройству практическое применение. В итоге был собран высококачественный преобразователь с мощностью порядка 180-200 ватт и более.
Сердцем преобразователя является генератор импульсов, построенный на ШИМ контролере серииUC3845, ранее уже были предложены версии преобразователей на этой микросхеме (лестница Иакова), но как правило стандартная схема обладала мощностью 80 ватт на пиках, и вот после недолгих экспериментов, был разработан нижеприведенный вариант.

Предварительно сигнал от микросхемы усиливается каскадом на комплементарной паре, которая построена на отечественных транзисторах серии КТ 816/817, это необходимо, поскольку начальный уровень сигнала иногда недостаточен для срабатывания полевых транзисторов. В схеме использовались три полевика серии IRL3705, при таком мощном источнике, на транзисторах рассеивается большая мощность, поэтому их нужно укрепить на теплоотводы и дополнить кулерами от компьютерных блоков питания. Частота работы преобразователя 60 килогерц, его можно изменить играя с емкостью конденсатора 4.7нФ и подбором сопротивления резистора 6.8 кОм на схеме, уменьшая емкость и увеличивая сопротивление резистора, можно увеличить частоту преобразователя, при обратном процессе, частота работы преобразователь уменьшается.

Читайте также  Через сколько меняют ремень генератора калина

В качестве повышающего трансформатора удобно использовать трансформатор строчной развертки от отечественных телевизоров, для получения максимальной мощности желательно использовать два строчника, высоковольтные обмотки которых, нужно соединить последовательно.

Первичная обмотка мотается на свободной стороне П-образного феррита и содержит 4-5 витков провода 3мм, для удобства намотки можно использовать несколько жил, или же многожильный провод в силиконовой или резиновой изоляции, как в данном случае. Использовать самодельные трансформаторы не желательно, поскольку они редко способны выдержать такую мощность.
Дуга на выходе высоковольтной обмотки трансформатора имеет достаточно большую силу тока, поэтому для его выпрямления использовались 4 диода серии КЦ106.

Предварительно, диоды по 2 штуки соединены параллельно, затем блоки из двух параллельно соединенных диодов соединены последовательным образом.

В накопительной части использован конденсатор на 5 киловольт с емкостью 1 микрофарад, можно использовать также блок конденсаторов, емкость и напряжение не критично и можно отклонится от указанного номинала на 10 — 15%

Искровый разрядник, или просто искровик — предназначен для разряжения емкости конденсатора на первичную обмотку катушки, его можно сделать из двух болтов, или же применить готовых вакуумный разрядник фирмы ЭПОКС с напряжением пробоя 3 – 3.5 кВ на 5 -10 ампер. Самодельный искровик из болтов удобен тем, что зазор, а следовательно и частоту разрядов можно регулировать.

Катушка

Катушка намотана на каркасе от канализационной трубы с диаметром 12 см, высота 50 — 65 см , подойдут также близкие по параметрам пластмассовые трубы. ВАЖНО! Не использовать трубы из металлопластмассы. Первичная обмотка содержит всего 5 витков, провод с диаметром 3-5 мм, был использован одножильный алюминиевый провод в резиновой изоляции. Расстояние между витками 2 см.

Вторичная обмотка содержит 700-900 витков провода 0.5-0.7 мм. Вторичная обмотка мотается аккуратно, виток к витку, при ручной намотке процесс отнимает 5 часов, поэтому удобно использовать намоточный станок (хотя в моем случае катушка моталась вручную). При передышке, нужно приклеить последний виток к каркасу.

Возможности

Катушка Теслы — это демонстрационный генератор высокочастотных токов высокого напряжения. Устройство может быть использовано для беспроводной передачи электрического тока, на большие расстояния. В дальнейшем устройство будет переделано, в частности будет перемотан, точнее изменен первичный контур, если есть возможность желательно использовать медную трубу, таким образом мощность катушки резко возрастет.

Опыты с катушкой теслы

С готовой катушкой можно провести ряд интересных опытов, конечно при этом нужно соблюдать все правила безопасности.

Опыт 1. Нужен медный провод с диаметром 0.2 – 0.8 мм, который нужно намотать на каркас от широкого прозрачного скотча, или же на литровую банку. Контур содержит 15-20 витков, после чего каркас вынимаем, а витки контура закрепляем друг к другу при помощи ниток или скотча. Затем берите обычный светодиод (желательно белый или синий) и выводы светодиода припаяйте к контуру. Включите трансформатор. Контур со светодиодом отдалите от включенного трансформатора на пару метров. Можно наблюдать за свечением светодиода, без какой-либо проводной связи с источником питания. Это основной опыт, который демонстрирует возможности трансформатора Теслы.

