Что такое асинхронный генератор принцип работы
Самодельный асинхронный генератор
Для питания бытовых устройств и промышленного оборудования необходим источник электроэнергии. Выработать электрический ток возможно несколькими способами. Но наиболее перспективным и экономически выгодным, на сегодняшний день, является генерация тока электрическими машинами. Самым простым в изготовлении, дешёвым и надёжным в эксплуатации оказался асинхронный генератор, вырабатывающий львиную долю потребляемой нами электроэнергии.
Применение электрических машин этого типа продиктовано их преимуществами. Асинхронные электрогенераторы, в отличие от синхронных генераторов, обеспечивают:
- более высокую степень надёжности;
- длительный срок эксплуатации;
- экономичность;
- минимальные затраты на обслуживание.
Эти и другие свойства асинхронных генераторов заложены в их конструкции.
Устройство и принцип работы
Главными рабочими частями асинхронного генератора является ротор (подвижная деталь) и статор (неподвижный). На рисунке 1 ротор расположен справа, а статор слева. Обратите внимание на устройство ротора. На нём не видно обмоток из медной проволоки. На самом деле обмотки существуют, но они состоят из алюминиевых стержней короткозамкнутых на кольца, расположенные с двух сторон. На фото стержни видны в виде косых линий.
Конструкция короткозамкнутых обмоток образует, так называемую, «беличью клетку». Пространство внутри этой клетки заполнено стальными пластинами. Если быть точным, то алюминиевые стержни впрессовываются в пазы, проделанные в сердечнике ротора.
Рис. 1. Ротор и статор асинхронного генератора
Асинхронная машина, устройство которой описано выше, называется генератором с короткозамкнутым ротором. Тот, кто знаком с конструкцией асинхронного электродвигателя наверняка заметил схожесть в строении этих двух машин. По сути дела они ничем не отличаются, так как асинхронный генератор и короткозамкнутый электродвигатель практически идентичны, за исключением дополнительных конденсаторов возбуждения, используемых в генераторном режиме.
Ротор расположен на валу, который сидит на подшипниках, зажимаемых с двух сторон крышками. Вся конструкция защищена металлическим корпусом. Генераторы средней и большой мощности требуют охлаждения, поэтому на валу дополнительно устанавливается вентилятор, а сам корпус делают ребристым (см. рис. 2).
Рис. 2. Асинхронный генератор в сборе
Принцип действия
По определению, генератором является устройство, преобразующее механическую энергию в электрический ток. При этом не имеет значения, какая энергия используется для вращения ротора: ветровая, потенциальная энергия воды или же внутренняя энергия, преобразуемая турбиной либо ДВС в механическую.
В результате вращения ротора магнитные силовые линии, образованные остаточной намагниченностью стальных пластин, пересекают обмотки статора. В катушках образуется ЭДС, которая, при подсоединении активных нагрузок, приводит к образованию тока в их цепях.
При этом важно, чтобы синхронная скорость вращения вала немного (примерно на 2 – 10%) превышала синхронную частоту переменного тока (задаётся количеством полюсов статора). Другими словами, необходимо обеспечить асинхронность (несовпадение) частоты вращения на величину скольжения ротора.
Следует заметить, что полученный таким образом ток будет небольшим. Чтобы повысить выходную мощность необходимо увеличить магнитную индукцию. Добиваются повышения КПД устройства путём подключения конденсаторов к выводам катушек статора.
На рисунке 3 изображена схема сварочного асинхронного альтернатора с конденсаторным возбуждением (левая часть схемы). Обратите внимание на то, что конденсаторы возбуждения подключены по схеме треугольника. Правая часть рисунка – собственно схема самого инверторного сварочного аппарата.
Рис. 3. Схема сварочного асинхронного генератора
Существуют и другие, более сложные схемы возбуждения, например, с применением катушек индуктивности и батареи конденсаторов. Пример такой схемы показан на рисунке 4.
Рисунок 4. Схема устройства с индуктивностями
Отличие от синхронного генератора
Главное отличие синхронного альтернатора от асинхронного генератора в конструкции ротора. В синхронной машине ротор состоит из проволочных обмоток. Для создания магнитной индукции используется автономный источник питания (часто дополнительный маломощный генератор постоянного тока, расположенный на одной оси с ротором).
Преимущество синхронного генератора в том, что он генерирует более качественный ток и легко синхронизируется с другими альтернаторами подобного типа. Однако синхронные альтернаторы более чувствительны к перегрузкам и КЗ. Они дороже от своих асинхронных собратьев и требовательнее в обслуживании – необходимо следить за состоянием щёток.
Коэффициент гармоник или клирфактор асинхронных генераторов ниже, чем у синхронных альтернаторов. То есть они вырабатывают практически чистую электроэнергию. На таких токах устойчивее работают:
- ИБП;
- регулируемые зарядные устройства;
- современные телевизионные приёмники.
Асинхронные генераторы обеспечивают уверенный запуск электромоторов, требующих больших пусковых токов. По этому показателю они, фактически, не уступают синхронным машинам. У них меньше реактивных нагрузок, что положительно сказывается на тепловом режиме, так как меньше энергии расходуется на реактивную мощность. У асинхронного альтернатора лучшая стабильность выходной частоты на разных скоростях вращения ротора.
Классификация
Генераторы короткозамкнутого типа получили наибольшее распространение, ввиду простоты их конструкции. Однако существуют и другие типы асинхронных машин: альтернаторы с фазным ротором и устройства, с применением постоянных магнитов, образующих цепь возбуждения.
На рисунке 5 для сравнения показаны два типа генераторов: слева на базе асинхронного двигателя с короткозамкнутым ротором, а справа – асинхронная машина на базе АД с фазным ротором. Даже при беглом взгляде на схематические изображения видно усложнённую конструкцию фазного ротора. Привлекает внимание наличие контактных колец (4) и механизма щёткодержателей (5). Цифрой 3 обозначены пазы для проволочной обмотки, на которую необходимо подать ток для её возбуждения.