Опыт 2. Свечение ламп дневного света на расстоянии. Это один из наиболее распространенных опытов с катушкой Теслы. Все виды подобных ламп, светятся на небольшом расстоянии от включенного трансформатора.

Правила безопасности

Трансформатор Теслы — высоковольтный генератор, нужно помнить, что на выходе устройства и в высоковольтной цепи образуется смертельно опасное напряжение (особенно на высоковольтном конденсаторе). При ведении монтажных работ, нужно заранее убедится, что контурный конденсатор полностью разряжен, использовать толстые резиновые перчатки, и не приближаться к включенному устройству. Все опыты делать вдали от цифровых устройств, высоковольтные разряды могут повредить электронику! Запомните это не качер! Играть с дугой строго запрещено! Особо опасна высоковольтная часть и высоковольтная обмотка преобразователя.

Резонансный трансформатор Тесла — больше не секрет

Знакомство с трансформатором Н. Тесла.

Новомодный феномен резонансного трансформатора Николы Тесла возник не давно, а Интернет забит фотографиями и интригующими видеосъемками молний и коронарных разрядов.

Вспомним, что трансформатор первоначально был предназначен не для показательного выступления в цирке, а для передачи радиосигналов на далекие расстояния. В связи с этим предлагаю ознакомиться с его принципом работы и найти ему практическое применение.

Трансформатор Тесла состоит из двух основных частей, см. рис.1а;

1. Генерирующей части, состоящей из высоковольтного источника питания, накопительного конденсатора С1, разрядника и катушки связи L1. Частота генерации зависит от напряжения питания, емкости конденсатора С1, характеризующее время разряда, а так же промежутком между электродами разрядника;

2. Резонансной катушки индуктивности L2, заземления и сферы, см. рис. 1а.

Если вглядеться в схему этого трансформатора внимательнее, то мы увидим известную схему последовательного колебательного контура, состоящего из катушки индуктивности L2 с открытой емкостью С, образованной между сферой и землей. Это открытый колебательный контур, который был открыт Дж. К. Максвеллом.

Обратимся к классической теории принципа действия открытого колебательного контура:

Как известно колебательный контур состоит из катушки индуктивности и конденсатора. Исследуем простейший колебательный контур, катушка которого состоит из одного витка, а конденсатор представляет собой две рядом расположенные металлические пластины. Подадим в разрыв индуктивности контура 1 переменное напряжение от генератора, см. рис.2а. В витке потечет переменный ток и создаст вокруг проводника магнитное поле. Это сможет подтвердить магнитный индикатор в виде витка, нагруженного лампочкой. Для того, что бы получить открытый колебательный контур, раздвинем пластины конденсатора. Мы наблюдаем, что лампа индикатора магнитного поля продолжает гореть. Чтобы лучше понять, что происходит в данном опыте, смотри рис. 2а. По витку контура 1 течёт ток проводимости, который вокруг себя создает магнитное поле Н, а между пластинами конденсатора – равный ему, так называемый, ток смещения. Несмотря на то, что между пластинами конденсатора нет тока проводимости, опыт показывает, что ток смещения создаёт такое же магнитное поле, как и ток проводимости. Первым, кто об этом догадался, был великий английский физик Дж. К. Максвелл.

В 60-х годах 19-го столетия, формулируя систему уравнений для описания электромагнитных явлений, Дж. К. Максвелл столкнулся с тем, что уравнение для магнитного поля постоянного тока и уравнение сохранения электрических зарядов переменных полей (уравнение непрерывности) несовместимы. Чтобы устранить противоречие, Максвелл, не имея на то никаких экспериментальных данных, постулировал, что магнитное поле порождается не только движением зарядов, но и изменением электрического поля, подобно тому, как электрическое поле порождается не только зарядами, но и изменением магнитного поля. Величину где — электрическая индукция, которую он добавил к плотности тока проводимости, Максвелл назвал током смещения. У электромагнитной индукции появился магнитоэлектрический аналог, а уравнения поля обрели замечательную симметрию. Так, умозрительно был открыт один из фундаментальнейших законов природы, следствием которого является существование электромагнитных волн. В последствии Г.Герц опираясь на эту теорию доказал, что электромагнитное поле излучаемое электрическим вибратором равно полю излучаемое емкостным излучателем.

Раз так, убедимся еще раз, что происходит, когда закрытый колебательный контур превращается в открытый и как можно обнаружить электрическое поле Е ? Для этого рядом с колебательным контуром поместим индикатор электрического поля, это вибратор, в разрыв которого включена лампа накаливания, она пока не горит. Постепенно раскрываем контур, и мы наблюдаем, что лампа индикатора электрического поля загорается, рис. 2б. Электрическое поле теперь не сосредоточено между пластинами конденсатора, его силовые линии идут от одной пластины к другой через открытое пространство. Таким образом, мы имеем экспериментальное подтверждение утверждения Дж. К. Максвелла, что емкостной излучатель порождает электромагнитную волну. Никола Тесла обратил на этот факт внимание, что при помощи совсем не больших излучателей можно создать достаточно эффективный прибор для излучения электромагнитной волны. Так родился резонансный трансформатор Н. Тесла. Проверим и этот факт, для чего вновь рассмотрим назначение деталей трансформатора.

И так, сфера и заземление выполняют роль пластин открытого конденсатора. Геометрические размеры сферы и технические данные катушки индуктивности определяют частоту последовательного резонанса, которая должна совпадать с частотой генерации разрядника.

Иными словами, режим последовательного резонанса позволяет трансформатору Тесла достигать таких величин напряжений, что на поверхности сферы появляется коронарный разряд и даже молнии. Весь фокус состоит в том, что коэффициент трансформации резонансного трансформатора выше соотношения витков катушек L1/L2 и значительно выше, чем в трансформаторах с ферро сердечниками. Здесь индуктивность L2, сфера и заземление, представляют из себя открытый резонансный колебательный контур. Именно по этому трансформатор Тесла называется резонансным.

Рассмотрим работу трансформатора Тесла, как последовательный колебательный контур:

— Этот контур необходимо рассматривать как обычный LC – элемент, рис. 1а.б, а так же рис. 2а, где включены последовательно индуктивность L, открытый конденсатор С и сопротивление среды Rср. Угол сдвига фаз в последовательном колебательном контуре между напряжением и током равен нулю (φ=0), если ХL = — Хс, т.е. изменения тока и напряжения в нем происходят синфазно. Это явление называется резонансом напряжений (последовательным резонансом). Следует отметить, что при понижении частоты от резонанса, ток в контуре уменьшается, а резонанс тока несет емкостной характер. При дальнейшей расстройке контура и понижении тока на 0,707, его фаза смещается на 45 градусов. При расстройке контура вверх по частоте, он приобретает индуктивный характер. Это явление часто используют в фазоинверторах.

Если мы рассмотрим схему изображенную на рис. 3, то мы сможем предоставить простые расчеты, из которых видно, что напряжение на пластинах излучателя вычисляется исходя из добротности контура Q, которая реально может находиться в пределах 20 – 50 и много выше.

Где полоса пропускания определяется добротностью контура:

Тогда напряжение на пластинах излучателя будет выглядеть согласно следующей формуле:

В таблице 1 расчетные данные приведены для частоты 7.0 МГц не случайно, это дает возможность любому желающему коротковолновику провести радиолюбительский эксперимент в эфире. Здесь входное напряжение U1 условно взято за 100 Вольт, а добротность за 26.

Генератор Тесла

В условиях постоянного роста потребляемой энергии широкий интерес вызывает возможность добычи электричества нетрадиционными способами. Среди них с давних пор известен генератор Тесла, способный вырабатывать энергию без использования какого-либо топлива. Данный метод теоретически открывает возможности для полной независимости от энергоснабжения, однако, как показывает практика, до этого еще очень далеко.

  1. Альтернативный источник электроэнергии
  2. Технические возможности генератора
  3. Принцип работы генератора Тесла
  4. Параметры и характеристики
  5. Как сделать генератор Тесла своими руками: порядок действий
Читайте также  Установка ремня генератора ford mondeo

Альтернативный источник электроэнергии

Данное изобретение можно смело отнести к альтернативным источникам электроэнергии. Благодаря своим возможностям, генератор Тесла является возможной заменой солнечным батареям. Он отличается простой конструкцией, которая легко собирается и минимальным количеством используемых материалов. Соответственно, и финансовые затраты тоже незначительные. Отдельно взятое устройство конечно не сравнится с аналогичной солнечной панелью, но если соединить в одно целое сразу несколько единиц, то может вполне получиться приемлемый результат.