Рис. 5. Типы асинхронных генераторов
Наличие обмоток возбуждения в роторе асинхронного генератора повышает качество генерируемого электрического тока, однако при этом теряются такие достоинства как простота и надёжность. Поэтому такие устройства используются в качестве источника автономного питания только в тех сферах, где без них трудно обойтись. Постоянные магниты в роторах применяют в основном для производства маломощных генераторов.
Область применения
Наиболее часто встречается применение генераторных установок с короткозамкнутым ротором. Они недорогие, практически не нуждаются в обслуживании. Устройства, оборудованные пусковыми конденсаторами, обладают приличными показателями КПД.
Асинхронные альтернаторы часто используют в качестве автономного или резервного источника питания. С ними работают переносные бензиновые генераторы, их используют для мощных мобильных и стационарных дизельных генераторов.
Альтернаторы с трёхфазной обмоткой уверенно запускают трехфазный электродвигатель, поэтому часто используются в промышленных энергоустановках. Они также могут питать оборудование в однофазных сетях. Двухфазный режим позволяет экономить топливо ДВС, так как незадействованные обмотки находятся в режиме холостого хода.
Сфера применения довольно обширная:
- транспортная промышленность;
- сельское хозяйство;
- бытовая сфера;
- медицинские учреждения;
Асинхронные альтернаторы удобны для сооружения локальных ветровых и гидравлических электростанций.
Асинхронный генератор своими руками
Оговоримся сразу: речь пойдёт не об изготовлении генератора с нуля, а о переделывании асинхронного двигателя в альтернатор. Некоторые умельцы используют готовый статор от мотора и экспериментируют с ротором. Идея состоит в том, чтобы с помощью неодимовых магнитов сделать полюса ротора. Примерно так может выглядеть заготовка с наклеенными магнитиками (см. рис. 6):
Рис. 6. Заготовка с наклеенными магнитами
Вы наклеиваете магниты на специально выточенную заготовку, посаженную на валу электродвигателя, соблюдая их полярность и угол сдвига. Для этого потребуется не менее 128 магнитиков.
Готовую конструкцию необходимо подогнать к статору и при этом обеспечить минимальный зазор между зубцами и магнитными полюсами изготовленного ротора. Поскольку магнитики плоские, придётся их шлифовать или обтачивать, при этом постоянно охлаждая конструкцию, так как неодим теряет свои магнитные свойства при высокой температуре. Если вы сделаете всё правильно – генератор заработает.
Проблема состоит в том, что в кустарных условиях очень сложно изготовить идеальный ротор. Но если у вас есть токарный станок и вы готовы потратить несколько недель на подгонку и доработки – можете поэкспериментировать.
Я предлагаю более практичный вариант – превращение асинхронного двигателя в генератор (смотрите видео ниже). Для этого вам понадобится электромотор с подходящей мощностью и приемлемой частотой вращения ротора. Мощность двигателя должна быть минимум на 50% выше от требуемой мощности альтернатора. Если такой электромотор есть в вашем распоряжении – приступайте к переработке. В противном случае лучше купить готовый генератор.
Для переработки вам потребуется 3 конденсатора марки КБГ-МН, МБГО, МБГТ (можно брать другие марки, но не электролитические). Конденсаторы подбирайте на напряжение не менее 600 В (для трёхфазного двигателя). Реактивная мощность генератора Q связанная с емкостью конденсатора следующей зависимостью: Q = 0,314·U 2 ·C·10 -6 .
При увеличении нагрузки возрастает реактивная мощность, а значит, для поддержания стабильного напряжения U необходимо увеличивать ёмкость конденсаторов, добавляя новые ёмкости путём коммутации.
Видео: делаем асинхронный генератор из однофазного двигателя – Часть 1
https://www.youtube.com/watch?v=ZQO5S9F72CQ
Часть 2
https://www.youtube.com/watch?v=nDCdADUZghs
Часть 3
https://www.youtube.com/watch?v=6M_w1b2xyM8
Часть 4
https://www.youtube.com/watch?v=CONHg7p-IYE
Часть 5
https://www.youtube.com/watch?v=z2YSqVh1vM8
Часть 6
https://www.youtube.com/watch?v=FNU83kOeSbA
Для упрощения подбора конденсаторов воспользуйтесь таблицей:
Мощность альтернатора (кВт-А) | Ёмкость конденсатора (мкФ) на холостом ходу | Ёмкость конденсатора (мкФ) при средней нагрузке | Ёмкость конденсатора (мкФ) при полной нагрузке |
2 | 28 | 36 | 60 |
3,5 | 45 | 56 | 100 |
5 | 60 | 75 | 138 |
На практике, обычно выбирают среднее значение, предполагая, что нагрузка не будет максимальной.
Подобрав параметры конденсаторов, подключите их к выводам обмоток статора так, как показано на схеме (рис. 7). Генератор готов.
Рис. 7. Схема подключения конденсаторов
Советы по эксплуатации
Асинхронный генератор не требует особого ухода. Его обслуживание заключается в контроле состояния подшипников. На номинальных режимах устройство способно работать годами без вмешательства оператора.
Слабое звено – конденсаторы. Они могут выходить из строя, особенно тогда, когда их номиналы неправильно подобраны.
При работе генератор нагревается. Если вы часто подключаете повышенные нагрузки – следите за температурой устройства или позаботьтесь о дополнительном охлаждении.
Асинхронный генератор
Все известные виды генераторных устройств по особенностям своей работы делятся на синхронные и асинхронные машины, причем наибольшее распространение получила именно последняя разновидность. Их конструкция и принцип действия аналогичны асинхронным двигателям, но преобразование энергии в генераторе происходит в обратном направлении (из механической в электрический её вид). С тем, как выглядит асинхронный генератор в натуре, можно ознакомиться на рисунке ниже.