Многие ученые до сих пор ведут споры об использовании действия свободной энергии при создании такого устройства. Однако, большинство современных технических достижений в самом начале их открытия, тоже считались недосягаемыми для практической реализации. До настоящего времени остались неисследованными многие сферы, связанные с энергией и физическими полями. Хорошо изучены лишь те виды, которые поддаются исследованиям, измерениям и прочим ощущениям. Тем не менее, существуют явления, не поддающиеся каким-либо замерам, поскольку отсутствуют даже приборы для этих целей.

В категорию неисследованного попал и трансформатор Тесла, поскольку принципы его работы расходятся с общепринятыми теориями, связанными с производством электроэнергии. Многим ученым он кажется своеобразным вечным двигателем, не требующим энергии для своей работы, да еще и способным производить другие виды энергии – электрическую или тепловую. Эти утверждения связаны с использованием генератором свободной энергии, происхождение которой до сих пор никак теоретически не обосновано. То есть, на основе известных законов, понятий и определений делается вывод, что такая конструкция на практике не будет работать, поскольку она идет вразрез с законом сохранения энергии и не соблюдает его принцип.

Пока ученые спорят, некоторые домашние умельцы создают вполне работоспособные модели, подтверждающие на практике теоретические предположения. Для более глубокого понимания процессов, следует внимательно изучить конструкцию и принцип действия этих устройств.

Технические возможности генератора

Способы получения электричества, предложенные изобретателем Николой Тесла, значительно обогнали свое время. Даже сейчас эта тема широко не обсуждается, а если и рассматривается, то лишь в теоретической плоскости, без возможности практического использования.

Среди них особое место занимает бестопливный генератор Тесла, получивший в названии имя самого изобретателя, оформившего патент на устройство. Изначально существовало несколько вариантов его использования, но затем его основной функцией стало получение электрической энергии высокого напряжения и высокой частоты. Следует отметить, что в ходе экспериментов выходное напряжение нередко доходило до нескольких миллионов вольт. В результате, в воздушном пространстве возникали электрические разряды большой мощности, длина которых могла доходить до нескольких десятков метров.

С помощью этого устройства стало возможно создавать и распространять электрические колебания, управлять аппаратурой без проводов, путем телеуправления. Прибор использовался и при создании беспроводной радиосвязи, а также для передачи энергии на расстояние.

Практическое применение в начале прошлого века генератор получил в области медицины. Больные подвергались обработке потоками высокочастотной энергии, обладающими тонизирующим и лечебным действием. Проводились и эксперименты по переработке отходов мусорных свалок в электричество, создавая принцип работы устройства. Газ, выделяемый при сжигании мусора, служит универсальным источником тока для генератора, обладающего высоким КПД. Для того чтобы понять, как такое возможно, нужно знать устройство и принцип действия прибора.

Принцип работы генератора Тесла

Представленное генераторное устройство работает под влиянием внешних процессов или окружающей среды. Источниками энергии становятся вода, ветер, различные вибрации, создающие колебания и другие факторы. В этом состоит его главный принцип работы.

Простейший магнитный генератор состоит из катушки с двумя обмотками. Работа вторичного элемента осуществляется под действием вибрации, в результате, так называемые эфирные вихри взаимодействуют с его поперечным сечением. Это приводит к образованию напряжения во всей системе и к дальнейшей ионизации воздуха. Данные процессы возникают на самом конце обмотки, образуя электрические разряды.

В конструкции прибора используется трансформаторный металл, усиливающий индуктивные связи. Между элементами обмотки возникают колебания, а разряды образуются в виде плотных сплетений.

Другая схема генератора использует мощность, вырабатываемую самим оборудованием. Для того чтобы запустить генератор необходим внешний толчок в виде импульса, создаваемого аккумулятором. Прибор состоит из двух металлических пластин, одна из которых монтируется наверху, а другая устанавливается в землю. Между ними в цепь включается конденсатор.

Подача постоянного разряда производится к металлической пластине, после чего начинают выделяться определенные частицы с положительным потенциалом. На поверхности Земли образуются отрицательные частицы. В результате образуется разность потенциалов и ток начинает поступать в конденсатор.

Следует учитывать специфику подключения, которой отличается генератор свободной энергии Тесла. Для работы первичной катушки требуется высоковольтное напряжение высокой частоты. Данный ток обеспечивает неоднократная искровая разрядка конденсаторного элемента. Каждая искра образуется в таком промежутке, когда напряжение достигает определенного уровня между терминалами конденсаторов.