Подобно двигателям асинхронного типа, включённым в реверсном режиме (на торможение), при генерации энергии наблюдается примерно тот же эффект, приводящий к её частичному рассеиванию в виде тепла. Из этого следует, что КПД такого устройства сравнительно невелико.
Принцип работы
Хорошо усвоить принцип работы асинхронного механизма поможет предварительное ознакомление с основами функционирования генераторных машин синхронного типа. Дело в том, что синхронные и асинхронные генераторы по своему устройству и способу действия очень схожи и отличаются лишь небольшими деталями (конструкцией вращающегося ротора, в частности).
В механизмах первого класса используется ротор с размещёнными на нем постоянными магнитами. При его вращении от механического привода магнитные элементы наводят в статоре меняющееся по величине и направлению э/м поле, обеспечивающее протекание переменного тока в подключённой к его зажимам нагрузке. При этом сам ротор вращается без рассогласования с создаваемой им в катушках ЭДС (синфазно с ней).
В отличие от синхронных машин, асинхронный генератор характеризуется наличием небольшого отставания вращения роторного элемента устройства по отношению к наводимому в статоре электромагнитному полю. Последнее как бы тормозит его движение, что принято называть «эффектом скольжения».
Обратите внимание! Указанное явление объясняется особенностью конструкции ротора АГ, изготавливаемого в виде короткозамкнутой цельной решётки (так называемого «беличьего колеса»). Её внешний вид приводится на фото ниже.
При вращении приводного вала под воздействием внешнего механического импульса (от двигателя внутреннего сгорания, например) за счёт остаточного магнетизма статора в решётке такого ротора наводится собственная ЭДС. Вследствие этого оба поля (и подвижное, и неподвижное) начинают взаимодействовать друг с другом в динамическом режиме.
Поскольку поле в обмотках ротора наводится с задержкой относительно неподвижного статора генератора, он несколько отстаёт от наводимого в ней э/м поля (то есть вращается асинхронно).
Возможность управления
Ещё одной особенностью синхронного генератора (как, впрочем, и асинхронного) является то, что частота и амплитуда наводимой на зажимах статора ЭДС существенно зависит от скорости вращения ротора.
Важно! С изменением подключённой к генератору активной нагрузки пропорционально ей меняется и частота вращения вала генератора, что приводит к изменению характеристик создаваемой в статоре ЭДС.
Указанный недостаток вынуждает устанавливать в устройствах синхронного и асинхронного типа электронный регулятор напряжения и частоты, обеспечивающий поддержание этих параметров на должном уровне (схема регулятора приводится ниже).
Поскольку асинхронный генератор работает по принципу рассогласованного вращения полей подвижной и неподвижной части, обеспечить регулирование выходных параметров внутри системы не удаётся. Это объясняется невозможностью организовать мгновенную обратную связь по напряжению путём подачи части выходного сигнала со статора на ротор (в АГ могут применяться лишь внешние стабилизаторы напряжения).
В этом заключается ещё одно отличие асинхронных агрегатов от их синхронных аналогов, которые по всем остальным характеристикам очень схожи с первыми.
Преимущества и области применения
К числу достоинств асинхронных генераторов относят следующие их свойства:
- АГ устойчивы к перегрузкам и КЗ, а также имеют сравнительно простую конструкцию (этим они отличаются от более сложных в исполнении синхронных машин);
- Показатель нелинейных искажений синусоиды у них не превышает 2-х процентов (сравните 15 % у их синхронных аналогов);
- Благодаря низкому значению клирфактора, асинхронные устройства гарантируют высокую устойчивость работы подключённых к ним БИП и ТВ приёмников;
- При электропитании сварочного оборудования они обеспечивают существенное улучшение качества сварки;
- Для стабилизации выходного напряжения в них могут применяться внешние устройства автоматического регулирования;
- Роторы АГ при вращении выделяют ограниченное количество тепла, для компенсации которого не требуется мощных вентиляторных устройств.
Последнее свойство позволяет надёжно герметизировать внутреннюю полость агрегата, то есть защитить её от проникновения пыли и грязи. Благодаря этому обстоятельству существенно расширяется сфера применения асинхронных машин, способных работать в условиях большой запыленности и повышенной влажности.
Возможность герметизации способствует тому, что электрогенераторы асинхронного типа имеют больший показатель по сроку службы и могут эксплуатироваться при пониженных температурах. Добавим к этому, что к каждой из фазных обмоток этих агрегатов допускается подключать нагрузки различной мощности.
Дополнительная информация. Допустимый показатель неравномерности фазных нагрузок (разница потребляемых ими токов) составляет для АГ порядка 70%, что невозможно реализовать при работе с синхронными агрегатами.
К легко устранимому в процессе эксплуатации недостатку следует отнести довольно «тяжелые» пусковые характеристики генератора, что удаётся исправить за счёт установки в них специальных стартовых усилителей (рисунок далее по тексту).
Указанные устройства обеспечивают возможность плавного вывода генератора в рабочий режим даже при значительных по величине пусковых токах.
Во всём остальном АГ обладают бесспорными преимуществами над синхронными машинами, некоторые различия с которыми были рассмотрены ранее. Благодаря этим достоинствам, они широко применяются в качестве источников электроэнергии в следующих хозяйственных областях:
- Для энергоснабжения оборудования с реостатным или рекуперативным режимом торможения (подъёмные краны, транспортёры и тому подобное);
- В промышленном оборудовании, не нуждающемся в компенсации паразитной реактивной мощности и к которому не предъявляют высоких требований по качеству поставляемой энергии;
- В бытовых и полевых условиях, где требуются источники дешёвой электроэнергии с механическим приводом от дизельного двигателя;
- В качестве мощного зарядного устройства, обеспечивающего подзарядку АКБ в автомастерских, например.
Помимо этого, они могут использоваться как источники электроснабжения, к которым подключаются сварочные агрегаты, а также для обеспечения бесперебойного питания особо важных объектов здравоохранения.