Для того чтобы искровой промежуток располагался в проводящем положении, требуется последовательная связь конденсатора и первичной катушки. Это приводит к созданию цепи RLC, которая, в свою очередь, приводит к электрическим колебаниям с определенной частотой. Одновременно на вторичной катушке образуется собственная цепь RLC. В этом месте электрические колебания возбуждаются под влиянием индукции напряжения. В каждой цепи колебания происходят с индивидуальной частотой, в зависимости от конкретных параметров конструкции.

Для обеспечения нормальной работы генератора, обе цепи должны войти в резонанс между собой, то есть их частоты колебаний совпадают. После этого во вторичной катушке происходит многократное увеличение амплитуды, что приводит к созданию высокого выходного напряжения.

Параметры и характеристики

В работе электрогенератора Тесла используется принцип трансформатора с отсутствующим сердечником. Конструкция состоит из первичной катушки с витками проводов большого диаметра, и вторичной катушки с витками из более тонких проводов. В приборе без магнита отсутствует традиционный ферромагнитный сердечник, что и отличает его от обычного трансформатора. Благодаря такой конструкции, уровень взаимной индуктивности катушек значительно снижается. Большое количество витков на вторичной катушке, способствует образованию высокого напряжения при минимуме энергетических затрат.

Данная теория нашла наглядное практическое подтверждение. Домашние умельцы, используя генератор свободной энергии мощностью 40 Вт, получают напряжение до 500 киловольт. Это приводит к образованию длинных красивых разрядов, достигающих двух или трехметровой величины. Попадая в атмосферу, высоковольтный разряд становится похож на своеобразную корону. С обычным трансформатором невозможно достичь такой продуктивной работы и наглядных результатов.

Помимо воздушных эффектов, происходит образование длинных мобильных зарядов при контакте с заземленными предметами. Следует отметить, что все разряды обладают определенными частотами, а другие частоты кратны первоначальному значению.

Каждый такой высоковольтный заряд состоит из определенного набора частот, способных разбивать молекулы газов, независимо от устойчивости любой из них. Процесс расщепления сопровождается появлением темно-синего цвета зеленоватого оттенка.

Таким образом, если на электрическую корону подать струю газа, то под влиянием резонансных сил произойдет распад молекул на отдельные атомы. Внешние электроны атомных частиц сосредоточатся на вторичной обмотке и перейдут в корону в виде ионов. На игольчатых выходах вторичной обмотки образуется очень высокое напряжение. В этом же месте устанавливается диодный выпрямитель, с положительным потенциалом, направленным в сторону острия. За счет этого возможно получить максимальный положительный результат, поскольку действие переменной токовой полуволны позволяет разбивать молекулы с одной и той же частотой.

Под действием постоянной токовой составляющей атомы без электронов будут разгоняться в направлении от иглы. В результате, в пространство выходят положительные атомы водорода, которые и образуют светящуюся корону.

Как сделать генератор Тесла своими руками: порядок действий

Первым этапом при изготовление генератора, будет устройство заземления. Если устройство будет использоваться на даче или в загородном доме, можно ограничиться единственным металлическим штырем, забитым глубоко в землю. Разрешается использовать готовые металлические конструкции, расположенные в земле. При использовании генератора в квартире, заземлением становятся DUG трубы или розетки с подключенным заземляющим контактом.

На втором этапе нужно создать элемент для приема свободных положительно заряженных частиц, вырабатываемых солнцем или любыми приборами искусственного освещения. В случае правильной сборки, прием возможен даже при пасмурной погоде. Кусок фольги закрепляется на фанерном или картонном листе. При попадании световых частиц на алюминий, в нем возникает электрический ток. Количество энергии напрямую зависит от площади фольги. Мощность генератора Тесла можно существенно повысить путем изготовления нескольких приемников и их параллельного соединения между собой.

После окончания сборки генератора тесла, схема должна быть подключена. Для этого контакты через конденсатор соединяются между собой. Полярность обозначена на корпусе конденсатора. Отрицательный контакт соединяется с заземлением, а положительный – прикрепляется проводом к фольге. Сразу же начнется зарядка конденсатора, после чего из него можно получать электроэнергию. Чтобы конденсатор не взорвался от избыточной энергии, в цепь устанавливается резистор, выполняющий ограничительную функцию.

Как работает катушка Тесла (и способы настройки)

Это сложное устройство из генератора, индуктора и ВВ ( Высоко Вольтного) резонатора. В классическом варианте генератор представляет собой источник высокого напряжения в несколько тысяч во льт, что достаточно для получения искры в воздушной среде в несколько миллиметров. Генератор через балластный дроссель заряжает конденсатор и при достижении на нем определенного напряжение происходит срабатывание разрядника и через искру энергия в виде короткого, но мощного по току импульса переходит на индуктор. Индуктор находится у основания ВВ резонатора и обычно представляет собой катушку намотанную поверх ВВ резонатора через воздушный зазор у самого основания ВВ резонатора. Индуктор мотается толстым проводом, обычно 2.5-4мм2 меди, в экспериментальных случаях без изоляции, чтобы не перематывая индуктор, а используя крокодильчик можно было бы точно подбирать количество витков. ВВ катушка мотается тонким проводом, например, 0.3мм и например на каркасе диаметром 50 мм мы будем иметь примерно 500-1000 витков провода. Витки ВВ катушки подбираются и рассчитываются. Практический обычно выясняют резонансную частоту ВВ намотки, это делают, например, по осциллографу, после подачи разрядов на индуктор. Щуп осциллографа не подключают к ВВ катушки, он будет хорошо чувствовать поле на расстоянии метр от нее по воздуху. Способов определения резонансной частоты много. Важно мотать ВВ катушку в противоположную сторону по отношению к индуктору, при этом что в какую не важно. Например, если индуктор намотан по часовой стрелке, то ВВ резонатор будет мотаться против часовой стрелки. Важна длинна намотки. В классическом варианте длинна намотки должна составлять четверть длинны электромагнитной волны соответствующей резонансной частоте. Например, если выяснилось, что собственная резонансная частота ВВ катушки 1МГц то длинна волны l=c/f (скорость света деленная на частоту) будет l=(3*10^8)/(1*10^6)=300 метров. Ну а четверть это 300/4=75 метров. Таким образом для ВВ катушки с собственной резонансной частотой 1МГц длинна провода должна быть 75 метров.

Читайте также  Ты был мне как брат генератор

Далее по схеме, ВВ катушка естественно должна быть заземлена нижним концом, а с верхним концом могут быть варианты. Для настройки обычно конец провода оставляют открытым и торчащим в воздухе. При правильной настройке на конце будет наблюдаться плазменный разряд рассеиваемый в воздухе, длинна его может быть от миллиметров до сантиметров в зависимости от мощности. Но постольку поскольку такой разряд не самоцель на конец обычно устанавливают некоторую воздушную накопительную емкость, типа однопроводного воздушного конденсатора, обычно в виде металлического шара. Тут тоже нельзя ничего делать на абум и просто так. Чем больше емкость тем сильнее надо отматывать ВВ катушку от исходной длинны. При небольшой емкости длину ВВ намотки обычно уменьшают не более чем на 10% от исходной.

Еще раз вернемся к собственной резонансной частоте ВВ катушки. Важно понимать, что ВВ катушка вовсе не является обычной катушкой индуктивности и из-за большого количества витков и длинны намотки в четверть длинны волны (в некоторых случаях и более) ВВ катушка превращается в резонатор. При этом это многопараметровый резонатор и резонансная частота зависит не только от длинны намотки, но и от диаметра намотки и важно чтобы два этих фактора состыковывались. Частоту здесь задают и емкостные межвитковые связи и последовательный LC резонанс с емкостью на макушке и емкость образованная между катушкой и землей и длинна намотки. В целом обычно частота четвертьволновых ВВ резонаторов завязана на диаметрах. Обычно резонаторы намотанные на трубах 100 мм имеют резонансную частоту в пределах 150-450 кГц, резонаторы намотанные на трубах 50 мм имеют резонансы в районе 450-1000 кГц. Частоту ВВ резонатора можно определить даже одним осциллографом за счет приема радиоволнового фона вот по такой схеме.

Для выявления резонансной частоты активный щуп осциллографа подключают к нижнему концу катушки и наблюдают осциллограмму с разверткой 1-10 мкс/дел и на предельном уровне чувствительности. На экране должна появиться размытая синусойда, по которой можно с точностью 10-20% определить резонансную частоту. Эффект обычно хорошо проявляется при большом уровне радиоволнового шума исходящего от бытовой аппаратуры, импульсных блоков питания и при обилии радиостанций в диапазонах СВ и ДВ.