Виды асинхронных машин
Различные виды АГ могут отличаться по следующим рабочим характеристикам:
- Типом вращающейся части генерирующего устройства – его ротора;
- Количеством выходных или статорных обмоток в генераторе (числом рабочих фаз);
- Схемой включения катушек трехфазного генератора – треугольником или звездой, а также способом их размещения и укладки на полюсах статора (фото ниже);
- Наличием или отсутствием отдельной обмотки возбуждения.
В соответствие с первым из этих признаков, все известные разновидности АГ оснащаются короткозамкнутым или фазным ротором. Первый из них изготавливается в виде цельной конструкции цилиндрической формы, состоящей из отдельных штырей с двумя замыкающими их кольцами (типа «беличье колесо»).
Фазный ротор, в отличие от своего короткозамкнутого аналога, имеет индуктивную обмотку из изолированного провода, обеспечивающую создание динамического электромагнитного поля. Из-за особенностей своей конструкции такой ротор имеет высокую стоимость изготовления и нуждается в специализированном обслуживании.
Выходные обмотки статора, как и весь генератор, могут быть однофазными или трехфазными, что определяется непосредственным назначением данного агрегата (когда требуется источник напряжения 220 или 380 Вольт). Относительно первого из этих исполнений всё достаточно ясно, а вот у трехфазной модификации АГ имеется ещё одна особенность, касающаяся электрической схемы включения обмоток.
Известно, что для формирования любой трехфазной питающей сети в электротехнике применяются два вида включения обмоток, смещённых в векторном представлении одна относительно другой на 120 градусов. Это:
- Включение звездой, когда начала катушек соединены в одной точке, где формируется нулевая жила, а их концы расходятся по трём линиям питания (вместе с нулевым проводом их получается четыре, как это указано на фото ниже);
- Подсоединение по схеме «треугольник», при котором конец одной катушки соединяется с началом второй и так далее до полного замыкания цепочки. Второй вариант включения используется в 3-х проводных линиях энергоснабжения, поскольку в этой схеме отсутствует нулевой провод.
В каждом изделии АГ подключение по той или иной схеме реализуется вполне конкретными способами, позволяющими поместить провода всех обмоток статора между полюсами его сердечника. Они наматываются таким образом, чтобы каждая секция фазных катушек A, B и C была сдвинута по окружности одна относительно другой точно на 120 градусов.
В заключение обзора генераторных устройств обратим внимание на возможность изготовления АГ из асинхронного двигателя. Подобная перспектива появляется, благодаря известному принципу обратимости действия электрических машин, согласно которому направление преобразования энергии может выбираться произвольно.
Видео
Генераторы переменного тока
Генератор — устройство, преобразующее один вид энергии в другой.
В данном случае рассматриваем преобразование механической энергии вращения в электрическую.
Различают два типа таких генераторов. Синхронные и асинхронные.
Синхронный генератор. Принцип действия
Отличительным признаком синхронного генератора является жёсткая связь между частотой f переменной ЭДС, наведённой в обмотке статора, и частотой вращения ротора n , называемой синхронной частотой вращения:
n = f / p
где p – число пар полюсов обмотки статора и ротора.
Обычно частота вращения выражается в об/мин, а частота ЭДС в Герцах (1/сек), тогда для количества оборотов в минуту формула примет вид:
n = 60·f / p
На рис. 1.1 представлена функциональная схема синхронного генератора. На статоре 1 расположена трёхфазная обмотка, принципиально не отличающаяся от аналогичной обмотки асинхронной машины. На роторе расположен электромагнит с обмоткой возбуждения 2, получающей питание постоянным током, как правило, через скользящие контакты, осуществляемые посредством двух контактных колец, расположенных на роторе, и двух неподвижных щёток.
В некоторых случаях в конструкции ротора синхронного генератора вместо электромагнитов могут использоваться постоянные магниты, тогда необходимость в наличии контактов на валу отпадает, но существенно ограничиваются возможности стабилизации выходных напряжений.
Приводным двигателем (ПД), в качестве которого используется турбина, двигатель внутреннего сгорания либо другой источник механической энергии, ротор генератора приводится во вращение с синхронной скоростью. При этом магнитное поле электромагнита ротора также вращается с синхронной скоростью и индуцирует в трёхфазной обмотке статора переменные ЭДС EA , EB и EC , которые будучи одинаковыми по значению и сдвинутыми по фазе относительно друг друга на 1/3 периода (120°), образуют симметричную трёхфазную систему ЭДС.
C подключением нагрузки к зажимам обмотки статора С1, С2 и С3 в фазах обмотки статора появляются токи IA, IB, IC , которые создают вращающееся магнитное поле. Частота вращения этого поля равна частоте вращения ротора генератора. Таким образом, в синхронном генераторе магнитное поле статора и ротор вращаются синхронно. Мгновенное значение ЭДС обмотки статора в рассматриваемом синхронном генераторе
e = 2Blwv = 2πBlwDn
Здесь: B – магнитная индукция в воздушном зазоре между сердечником статора и полюсами ротора, Тл;
l – активная длина одной пазовой стороны обмотки статора, т.е. длина сердечника статора, м;
w – количество витков;
v = πDn – линейная скорость движения полюсов ротора относительно статора, м/с;
D – внутренний диаметр сердечника статора, м.
Формула ЭДС показывает, что при неизменной частоте вращения ротора n форма графика переменной ЭДС обмотки якоря (ста- тора) определяется исключительно законом распределения магнитной индукции B в зазоре между статором и полюсами ротора. Если график магнитной индукции в зазоре представляет собой синусоиду B = Bmax sinα , то ЭДС генератора также будет синусоидальной. В синхронных машинах всегда стремятся получить распределение индукции в зазоре как можно ближе к синусоидальному.
Так, если воздушный зазор δ постоянен (рис. 1.2), то магнитная индукция B в воздушном зазоре распределяется по трапецеидальному закону (график 1). Если же края полюсов ротора «скосить» так, чтобы зазор на краях полюсных наконечников был равен δmax (как это показано на рис. 1.2), то график распределения магнитной индукции в зазоре приблизится к синусоиде (график 2), а, следовательно, и график ЭДС, индуцированной в обмотке генератора, приблизится к синусоиде. Частота ЭДС синхронного генератора f (Гц) пропорциональна синхронной частоте вращения ротора n (об/с)
где p – число пар полюсов.
В рассматриваемом генераторе (см. рис.1.1) два полюса, т.е. p = 1.
Для получения ЭДС промышленной частоты (50 Гц) в таком генераторе ротор необходимо вращать с частотой n = 50 об/с (n = 3000 об/мин).
Способы возбуждения синхронных генераторов
Самым распространенным способом создания основного магнитного потока синхронных генераторов является электромагнитное возбуждение, состоящее в том, что на полюсах ротора располагают обмотку возбуждения, при прохождении по которой постоянного тока, возникает МДС, создающая в генераторе магнитное поле. До последнего времени для питания обмотки возбуждения применялись преимущественно специальные генераторы постоянного тока независимого возбуждения, называемые возбудителями В (рис. 1.3, а). Обмотка возбуждения (ОВ) получает питание от другого генератора (параллельного возбуждения), называемого подвозбудителем (ПВ). Ротор синхронного генератора, возбудителя и подвозбудителя располагаются на общем валу и вращаются одновременно. При этом ток в обмотку возбуждения синхронного генератора поступает через контактные кольца и щётки. Для регулирования тока возбуждения применяют регулировочные реостаты, включаемые в цепи возбуждения возбудителя r1 и подвозбудителя r2 . В синхронных генераторах средней и большой мощности процесс регулирования тока возбуждения автоматизируют.
В синхронных генераторах получила применение также бесконтактная система электромагнитного возбуждения, при которой синхронный генератор не имеет контактных колец на роторе. В качестве возбудителя в этом случае применяют обращенный синхронный генератор переменного тока В (рис. 1.3, б). Трехфазная обмотка 2 возбудителя, в которой наводится переменная ЭДС, расположена на роторе и вращается вместе с обмоткой возбуждения синхронного генератора и их электрическое соединение осуществляется через вращающийся выпрямитель 3 непосредственно, без контактных колец и щёток. Питание постоянным током обмотки возбуждения 1 возбудителя В осуществляется от подвозбудителя ПВ – генератора постоянного тока. Отсутствие скользящих контактов в цепи возбуждения синхронного генератора позволяет повысить её эксплуатационную надёжность и увеличить КПД.
В синхронных генераторах, в этом числе гидрогенераторах, получил распространение принцип самовозбуждения (рис. 1.4, а), когда энергия переменного тока, необходимая для возбуждения, отбирается от обмотки статора синхронного генератора и через понижающий трансформатор и выпрямительный полупроводниковый преобразователь ПП преобразуется в энергию постоянного тока. Принцип самовозбуждения основан на том, что первоначальное возбуждение генератора происходит за счёт остаточного магнетизма машины.
На рис. 1.4, б представлена структурная схема автоматической системы самовозбуждения синхронного генератора (СГ) с выпрямительным трансформатором (ВТ) и тиристорным преобразователем (ТП), через которые электроэнергия переменного тока из цепи статора СГ после преобразования в постоянный ток подаётся в обмотку возбуждения. Управление тиристорным преобразователем осуществляется посредством автоматического регулятора возбуждения АРВ, на вход которого поступают сигналы напряжения на входе СГ (через трансформатор напряжения ТН) и тока нагрузки СГ (от трансформатора тока ТТ). Схема содержит блок защиты (БЗ), обеспечивающий защиту обмотки возбуждения (ОВ) от перенапряжения и токовой перегрузки.
Мощность, затрачиваемая на возбуждение, обычно составляет от 0,2 до 5 % полезной мощности (меньшее значение относится к генераторам большой мощности).
В генераторах малой мощности находит применение принцип возбуждения постоянными магнитами, расположенными на роторе машины. Такой способ возбуждения даёт возможность избавить генератор от обмотки возбуждения. В результате конструкция генератора существенно упрощается, становится более экономичной и надёжной. Однако, из-за высокой стоимости материалов для изготовления постоянных магнитов с большим запасом магнитной энергии и сложности их обработки применение возбуждения постоянными магнитами ограничено машинами мощностью не более нескольких киловатт.
Синхронные генераторы составляют основу электроэнергетики, так как практически вся электроэнергия во всём мире вырабатывается посредством синхронных турбо- или гидрогенераторов.
Так же синхронные генераторы находят широкое применение в составе стационарных и передвижных электроустановок или станций в комплекте с дизельными и бензиновыми двигателями.
Асинхронный генератор. Отличия от синхронного
Асинхронные генераторы принципиально отличаются от синхронных отсутствием жесткой зависимости между частотой вращения ротора и вырабатываемой ЭДС. Разницу между этими частотами характеризует коэффициент s — скольжение.
здесь:
n — частота вращения магнитного поля (частота ЭДС).
n r — частота вращения ротора.
Более подробно с расчётом скольжения и частоты можно ознакомиться в статье: асинхронные генераторы. Частота.
В обычном режиме электромагнитное поле асинхронного генератора под нагрузкой оказывает тормозной момент на вращения ротора, следовательно, частота изменения магнитного поля меньше, поэтому скольжение будет отрицательным. К генераторам, работающим в области положительных скольжений, можно отнести асинхронные тахогенераторы и преобразователи частоты.
Асинхронные генераторы в зависимости от конкретных условий применения выполняются с короткозамкнутым, фазным или полым ротором. Источниками формирования необходимой энергии возбуждения ротора могут являться статические конденсаторы или вентильные преобразователи с искусственной коммутацией вентилей.
Асинхронные генераторы можно классифицировать по способу возбуждения, характеру выходной частоты (изменяющаяся, постоянная), способу стабилизации напряжения, рабочим областям скольжения, конструктивному выполнению и числу фаз.
Последние два признака характеризуют конструктивные особенности генераторов.
Характер выходной частоты и методы стабилизации напряжения в значительной степени обусловлены способом образования магнитного потока.
Классификация по способу возбуждения является основной.
Можно рассмотреть генераторы с самовозбуждением и с независимым возбуждением.
Самовозбуждение в асинхронных генераторах может быть организовано:
а) с помощью конденсаторов, включенных в цепь статора или ротора или одновременно в первичную и вторичную цепи;
б) посредством вентильных преобразователей с естественной и искусственной коммутацией вентилей.
Независимое возбуждение может осуществляться от внешнего источника переменного напряжения.
По характеру частоты самовозбуждающиеся генераторы разделяются на две группы. К первой из них относятся источники практически постоянной (или постоянной) частоты, ко второй переменной (регулируемой) частоты. Последние применяются для питания асинхронных двигателей с плавным изменением частоты вращения.
Более подробно рассмотреть принцип работы и конструктивные особенности асинхронных генераторов планируется рассмотреть в отдельных публикациях.
Асинхронные генераторы не требуют в конструкции сложных узлов для организации возбуждения постоянным током или применения дорогостоящих материалов с большим запасом магнитной энергии, поэтому находят широкое применение у пользователей передвижных электроустановок по причине своей простоты и неприхотливости в обслуживании. Используются для питания устройств, не требующих жёсткой привязки к частоте тока.
Техническим достоинством асинхронных генераторов можно признать их устойчивость к перегрузкам и коротким замыканиям.
С некоторой информацией по мобильным генераторным установкам можно ознакомиться на странице:
Дизель-генераторы.
Асинхронный генератор. Характеристики.
Асинхронный генератор. Стабилизация.
Замечания и предложения принимаются и приветствуются!
Онлайн помощник домашнего мастера
Асинхронный генератор – основные элементы, принцип работы и расчет базовых параметров. Инструкция как переделать из двигателя своими руками!
Асинхронным (индукционным) генератором называется электротехническое изделие, работающее на переменном токе и обладающее способностью воспроизводить электрическую энергию. Отличительной чертой является высокая частота вращения ротора.
Данный параметр значительно выше, чем у синхронного аналога. Работа асинхронной машины базируется на её способности преобразовывать энергию механического типа в электроэнергию. Допустимое напряжение – 220В или 380В.
Краткое содержимое статьи:
Области применения
Сегодня сфера применения асинхронных устройств довольно широкая. Их применяют:
- в транспортной промышленности (система торможения);
- в сельхозработах (агрегаты, не требующие мощностной компенсации);
- в быту (моторы автономных водяных или ветровых электростанций);
- для сварочных работ;
- чтобы обеспечить бесперебойное питание наиболее важной техники, например медицинских холодильников.
В теории вполне допустимо переоборудовать в генератор асинхронного типа асинхронный двигатель. Чтобы это осуществить, нужно:
- иметь чёткое понятие об электрическом токе;
- тщательно изучить физику получения электроэнергии из энергии механической;
- обеспечить требуемые условия для возникновения тока на статорной обмотке.
Специфика устройства и принцип действия
Основные элементы устройства асинхронных генераторов – это ротор и статор. Ротор представляет собой короткозамкнутую деталь, при вращении которой образуется электродвижущая сила. Для изготовления токопроводящих поверхностей используют алюминий. Статор оборудован трёхфазной или однофазной обмоткой, размещённой в форме звезды.
Как показано на фото генератора асинхронного типа, другими составляющими являются:
- ввод кабеля (по нему выводится электрический ток);
- температурный датчик (нужен, чтобы отслеживать нагрев обмотки);
- фланцы (назначение – более плотное соединение элементов);
- контактные кольца (не связаны друг с другом);
- регулирующие щётки (они запускают реостат, позволяющий регулировать роторное сопротивление);
- короткозамыкательное устройство (используется, если надо принудительно остановить реостат).
В основе принципа работы асинхронных генераторов лежит переработка энергии механического типа в электрическую. Движение лопаток ротора приводит к возникновению электротока на его поверхности.
В результате образуется магнитное поле, наводящее на статор одно- и трёхфазное напряжение. Регулировать вырабатываемую энергию можно посредством изменения нагрузки на статорные обмотки.
Особенности схемы
Схема генератора из асинхронного двигателя довольно простая. Она не требует особенных навыков. При запуске разработки без подключения к электросети начнётся вращение. Выйдя на соответствующую частоту, обмотка статора начнёт вырабатывать ток.
Если установить отдельную батарею из нескольких конденсаторов, то результатом подобной манипуляции станет опережающий емкостный ток.
На параметры создаваемой энергии оказывают влияние технические характеристики генератора и емкость используемых конденсаторов.
Виды асинхронных моторов
Принято выделять следующие виды асинхронных генераторов:
С короткозамкнутым ротором. Устройство подобного типа состоит из стационарного статора и вращающегося ротора. Сердечники – стальные. В пазах сердечника статора размещён изолированный провод. В пазах сердечника ротора установлена стержневая обмотка. Обмотку ротора замыкают особые кольца-перемычки.
С фазным ротором. Такое изделие имеет достаточно высокую стоимость. Требует специализированное обслуживание. Конструкция аналогична конструкции генератора с ротором короткозамкнутого типа. Отличие заключается в использовании изолированного провода в качестве обмоток.
Концы обмотки прикреплены к размещённым на валу специальным кольцам. По ним проходят щётки, объединяющие провод с реостатом. Генератор асинхронного типа с фазным ротором менее надёжен.
Преобразуем двигатель в генератор
Как говорилось ранее, допустимо использовать асинхронный двигатель в качестве генератора. Рассмотрим небольшой мастер-класс.
Вам потребуется двигатель от обычной стиральной машинки.
- Сделаем меньше толщину сердечника и проделаем несколько несквозных отверстий.
- Вырежем из листовой стали полосу, размер которой равен размеру ротора.
- Займёмся монтажом неодимовых магнитов (не меньше 8 шт.). Закрепим их клеем.
- Закроем ротор при помощи листа плотной бумаги и закрепим края липкой лентой.
- Роторный торец промажем мастичным составом в целях герметизации.
- Свободное место между магнитами заполним смолой.
- После того, как эпоксидка застынет, бумажный слой убираем.
- Отшлифовываем ротор при помощи наждачной бумаги.
- При помощи двух проводков подсоединяем устройство к рабочей обмотке, убираем ненужные проводники.
- При желании заменяем подшипники.
Устанавливаем выпрямитель тока и монтируем контроллер зарядки. Наш генератор из асинхронного двигателя своими руками готов!
Более подробную инструкцию как сделать генератор асинхронного типа можно найти в Интернете.
Синхронные и асинхронные генераторы
Бензиновые и дизельные электростанции состоят из двух основных блоков – двигателя и генератора, объединенных на одной раме.
В бытовых электростанциях в большинстве случаев используются двигатели внутреннего сгорания. В двигателе внутреннего сгорания энергия сгорания топлива преобразуется в механическую работу (вращение вала). Бытовые газовые электростанции представляют собой бензиновые, адаптированные для работы на газе.
Генераторы преобразуют механическую энергию в электрическую.
Бывают двух типов:
- Синхронные
- Асинхронные.
Рассмотрим плюсы и минусы каждого из них.
Но сначала, Принцип работы электрического генератора
Принцип действия любого генератора основан на явлении электромагнитной индукции. Преобразование механической энергии двигателя (вращательной) в энергию электрического тока поясняет следующая картинка:
Если в однородном магнитном поле равномерно вращается рамка, то в ней возникает, переменная Э.Д.С. (электродвижущая сила), частота которой равна частоте вращения рамки. Будем ли мы вращать рамку в магнитном поле, или магнитное поле вокруг рамки, либо магнитное поле внутри рамки, результат будет один – Э.Д.С. , изменяющаяся по гармоническому закону.
Видео, принцип работы электрического генератора тока.
Отличительные особенности синхронных и асинхронных генераторов:
Синхронный генератор
Это синхронная электрическая машина, работающая в режиме генератора в которой частота вращения магнитного поля статора равна частоте вращения ротора. Ротор состоит из обмоток при подаче напряжения на которые появляется магнитное поле с магнитными полюсами и создает вращающееся магнитное поле, которое пересекая обмотку статора, наводит в ней ЭДС.
В зависимости от типа обмотки, ротор может быть короткозамкнутым либо фазным. Вращающееся магнитное поле, созданное вспомогательной обмоткой статора, индуцирует на роторе магнитное поле, которое вращаясь вместе с ротором, наводит ЭДС в рабочей обмотке статора, так же как и в асинхронном генераторе
Ротор, при запуске электростанции , создает слабое магнитное поле, но с увеличением оборотов, увеличивается и ЭДС в обмотке возбуждения. Напряжение с этой обмотки через блок автоматической регулировки (AVR) поступает на ротор, контролируя выходное напряжение за счет изменения магнитного поля.
Например, подключенная индуктивная нагрузка размагничивает генератор и снижает напряжение, а при подключении емкостной нагрузки происходит подмагничивание генератора и повышение напряжения. Это называется “реакцией якоря”.
Для обеспечения стабильности выходного напряжения необходимо изменять магнитное поле ротора путем регулирования тока в его обмотке ( для синхронных генераторов), что и обеспечивается блоком AVR ( Автоматический вольт регулятор).
Благодаря такому способу регулировки, вне зависимости от изменения тока нагрузки и оборотов двигателя электростанции стабильность выходного напряжения генератора остается очень высокой, на уровне ±1%.
Преимуществом синхронных генераторов является высокая стабильность выходного напряжения, а недостатком – возможность перегрузки по току, так как при завышенной нагрузке, регулятор может чрезмерно повысить ток в обмотке ротора, что может привести к выходу из строя.
Еще к недостаткам синхронных генераторов можно отнести наличие щеточного узла, который рано или поздно придется обслуживать, правда в настоящее время этот недостаток практически устранен.Так как, современные синхронные генераторы являются в большинстве своем без щеточными, их ротор не имеет коллекторно-щеточного узла, а ток в обмотке возбуждения (в роторе) индуцируется за счет переменного магнитного поля, создаваемого основной и/или дополнительной обмоткой статора.
Асинхронный генератор
Асинхронная электрическая машина работающая в режиме торможения, ротор которой вращается с опережением, но в том же направлении что и магнитное поле статора.
В асинхронном генераторе ротор выполнен виде постоянного магнита или электромагнита. Число полюсов ротора может быть два, четыре и т.д., но кратно двум.
В бытовых бензиновых и дизельных электростанциях используется, как правило, ротор с двумя полюсами, чем и обусловлена частота вращения двигателя электростанции 3000 об/мин. В дизельных электростанциях с частотой вращения 1500 об/мин используется четырехполюсной асинхронный генератор.
Вращающееся магнитное поле остается всегда неизменным и не регулируемым, вследствие чего напряжение и частота на выходе генератора зависит от частоты оборотов ротора и следовательно от стабильности вращения двигателя электростанции.
Несмотря на простоту обслуживания, малую чувствительность к короткому замыканию и невысокую стоимость, асинхронные генераторы применяются достаточно редко, так как имеются ряд недостатков: высокая себестоимость, зависящий от активно-индуктивного характера нагрузки; ненадежность работы в экстремальных нагрузках; зависимость выходного напряжения и частоты тока от устойчивости работы двигателя и т.д.
Асинхронный электрический генератор.Возбуждение асинхронного генератора
Принцип работы асинхронного электрического генератора
Во всех случаях асинхронная электрическая машина потребляет из сети реактивную мощность, необходимую для создания магнитного поля. При автономной работе асинхронной электрической машины в генераторном режиме магнитное поле в воздушном зазоре создается в результате взаимодействия магнитной движущийся силы магнитной силы всех фаз и магнитной движущийся силы обмотки ротора. Характер распределения магнитной движущийся силы точно такой же, как и в асинхронном электрическом двигателе(АД) , он также определяет характер распределения магнитного поля на полюсном делении. В асинхронном генераторе этот поток весьма близок к синусоидальному и при вращении ротора индуцирует в фазах статора и в обмотке ротора ЭДС Е| и Е2, которые можно принять синусоидальными.
В отличие от асинхронного электрического двигателя в асинхронном электрическом генераторе в данном случае ЭДС Е1 и Е2 являются активными, поддерживают ток в соответствующих цепях и в нагрузке, подключенной к выходным зажимам.
В установившемся режиме работы основные соотношения для асинхронного электрического генератора с самовозбуждением определяются из схемы замещения. Основное отличие только в том, что к ее выводам подключено сопротивление нагрузки 2Н = Кн +]ХН и конденсаторы для обеспечения самовозбуждения и регулирования напряжения при изменении нагрузки асинхронного электрического генератора с сопротивлениями Хс = 1/соС и Хск = 1/соСк.
Как видно, напряжение при работе под нагрузкой изменяется как за счет падения напряжения на сопротивлениях r1 и х1, так и за счет снижения магнитного потока Фот , связанного с размагничивающим действием магнитной движущийся силы ротора. Если магнитная цепь асинхронного электрического генератора выполнена с достаточно сильным насыщением, то поток Фот остается почти постоянным и напряжение U1 при увеличении нагрузки изменяется в меньшей степени, а его внешняя характеристика получается более «жесткой».
Способы регулирования напряжения автономного асинхронного генератора. Самовозбуждение асинхронного электрического генератора
Особенности самовозбуждения асинхронного генератора. Асинхронный элетродвигатель, подключенный к трехфазной сети переменного тока, при частоте вращения ротора, больше, чем частота вращения поля статора, переходит в генераторный режим и отдает в сеть активную мощность, потребляя из сети реактивную мощность, необходимую для создания вращающегося магнитного поля взаимной индукции. Тормозной электромагнитный момент, действующий на роторе, преодолевается приводным двигателем — дизелем, гидротурбиной, ветродвигателем и т.п.
Для возбуждения асинхронного электрогенератора необходимо наличие источника реактивной мощности — батареи конденсаторов или синхронного компенсатора, подключенных к обмотке статора. При этом почти естественной представляется работа асинхронного генератора при сверх синхронном скольжении, когда скорость вращения ротора выше скорости вращающегося магнитного поля. Однако практически асинхронный генератор может возбуждаться при частоте вращения ротора, значительно меньшей синхронной, причем значения напряжения и частоты тока оказываются пропорциональными частоте вращения ротора и, кроме того, зависящими от схемы соединения конденсаторов. Так, в эксперименте ( по опытным данным гл. инж. Штефана А.М. (НК ЭМЗ, г. Н.Каховка)) конденсаторный асинхронный мотор-редуктор типа АИРУ112-М2 при соединении батареи конденсаторов емкостью 3×120 мкФ в «звезду» возбуждается при скорости пр= 2133 об/мин с напряжением ГГф = 60 В и током фазы 1ф = 0,8 А, а при соединении тех же конденсаторов в «треугольник» напряжение =52 В и ток 1ф = 1,4А возникают при скорости пр= 1265 об/мин.
Весьма интересное явление наблюдалось в асинхронном генераторе серии А ИМН 90-L4 при включении емкости 40 мкФ только в одну из трех фаз. В этом случае возбуждение асинхронного генератора наступило при скорости п2 = 1369 об/мин с параметрами U1ф = =209 В, I = 1,29 А, Г = 44 Гц. При емкости С = 60 мкФ, включенной в одну из фаз, параметры возбуждения асинхронного электрогенератора были равны: п2 — 1300 об/мин, U = 500 В, I = 6,4 А, Г = 124 Гц. При увеличении частоты вращения ротора до синхронной (1500 об/мин) наблюдалось увеличение частоты тока до 400Гц. В некоторых случаях, наоборот, не удавалось добиться устойчивого возбуждения асинхронного генератора даже при сверх синхронной частоте вращения ротора. Например, для намагниченных гладких стального массивного и шихтованного роторов самовозбуждения не возникало при любых величинах присоединенной емкости.
Для массивного стального ротора с тонким экраном из меди, а также для массивного стального зубчатого ротора с торцовыми медными концами АГ устойчиво возбуждается при расчетном значении емкости. Асинхронная машина с гладкими роторами из меди или алюминия возбуждается без каких-либо дополнительных воздействий извне.
Таким образом, физические процессы самовозбуждения асинхронного генератора с полным основанием можно отнести к недостаточно изученным, что связано, по нашему мнению, с преимущественным использованием до настоящего времени АМ в качестве двигателя, с разработкой для него теории, расчетных методик и проектирования, а для генераторного режима эти машины проектировались и выпускались достаточно редко.
В маломощных системах генерирования применяются, как правило, АМ, предназначенные для работы в двигательном режиме с конденсаторным возбуждением.
Описание процесса самовозбуждения на принципе остаточной намагниченности магнитной цепи.
Современные работы по самовозбуждению АГ с помощью статических конденсаторов построены на трех подходах. Один из них базируется на принципе остаточной намагниченности магнитной цепи машины, начальная ЭДС от которой затем усиливается емкостным током в статоре . Рассмотрим этот подход.
Автономная работа асинхронного генератора в режиме самовозбуждения от потока остаточного намагничивания возможна, если к выводам обмотки статора подключить конденсаторы, необходимые как источник реактивной мощности от для возбуждения магнитного поля асинхронного электрогенератора, а при его работе на активно-индуктивную нагрузку эти конденсаторы должны служить источником реактивной мощности 0Н и для нагрузки.