Обобщим. Включаем генератор высокого напряжения с потенциалом около 5 кВ и мощностью 10-100 Вт, далее через дроссель 0.1-1 Гн заряжаем конденсатор. При заряде конденсатора до напряжения пробоя разрядника возникает короткий, но мощный импульс тока длительностью от единиц до десятков наносекунд с током в десятки и сотни ампер (до тысяч ампер), проходящий через индуктор. Индуктор возбуждает в четвертьволновом ВВ резонаторе стоячую электромагнитную волну. У основания резонатора ток колеблется с частотой 1 МГц, но напряжение очень мало, на конце резонатора возникает пучность высокого (от единиц до десятков киловольт) переменного напряжения, которое колеблется с частотой около 1 МГц в безтоковом режиме. При правильно намотанном ВВ резонаторе всего один возбуждающий импульс может привести к десяткам и сотням плавно затухающим свободным колебаниям, чем больше добротность резонатора, тем больше колебаний в нем будет. Таким образом ВВ резонатор, как и вообще любой резонатор является аккумулятором колебательной энергии на собственной резонансной частоте. Однако, чтобы достичь сверхъединичного эффекта простого искрения на индуктор не достаточно, необходим процесс синхронизации и многое другое.

Формулы для расчета выглядят так

Белая искра с емкости трансформатора тесла в заземляющий кабель

Белая искра с емкости трансформатора тесла в заземляющий кабель. Цвет искры зависит от силы тока. При большом токе искра белая, при маленьком токе фиолетовая. Емкость способствует возникновению большого разрядного тока, чего нету на чисто четвертьволновой тесле без емкости, там искра уже фиолетовая. Помимо этого эта тесла разогнана короткими пачками импульсов звуковой частоты. Индуктор возбуждается однополярными импульсами полученными на контуре с частотой в 3 раза выше, чем частота вв резонатора, но импульсы идут с частотой четвертьволнового резонатора, здесь 450 кГц

Частота для генератора тесла

Трансформатор Тесла на MOSFET(SSTC)

Автор: Товарищ Кутепов, [email protected]
Опубликовано 22.09.2014
Создано при помощи КотоРед.
Участник Конкурса «Поздравь Кота по-человечески 2014»

Поздравляю Кота с Днём Рождения, желаю тёплой батареи, свежего вискаса лосося и уютного шкафа! Ещё хочу сказать огромное спасибо всей администрации сайта за то, что поддерживаете сайт и предоставляете нам такой отличный источник качественной и интересной информации.

Предисловие

Ещё в начале этого лета я буквально заболел идеей построить трансформатор Тесла. В конце июля сделал сетевой качер, а вот на этой неделе я закончил делать SSTC(Solid State Tesla Coil — катушка Тесла на твёрдотельных элементах). Почему именно SSTC? Потому, что для этого типа не нужно ни дефицитных и дорогих конденсаторов, ни не менее дорогих ламп. Все детали были купленны в радиолюбительском магазине в областном центре, пришлось немнгого поездить на электричках, но постройка Трансформатора Тесла (далее — ТТ) обошлась мне всего в 800р и заняла 2 недели. Теперь обо всём по порядку.

Основные понятия (те, кто представляют, что такое ТТ — могут не читать)

Трансформатор Тесла — это устройство для получения высокого напряжения, запатентованное Н.Теслой в 1896г. Работает он по принципу резонанса — т.е. высокое напряжение на выходе достигается путём подачи на первичную обмотку импульсов в нужный момент. Подробнее об этом в своём видео рассказывает Сергей Булавинов.

Изготовление трансформатора

В первую очередь сделаем резонатор. Для этого нам понадобится:

Труба пластиковая канализационная диаметром 110мм;

Провод намоточный, я использовал ПЭВТЛ 1071 диаметром 0,15мм, но лучше подойдёт ПЭТВ2 диаметром 0,18мм.

Гофрированный воздуховод 80*1500мм, но если есть возможность — лучше взять 60 или 70мм в диаметре;

Пистолет с термоклеем;

Шруповёрт и сверло 1,5мм.

Для начала намотаем саму обмотку. Для этого отрезаем кусок пластиковой трубы длиной 200мм и со стороны, отрезанной на заводе — она немножко заострённая, сделаем бортик из термоклея. Он нужен для того, чтобы провод не сползал. Теперь сверлим два отверстия. Одно около бортика, другое — отступив 180мм.

В отверстие около бортика продеваем начало нашего провода, оставляем внутри трубы около 20см — это — холодный конец обмотки. Теперь начинаем наматывать провод в произвольную сторону, фиксируя каждые 5см малярным скотчем. Наматываем обмотку длиной 180мм, отрезаем, оставляя «хвост» длиной сантиметров 10 и продеваем его через верхнее отверстие. Также заливаем отверстие термоклеем. Вроде всё просто, но это самая трудоёмкая часть, на неё у меня ушло два вечера. В итоге имеем это:

Теперь изготовим тороид. Вокруг нашей трубы делаем «бублик» из воздуховода и оборачиваем стык алюминиевым скотчем.Надеваем этот «бублик» сверху на обмотку. Приклееваем. Теперь лудим маленькую площадочку на воздуховоде со внутренней стороны и припаеваем «хвост», который мы оставили. Резонатор готов. Теперь делаем первичную обмотку. Нам нужно:

10см кусок пластиковой трубы 160мм в диаметре или подходящий по размеру цветочный горшок;

Шуруповёрт, сверло 5-6мм;

Пластиковые хомуты;

Сам провод, примерно 4 метра, я использовал одножильный «мягкий» провод 6мм.

Сверлим 4 отверстия на высоте 2см на противоположных сторонах. Теперь отмеряем от каждого отверстия ещё 4,5см вверх и сверлим ещё 4 отверстия. Также просверлим отверстие для провода заземления, который пойдёт ко вторичке. Должно получиться примерно так:

Теперь пропускаем через отверстия пластиковые хомуты, наматываем 5 витков провода и фиксируем это хомутами. Получится что-то наподобие этого:

Первичка готова, осталось лишь соединить её с резонатором. Для этого я вначале приклеил первичку к куску фанеры, пропустил через просверленное отверстие провод заземления и потом уже приклеил резонатор. Получилось вот так:

Теперь к электроннике.

Изготовление управляющей схемы

В интернете есть много вариаций управляющих схем для SSTC, но все они состоят из перывателя, генератора сигнала, драйвера, трансформатора развязки затворов по напряжению и силовой части — моста или полумоста. За основу была взята эта схема:

Но в связи с невозможностью достать драйвер MOSFET ucc37321, была изменена на такую:

Да-да, схема не моя(ну почти), но в рунете нету гайдов по постройке SSTC, по этому не надо говорить, что это копипаста. На NE555 построен генератор прямоугольных импульсов, выполняющий роль прерывателя, первые 2 элемента 74hc14 приводит сигнал к ттл уровням, а 3 — инвертирует для замены комплиментарной пары из ucc37322 и ucc37321 на пару из двух ucc37322. TR1 – GDT. Намотан на ферритовом кольце марки р3, но лучше использовать N87, 3 обмотки по 7 витков. Для этого рекомендую использовать распущенную витую пару. Вот, собственно он: К PAD1 подключаем антенну-проволоку примерно 20см, в непосредственной близости от катушки. К PAD3 был подключён плюс блока питания на 16 вольт, к PAD3 – минус его-же. К PAD4 и PAD5 подключаются провода от первичной обмотки. А вот к PAD6 и PAD7 – питающее напряжение. Так как у меня нет ЛАТРа — я питал от советского понижающего трансформатора на 50в. Ток был достигал 3 ампера, по этому я поставил не очень мощную диодную сборку AC1, но если вы будете питать от сети или через ЛАТР — поставьте диодную сборку на достаточно большой ток. Электролитический конденсатор лучше заменить более ёмким, желательно на тысячу-две микрофарад, но у меня такового не было. Если трансформатор не начнет работать — поменяйте эти провода местами. Таким образом изменится полярность первички. Разводку приложил.

Заключение

Если вам интересно — можете рассчитать резонансную частоту трансформатора во этим формулам:

В следующих своих статьях расскажу о беспроводной передаче энергии с помощью ТТ, для этого нам и понадобится знать резонансную частоту. Пока что всё.

Также не забываем о технике безопасности! Я вот, всего за сутки существования этого ТТ получил 3 удара током. Будьте предельно осторожны! Хоть здесь и высокая частота, но напряжение действительно большое, да и ток может быть немалый. Ещё при первом пуске рекомендую накрыть силовую часть листом бумаги, чтобы в случае взрыва конденсатора или транзисторов вы не пострадали. Удачи в постройке, и берегите лапы!

Яков Кузнецов/ автор статьи

Приветствую! Я являюсь руководителем данного проекта и занимаюсь его наполнением. Здесь я стараюсь собирать и публиковать максимально полный и интересный контент на темы связанные ремонтом автомобилей и подбором для них запасных частей. Уверен вы найдете для себя немало полезной информации. С уважением, Яков Кузнецов.

Понравилась статья? Поделиться с друзьями:
NEVINKA-INFO.RU
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: