Что такое электромашинные генераторы

Электрическим генератором называется машина или установка, предназначенная для преобразования энергии неэлектрической — в электрическую: механической — в электрическую, химическо

Что такое электромашинные генераторы

Виды электрических генераторов и принципы их работы

Электрическим генератором называется машина или установка, предназначенная для преобразования энергии неэлектрической — в электрическую: механической — в электрическую, химической — в электрическую, тепловой — в электрическую и т. д. Сегодня в основном, произнося слово «генератор», мы имеем ввиду преобразователь механической энергии — в электрическую.

Это может быть дизельный или бензиновый переносной генератор, генератор атомной электростанции, автомобильный генератор, самодельный генератор из асинхронного электродвигателя, или тихоходный генератор для маломощного ветряка. В конце статьи мы рассмотрим в качестве примера два наиболее распространенных генератора, но сначала поговорим о принципах их работы.

Так или иначе, с физической точки зрения принцип работы каждого из механических генераторов — один и тот же: явление электромагнитной индукции, когда при пересечении линиями магнитного поля проводника — в этом проводнике возникает ЭДС индукции. Источниками силы, приводящей к взаимному перемещению проводника и магнитного поля, могут быть различные процессы, однако в результате от генератора всегда нужно получить ЭДС и ток для питания нагрузки.

Принцип работы электрического генератора — Закон Фарадея

Принцип работы электрического генератора был открыт в далеком 1831 году английским физиком Майклом Фарадеем. Позже этот принцип назвали законом Фарадея. Он заключается в том, что при пересечении проводником перпендикулярно магнитного поля, на концах этого проводника возникает разность потенциалов.

Первый генератор был построен самим Фарадеем согласно открытому им принципу, это был «диск Фарадея» — униполярный генератор, в котором медный диск вращался между полюсами подковообразного магнита. Устройство давало значительный ток при незначительном напряжении.

Позже было установлено, что отдельные изолированные проводники в генераторах проявляют себя гораздо эффективнее с практической точки зрения, чем сплошной проводящий диск. И в современных генераторах применяются теперь именно проволочные обмотки статора (в простейшем демонстрационном случае — виток из проволоки).

Генератор переменного тока

В подавляющем своем большинстве современные генераторы — это синхронные генераторы переменного тока. У них на статоре располагается якорная обмотка, от которой и отводится генерируемая электрическая энергия. На роторе располагается обмотка возбуждения, на которую через пару контактных колец подается постоянный ток, чтобы получить вращающееся магнитное поле от вращающегося ротора.

За счет явления электромагнитной индукции, при вращении ротора от внешнего привода (например от ДВС), его магнитный поток пересекает поочередно каждую из фаз обмотки статора, и таким образом наводит в них ЭДС.

Чаще всего фаз три, они смещены физически на якоре друг относительно друга на 120 градусов, так получается трехфазный синусоидальный ток. Фазы можно соединить по схеме «звезда» либо «треугольник», чтобы получить стандартное сетевое напряжение.

Частота синусоидальной ЭДС f пропорциональна частоте вращения ротора: f = np/60, где — p — число пар магнитных плюсов ротора, n – количество оборотов ротора в минуту. Обычно максимальная скорость вращения ротора — 3000 оборотов в минуту. Если подключить к обмоткам статора такого синхронного генератора трехфазный выпрямитель, то получится генератор постоянного тока (так работают, кстати, все автомобильные генераторы).

Упрощенная схема трехфазного генератора переменного тока:

Трехмашинный синхронный генератор

Конечно, у классического синхронного генератора есть один серьезный минус — на роторе располагаются контактные кольца и щетки, прилегающие к ним. Щетки искрят и изнашиваются из-за трения и электрической эрозии. Во взрывоопасной среде это не допустимо. Поэтому в авиации и в дизель-генераторах более распространены бесконтактные синхронные генераторы, в частности — трехмашинные.

У трехмашинных устройств в одном корпусе установлены три машины: предвозбудитель, возбудитель и генератор — на общем валу. Предвозбудитель — это синхронный генератор, он возбуждается от постоянных магнитов на валу, генерируемое им напряжение подается на обмотку статора возбудителя.

Статор возбудителя действует на обмотку на роторе, соединенную с закрепленным на ней трехфазным выпрямителем, от которого и питается основная обмотка возбуждения генератора. Генератор генерирует в своем статоре ток.

Газовые, дизельные и бензиновые переносные генераторы

Сегодня очень распространены в домашних хозяйствах дизельные, газовые и бензиновые генераторы, которые в качестве приводных двигателей используют ДВС — двигатель внутреннего сгорания, передающий механическое вращение на ротор генератора.

У генераторов на жидком топливе имеются топливные баки, газовым генераторам — необходимо подавать топливо через трубопровод, чтобы затем газ был подан в карбюратор, где превратится в составную часть топливной смеси.

Во всех случаях топливная смесь сжигается в поршневой системе, приводя во вращение коленвал. Это похоже на работу автомобильного двигателя. Коленвал вращает ротор бесконтактного синхронного генератора (альтернатора).

Лучшие инверторные генераторы домашних электростанций имеют встроенный аккумулятор для компенсации перепадов и систему двойного преобразования, у таких устройств переменное напряжение получается более стабилизированным.

Автомобильные генераторы

Еще один пример генератора переменного тока — самый распространенный в мире вид генератора — автомобильный генератор. Данный генератор традиционно содержит обмотку возбуждения с контактными кольцами на роторе и трехфазную обмотку статора с выпрямителем.

Встроенный электронный регулятор удерживает напряжение в допустимых для автомобильного аккумулятора пределах. Автомобильный генератор — высокооборотный генератор, его обороты могут достигать 9000 в минуту.

Хотя изначально ток получается переменным (полюсные наконечники ротора поочередно и в разной полярности пересекают своими магнитными потоками три фазы обмотки статора), затем он выпрямляется диодами и превращается в постоянный, пригодный для зарядки аккумулятора.

Необычные конструкции электрических генераторов:

Как устроен генератор переменного тока — назначение и принцип действия

Люди пользуются энергией электрического тока практически во всех сферах своей деятельности. Сейчас нелегко представить жизнь без электричества, которое с помощью специального оборудования преобразуется из механической энергии. Рассмотрим подробнее, как происходит этот процесс, и как устроены современные генераторы.

Превращение механической энергии в электрическую

Любой генератор работает по принципу магнитной индукции. Самый простой генератор переменного тока можно представить, как катушку, которая вращается в магнитном поле. Также есть вариант, при котором катушка остается неподвижной, но магнитное поле только её пересекает. Именно во время этого движения и вырабатывается переменный ток. По такому принципу функционирует огромное количество генераторов во всем мире, объединенных в систему электроснабжения.

Устройство и конструкция генератора переменного тока

Стандартный электрогенератор имеет следующие компоненты:

  • Раму, к которой закреплен статор с электромагнитными полюсами. Изготовлена она из металла и должна выполнять защитную функцию всех элементов механизма.
  • Статор, к которому крепится обмотка. Изготавливается он из ферромагнитной стали.
  • Ротор – подвижный элемент, на сердечнике которого располагается обмотка, образующая электрический ток.
  • Узел коммутации, который отводит электричество с ротора. Представляет собой систему подвижных токопроводящих колец.

В зависимости от назначения, генератор имеет определенные особенности конструкции, но существуют два компонента, которыми обладает любое устройство, конвертирующее механическую энергию в электричество:

  1. Ротор – подвижная цельная деталь из железа;
  2. Статор – неподвижный элемент, который изготовлен из железных листов. Внутри него есть пазы, внутри которых располагается проволочная обмотка.

Для получения большей магнитной индукции, между этими элементами должно быть небольшое расстояние. По своей конструкции генераторы бывают:

  • С подвижным якорем и статическим магнитным полем.
  • С неподвижным якорем и вращающимся магнитным полем.

В настоящее время более распространено оборудование с вращающимися магнитными полями, т.к. значительно удобнее снимать электрический ток со статора, чем с ротора. Устройство генератора имеет немало сходств с конструкцией электродвигателя.

Схема генератора переменного тока

Принцип работы электрогенератора: в тот момент, когда половина обмотки находится на одном из полюсов, а другая на противоположном, ток движется по цепи от минимального до максимального значения и обратно.

Классификация и виды агрегатов

Все электрогенераторы можно распределить по критерию работы и по типу топлива, из которого и образуется электроэнергия. Все генераторы делятся на однофазные (выход напряжения 220 Вольт, частота 50 Гц) и трехфазные (380 Вольт с частотой 50 Гц), а также по принципу работы и типу топлива, которое конвертируется в электричество. Ещё генераторы могут использоваться в разных сферах, что определяет их технические характеристики.

По принципу работы

Разделяют асинхронные и синхронные генераторы переменного тока.

Асинхронный

У асинхронных электрогенераторов нет точной зависимости ЭДС от частоты вращения ротора, но здесь работает такой термин, как «скольжение S». Оно определяет эту разницу. Величина скольжения вычисляется, поэтому некоторое влияние элементов генератора в электромеханическом процессе асинхронного двигателя все же есть.

Синхронный

Такой генератор обладает физической зависимостью от вращательного движения ротора к генерируемой частоте электроэнергии. В таком устройстве ротор является электромагнитом, состоящим из сердечников, обмоток и полюсов. Статором являются катушки, которые соединены по принципу звезды, и имеющими общую точку – ноль. Именно в них вырабатывается электрический ток.
Ротор приводит в движение посторонняя сила подвижных элементов (турбин), которые двигаются синхронно. Возбуждение такого генератора переменного тока может быть, как контактным, так и бесконтактным.

Читайте также  Щетки генератора nissan maxima a32

По типу топлива двигателя

Удаленность от электросети с появлением генераторов больше не становится препятствием для пользования электроприборами.

Газовый генератор

В качестве топлива здесь используется газ, во время сгорания которого и вырабатывается механическая энергия, которая затем заменяется электрическим током. Преимущества использования газогенератора:

  • Безопасность для окружающей среды, ведь газ при сгорании не выделяет вредных элементов, копоти и токсичных продуктов распада;
  • Экономически это очень выгодно – сжигать дешевый газ. В сравнении с бензином, это обойдется значительно дешевле;
  • Подача топлива осуществляется автоматически. Бензин и дизельное топливо требуется по мере необходимости подливать, а газовый генератор обычно подключают к системе газоснабжения;
  • Благодаря автоматике, аппарат приходит в действие самостоятельно, но для этого он должен располагаться в теплом помещении.

Дизельный генератор

Эту категорию составляют преимущественно однофазные агрегаты мощностью 5 кВт. 220 Вольт и частота 50 Гц являются стандартными для бытовой техники, поэтому дизельный аппарат неплохо справляется со стандартной нагрузкой. Как можно догадаться, для его работы требуется дизельное топливо. Почему стоит выбрать именно дизельный электрогенератор:

  • Относительная дешевизна топлива;
  • Автоматика, позволяющая автоматически запускать генератор при прекращении подачи электрического тока;
  • Высокий уровень противопожарной безопасности;
  • В течении длительного периода времени агрегат на дизеле способен проработать без сбоев;
  • Внушительная долговечность – некоторые модели способны работать в общей сумме 4 года непрерывной эксплуатации.

Бензогенератор

Такие аппараты довольно востребованы как бытовое оборудование. Несмотря на то, что бензин дороже газа и дизеля, такие генераторы имеют немало сильных сторон:

  • Малые габариты при высокой мощности;
  • Просты в эксплуатации: большинство моделей можно запустить вручную, а более мощные генераторы оснащены стартером. Регулируется напряжение под определенную нагрузку при помощи специального винта;
  • В случае перегрузки генератора автоматически срабатывает защита;
  • Просты в обслуживании и ремонте;
  • Во время работы не издают много шума;
  • Можно применять и в помещении, и на улице, но следует защищать от попадания влаги.

Что такое генератор

Что такое генератор? Это электромеханический прибор, который преобразует кинетическую энергию в электрический переменный ток. Основой энергетического преобразования является вращающееся магнитное поле. Понятие генератора включает в себя массу устройств различного принципа действия. Это гальванические, электростатические приборы, солнечные батареи, турбины электростанций и пр. В статье пойдёт речь именно о генераторах электрической энергии.

Принцип работы электрогенератора

В основу работы агрегатов, преобразующих энергию, положен закон Фарадея об электродвижущей силе (ЭДС). Учёный открыл закон, который объяснил природу появления тока в металлическом контуре (рамке), вращающемуся в однородном магнитном поле (явление индукции). Ток возникает также при вращении постоянных магнитов вокруг металлического контура.

Простейшая схема генератора представляется в виде вращающейся металлической рамки между двумя разно полюсными магнитами. На оси рамки помещают токосъёмные кольца, которые получают заряд электрического тока и передают его дальше по проводникам.

В действительности статор (неподвижная часть прибора) состоит из электромагнитов, а ротором служит группа рамных проводников. Устройство представляет обратный электромотор. Электродвигатель поглощает электрический ток и заставляет вращаться ротор. Электрический генератор, преобразовывающий кинематическую энергию механического вращения в ЭДС, называют индукционным генератором.

Классификация генераторов

Классификация преобразователей энергии даёт чёткое понятие – что такое генератор электрического тока. Различают электрические генераторы по следующим признакам:

  • автономность;
  • фазность;
  • режим работы;
  • сфера применения.

Автономность

Главное преимущество, которым обладает электрический генератор, – это его полная независимость от централизованных поставщиков энергии. Автономность электротехнического оборудования бывает стационарной и мобильной.

Стационарные

Обычно это генераторные станции, работающие от дизельных двигателей. Станции используют для электроснабжения потребителей в местах, удалённых от централизованных электрических сетей.

Стационарные генераторные станции необходимы для обеспечения током производственных процессов там, где даже кратковременные перебои поставки электроэнергии недопустимы.

Мобильные

Электрогенераторы мобильного типа выполнены в виде компактных аппаратов, которые можно перемещать в пространстве. Передвижные станции используют для электросварки, местного освещения, снабжения током бытовых электроприборов и многое другое.

Оборудование включает в себя двигатель внутреннего сгорания, работающий на бензине или дизельном топливе. Агрегаты имеют различные габариты. Компактный аппарат может транспортировать один человек. Существуют мобильные агрегаты, которые устанавливаются на специальном автомобильном прицепе.

Фазность

По фазовой структуре электрического потока различают однофазные и трёхфазные агрегаты.

Однофазные

Генераторы, производящие однофазный ток, предназначены в основном для питания бытовых приборов. Чаще всего это мобильные аппараты. Однофазными агрегатами хозяева оснащают свои частные домовладения для бытовых нужд (освещения, питания электротехники и др.).

Трёхфазные

Генераторные источники трёхфазного тока используются для питания силового электрооборудования. В некоторых случаях получаемый трёхфазный ток разделяют по фазам. Таким образом, делают развод электропроводки по всему дому для питания бытовых электроприборов.

Важно! Все ветви фазового разделения должны равняться между собой мощности потребления. Если разница нагрузок будет велика, то генератор быстро выйдет из строя.

Режимы работы

В зависимости от того, в каком режиме эксплуатируются агрегаты, их подразделяют на основные и резервные.

Основные

Аппараты предназначены для работы в постоянном режиме. Мощные электрогенераторы с дизельными двигателями относят к промышленным установкам. Устанавливаются там, где требуется получение электроэнергии круглосуточно.

Резервные

Само название агрегатов говорит о применении их в исключительных случаях – при внезапном отключении централизованного электроснабжения. Генераторы могут включаться в работу при срабатывании реле, реагирующего на исчезновение напряжения в электросети централизованного источника. Резервные аппараты рассчитаны на беспрерывную работу в течение нескольких часов.

Сфера применения

Генераторы изготавливают, рассчитанные на две сферы применения: для быта и производства.

Сейчас торговая сеть предлагает широкий выбор бытовых генераторов. Это однофазные установки, предназначенные для аварийного обеспечения электроэнергией частных домостроений. Также компактные агрегаты используют для питания выносного электрооборудования. Для бытовых электроприборов, использующих цифровую элементную базу важно качество тока. Устройство должно выдавать электроэнергию следующих параметров: 220 В, 1 А, 50 Гц.

Мощные бытовые агрегаты используют для электросварочных работ. Их преимуществом является способность производить ток большой силы для получения электрической дуги.

Обратите внимание! Если в инструкции бытового аппарата производитель не оговаривает применение для электросварки, то его нельзя использовать для сварочных работ. В противном случае генератор выйдет из строя.

Производство

Независимыми мощными стационарными генераторами оснащают цеха промышленных предприятий, жилые районы, строительные объекты, больницы и объёмные общественные здания.

Виды бытовых генераторов

Электротехническая промышленность выпускает бытовые генераторы переменного тока трёх видов:

  • газовые;
  • бензиновые;
  • дизельные.

Газовые

Генераторы газового типа выдают ток низкой себестоимости. Стоимость 1 кВт/ часа составляет 3 рубля. Газовые агрегаты используют как резервные источники электроэнергии. Устройства предназначены для режима кратковременного включения при сбое поставки электрического тока централизованной сетью электроснабжения.

В частных домов используют газовые установки мощностью 5 кВт. Агрегаты оснащены системой автозапуска. При отключении электричества аппарат автоматически включается в работу и восстанавливает напряжение в электросети дома. Генераторы с воздушным охлаждением после 12 часов непрерывной работы требуют перерыва.

Выгодно устанавливать такие преобразователи энергии при центральном газопроводе. Автономное снабжение сжатым природным газом установок связано с рядом условий, таких, как наличие газобаллонного сервиса поставки энергоносителя и технически исправного приёмного оборудования в доме.

Одними из достоинств газовых агрегатов является то, что генераторы работают практически бесшумно, выхлоп продуктов сгорания топлива сведён к 0.

Газовые генераторы устанавливают вне дома. Для обеспечения бесперебойной работы устройства в зимний период помещают в специальные кожухи. Существующие модели – с жидкостным охлаждением, какое допускает их установку внутри дома.

Бензиновые

Бензиновые генераторы в основной своей массе изготавливают мощностью, не превышающей 20 кВт. Устройства используют для аварийного обеспечения электричеством загородных домов, дач, а также для питания ручных электроинструментов, небольших станков и прочее. Генераторы могут поддерживать освещение придомовой территории, автомобильной стоянки и торговых площадей.

Дополнительная информация. Стандартное топливо для агрегатов – это бензин марки АИ-92. Кратковременно можно заливать в бак оборудования бензин АИ-76 и АИ-95.

Бензиновые генераторы переменного тока могут быть мобильными и стационарными. Особо мощные тяжёлые установки оснащают колёсной парой. В зависимости от модели, устройства оснащают ручным запуском или стартером. Для понижения шумности работы двигателя внутреннего сгорания аппарат помещают в звукопоглощающий кожух.

Дизельные

Дизельные генераторы переменного тока представляют устройства, мощность которых достигает до 3 мВт. Агрегаты могут служить постоянными источниками электроэнергии для загородных домов и дач. Автономные дизельные источники переменного электрического тока питают мощное деревообрабатывающее оборудование, станки различного назначения. Дизель-генераторы могут снабжать током целые посёлки.

Дизельные установки изготавливают в стационарном и мобильном варианте. Агрегаты обладают большой шумностью. Поэтому в некоторых случаях их помещают в специальные шумоизоляционные кожухи.

По сравнению с бензиновыми аналогами, дизель-генераторы потребляют топливо в меньшем объёме, которое стоит дешевле, чем бензин. Дорогие модели способны контролировать управление процессом генерации энергии, автоматически включаться в работу при возникновении аварийных ситуаций в сети центрального электроснабжения.

Читайте также  Умирает подшипник в генераторе

Современный рынок электротехники располагает огромным ассортиментом генераторов переменного тока. Модели различных систем питания с большим диапазоном мощности удовлетворят любые требования потребителей.

Видео

Электрический генератор

Основное оборудование электрических станций и подстанций

Электрический генератор — это устройство, в котором неэлектрические виды энергии (механическая, химическая, тепловая) преобразуются в электрическую энергию.

История изобретения генератора электрического тока

Русский ученый Э.Х.Ленц еще в 1833г. указал на обратимость электрических машин: одна и та же машина может работать как электродвигатель, если ее питать током, и может служить генератором электрического тока, если ее ротор привести во вращение каким-либо двигателем, например паровой машиной. В 1838г. Ленц, один из членов комиссии по испытанию действия электрического мотора Якоби, на опыте доказал обратимость электрической машины.

Первый генератор электрического тока, основанный на явлении электромагнитной индукции, был построен в 1832г. парижскими техниками братьями Пиксин. Этим генератором трудно было пользоваться, так как приходилось вращать тяжелый постоянный магнит, чтобы в двух проволочных катушках, укрепленных неподвижно вблизи его полюсов, возникал переменный электрический ток. Генератор был снабжен устройством для выпрямления тока. Стремясь повысить мощность электрических машин, изобретатели увеличивали число магнитов и катушек. Одной из таких машин, построенной в 1843г., был генератор Эмиля Штерера. У этой машины было три сильных подвижных магнита и шесть катушек, вращавшихся от рук вокруг вертикальной оси. Таким образом, на первом этапе развития электромагнитных генераторов тока (до 1851г.) для получения магнитного поля применяли постоянные магниты. На втором этапе (1851-1867гг.) создавались генераторы, у которых для увеличения мощности постоянные магниты были заменены электромагнитами. Их обмотка питалась током от самостоятельного небольшого генератора тока с постоянными магнитами. Подобная машина была создана англичанином Генри Уальдом в 1863г.

При эксплуатации этой машины выяснилось, что генераторы, снабжая электроэнергией потребителя, могут одновременно питать током и собственные магниты. Оказалось, что сердечники электромагнитов сохраняют остаточный магнетизм после выключения тока. Благодаря этому генератор с самовозбуждением дает ток и тогда, когда его запускают из состояния покоя. В 1866-1867гг. ряд изобретателей получили патенты на машины с самовозбуждением.

В 1870г. бельгиец Зеноб Грамм, работавший во Франции, создал генератор, получивший широкое применение в промышленности. В своей динамо-машине он использовал принцип самовозбуждения и усовершенствовал кольцевой якорь, изобретенный еще в 1860 г.А.Пачинотти.

В одной из первых машин Грамма кольцевой якорь, укрепленный на горизонтальном валу, вращался между полюсными наконечниками двух электромагнитов. Якорь приводился во вращение через приводной шкив, обмотки электромагнитов были включены последовательно с обмоткой якоря. Генератор Грамма давал постоянный ток, который отводится с помощью металлических щеток, скользивших по поверхности коллектора. На Венской международной выставке в 1873г. демонстрировались две одинаковые машины Грамма, соединенные проводами длиной 1 км. Одна из машин приводилась в движение от двигателя внутреннего сгорания и служила генератором электрической энергии. Вторая машина получала электрическую энергию по проводам от первой и, работая как двигатель, приводила в движение насос. Это была эффектная демонстрация обратимости электрических машин, открытой Ленцем, и демонстрация принципа передачи энергии на расстояние.

До того, как была открыта связь между электричеством и магнетизмом, использовались электростатические генераторы, которые работали на основе принципов электростатики. Они могли вырабатывать высокое напряжение, но имели маленький ток. Их работа была основана на использовании наэлектризованных ремней, пластин и дисков для переноса электрических зарядов с одного электрода на другой.

Заряды вырабатывались, используя один из двух механизмов:

  • Электростатическую индукцию
  • Трибоэлектрический эффект, при котором электрический заряд возникал из-за механического контакта двух диэлектриков

По причине низкой эффективности и сложностей с изоляцией машин, вырабатывающих высокие напряжения, электростатические генераторы имели низкую мощность и никогда не использовались для выработки электроэнергии в значимых для промышленности масштабах. Примерами доживших до наших дней машин подобного рода являются электрофорная машина и генератор Ван де Граафа.

Принцип работы любого электрического генератора

Принцип работы любого электрического генератора основан на явлении электромагнитной индукции. Электромагнитная индукция преобразовывает механическую энергию двигателя (вращение0 в энергию электрическую. Принцип магнитной индукции: если в однородном магнитном поле В равномерно вращается рамка, то в ней возникает, переменная Э.Д.С., частота которой равна частоте вращения рамки. Будем ли мы вращать рамку в магнитном поле, или магнитное поле вокруг рамки, либо магнитное поле внутри рамки, результат будет один — Э.Д.С., изменяющаяся по гармоническому закону.

Вот теперь и поговорим о асинхронном и синхронном генераторе более подробно.

Синхронный электрогенератор

Синхронный электрогенератор — это синхронная машина, работающая в режиме генератора в которой частота вращения магнитного поля статора равна частоте вращения ротора. Ротор с магнитными полюсами создает вращающееся магнитное поле, которое пересекая обмотку статора, наводит в ней ЭДС. В синхронном генераторе ротор выполнен виде постоянного магнита или электромагнита.

Число полюсов ротора может быть два, четыре и т.д., но кратно двум. В бытовых электростанциях используется, как правило, ротор с двумя полюсами, чем и обусловлена частота вращения двигателя электростанции 3000 об/мин. Ротор, при запуске электростанции, создает слабое магнитное поле, но с увеличением оборотов, увеличивается и ЭДС в обмотке возбуждения. Напряжение с этой обмотки через блок автоматической регулировки (AVR) поступает на ротор, контролируя выходное напряжение за счет изменения магнитного поля. Например, подключенная индуктивная нагрузка размагничивает генератор и снижает напряжение, а при подключении емкостной нагрузки происходит подмагничивание генератора и повышение напряжения. Это называется «реакцией якоря».

Для обеспечения стабильности выходного напряжения необходимо изменять магнитное поле ротора путем регулирования тока в его обмотке, что и обеспечивается блоком AVR. Преимуществом таких генераторов является высокая стабильность выходного напряжения, а недостатком — возможность перегрузки по току, так как при завышенной нагрузке, регулятор может чрезмерно повысить ток в обмотке ротора. Еще к недостаткам синхронного генератора можно отнести наличие щеточного узла, который рано или поздно придется обслуживать. Благодаря такому способу регулировки, вне зависимости от изменения тока нагрузки и оборотов двигателя электростанции стабильность выходного напряжения генератора остается очень высокой, примерно ±1%.

Асинхронный электрогенератор

Асинхронный электрогенератор — асинхронная машина (двигатель) работающая в режиме торможения, ротор которой вращается с опережением, но в том же направлении что и магнитное поле статора. В зависимости от типа обмотки, ротор может быть короткозамкнутым либо фазным.

Вращающееся магнитное поле, созданное вспомогательной обмоткой статора, индуцирует на роторе магнитное поле, которое вращаясь вместе с ротором, наводит ЭДС в рабочей обмотке статора, так же как и в синхронном генераторе. Вращающееся магнитное поле остается всегда неизменным и не регулируемо, вследствие чего напряжение и частота на выходе генератора зависит от частоты оборотов ротора, а следовательно от стабильности работы двигателя электростанции.

Несмотря на простоту обслуживания, малую чувствительность к короткому замыканию и невысокую стоимость, асинхронные генераторы применяются достаточно редко, так как имеются ряд недостатков: асинхронный генератор всегда потребляет намагничивающий ток значительной силы, поэтому для его работы необходим источник реактивной мощности (конденсаторы), зависящий от активно-индуктивного характера нагрузки; ненадежность работы в экстремальных условиях; возбуждение асинхронного генератора зависит от случайных факторов и происходит, как правило, при скорости превышающей или равной синхронной; зависимость выходного напряжения и частоты тока от устойчивости работы двигателя и т.д.

Устройство генератора

Основными частями любого генератора являются: система магнитов (или, чаще всего, электромагнитов), создающих магнитное поле, и система проводников, пересекающих это магнитное поле. При пропускании магнитного поля через катушку магнитный поток принудит свободные электроны сместиться на концы проводника. Подобное смещение отрицательно заряженных частиц становится источником возникновения электродвижущей силы — ЭДС (напряжение). В результате у генератора при вращении его оси идёт постоянное воздействие магнитного потока на обмотки, на которых и возникает ЭДС.

Составные части генератора:

  • коллектор,
  • щетки,
  • магнитные полюса,
  • витки,
  • вал,
  • якорь.

Принцип действия генератора

Принцип действия генератора основан на явлении электромагнитной индукции, когда в проводнике, двигающемся в магнитном поле и пересекающем его магнитные силовые линии, индуктируется ЭДС. Следовательно, такой проводник можно использовать как источник электрической энергии.

Виды генераторов

  • электрогенераторы,
  • бензогенераторы,
  • дизельгенераторы,
  • инверторные генераторы.

Применение

Генераторы используются во многих сферах жизнедеятельности и производства, при различных условиях. Бензогенераторы незаменимы в случае отключения электричества в небольших загородных домах и дачах. Кроме того, их удобно применять в тех местах, где нет электроэнергии (отдаленные районы, горы, леса). Дизельные генераторы применяется в качестве основного или резервного источника электропитания. Инверторные генераторы незаменимы как источник дополнительного питания для электронного оборудования. Такие электростанции исспользуются организациями, использующими различную электронную технику.

Читайте также  Что такое подкова в генераторе

Электрические машины

В качестве энергоносителя в электрической машине может быть использовано как магнитное, так и электрическое поле. Машины, в которых для преобразования энергии используется магнитное поле, называются индуктивными, а те, в которых используется электрическое поле, — емкостными. Возможно также совместное использование магнитного и электрического полей. Такие машины называются индуктивно-емкостными.

На практике наибольшее распространение получили индуктивные машины.

Принято различать электромеханические преобразователи в зависимости от цели преобразования энергии на:

  • генераторы — источники электрической энергии;
  • электродвигатели — источники механической энергии;
  • специальные электрические машины — электромеханические преобразователи с более сложным целевым назначением

Области применения электрических машин

Современные электрические машины имеют самое разнообразное конструктивное исполнение и могут реализовывать различные роды напряжения и тока, а также различные виды движения — вращательное, колебательное, линейное и т.д. Диапазон мощностей современных электрических машин составляет 10 -17 — 10 9 Вт. На рисунке 1 показаны области распространения и зоны использования емкостных (график 1), индуктивно-емкостных (график 2) и индуктивных (график 3) электрических машин. Электрическая машина является весьма экономичным преобразователем энергии.


Рисунок 1 – Области распространения электрических машин

Для управления современными электрическими машинами используются сложные электронные системы, которые конструктивно объединяются с электромеханическим преобразователем и образуют так называемую электромеханотронную систему, выступающую как единый технический комплекс. Все это существенно расширяет функциональные возможности электрических машин и обеспечивает их широкое внедрение во все сферы производственной и бытовой деятельности человечества [1].

Основополагающие законы электромеханического преобразования энергии в индуктивных машинах

Закон Ампера

Согласно закону, установленному Ампером, на проводник с током в магнитном поле действует сила

  • где F – сила, Н,
  • I – сила тока, А,
  • – длина проводника, м,
  • B — магнитная индукция, Тл,
  • — угол между направлением тока и вектором магнитной индукции, град.

Направление этой силы определяется по правилу «левой руки».

Закон электромагнитной индукции Фарадея

Открытие электромагнитной индукции в 1831 году Фарадеем — одно из фундаментальных открытий в электродинамики. Максвеллу принадлежит следующая углубленная формулировка закона электромагнитной индукции:

Всякое изменение магнитного поля во времени возбуждает в окружающем пространстве электрическое поле. Циркуляция вектора напряженности E этого поля по любому неподвижному замкнутому контуру s определяется выражением [3] [4]

,

  • где E – напряженность электрического поля, В/м,
  • ds – элемент контура, м,
  • Ф — магнитный поток, Вб,
  • t — время, с

Электродвижущая сила индукции возникающая в замкнутом контуре, равна скорости изменения во времени потока магнитной индукции

,

  • где – электродвижущая сила индукции, В

Знак «-» показывает, что индукционный ток, возникающий в замкнутом проводящем контуре имеет такое направление, что создаваемое им магнитное поле противодействует тому изменению магнитного потока, которым был вызван данный ток.

Вращающиеся электрические машины

Вращающаяся электрическая машина — электротехническое устройство, предназначенное для преобразования энергии на основе электромагнитной индукции и взаимодействия магнитного поля с электрическим током, содержащее, по крайней мере, две части, участвующие в основном процессе преобразования и имеющие возможность вращаться или поворачиваться относительно друг друга [2].

Вращающаяся машина постоянного тока, или машина постоянного тока — вращающаяся электрическая машина, основной процесс преобразования энергии в которой обусловлен потреблением или генерированием только постоянного электрического тока.

Вращающаяся машина переменного тока — вращающаяся электрическая машина, основной процесс преобразования энергии в которой обусловлен потреблением или генерированием переменного электрического тока.

Виды вращающихся электрических машин

По характеру магнитного поля в основном воздушном зазоре

Одноименнополюсная машина — вращающаяся электрическая машина, у которой нормальная составляющая магнитной индукции во всех точках основного воздушного зазора имеет один и тот же знак.

Разноименнополюсная машина — вращающаяся электрическая машина, у которой нормальная составляющая магнитной индукции в различных участках основного воздушного зазора имеет разные знаки.

Явнополюсная машина — разноименнополюсная машина, в которой полюса выступают в сторону основного воздушного зазора.

Неявнополюсная машина — разноименнополюсная машина с равномерным основным воздушным зазором.

Значение ЭЛЕКТРОМАШИННЫЕ ГЕНЕРАТОРЫ И ЭЛЕКТРОДВИГАТЕЛИ: ГЕНЕРАТОРЫ ПОСТОЯННОГО ТОКА в Словаре Кольера

К статье ЭЛЕКТРОМАШИННЫЕ ГЕНЕРАТОРЫ И ЭЛЕКТРОДВИГАТЕЛИ

Теория. На рис. 1,а показан виток провода abcd, вращающийся по часовой стрелке вокруг оси 00? в магнитном поле между северным (N) и южным (S) полюсами магнита. Направление мгновенной наведенной ЭДС показано стрелками ab и cd; величина и знак ЭДС для положений 1, 2, 3 и 4 приведены на графике рис. 1,б. Когда плоскость витка перпендикулярна полю (положения 1 и 3), ЭДС равна нулю; когда же плоскость витка параллельна полю (положения 2 и 4), ЭДС максимальна. Кроме того, направление ЭДС в боковых частях витка (скажем, ab), когда они проходят мимо северного полюса, противоположно ее направлению при прохождении мимо южного полюса. Поэтому ЭДС меняет знак через каждую половину оборота в точках 1 и 3, так что в витке генерируется переменная ЭДС и, стало быть, течет переменный ток. Если предусмотреть в конструкции токособирательные (контактные) кольца, то переменный ток пойдет во внешнюю цепь.

Конструкция. Генератор постоянного тока должен давать ток, который всегда течет в одном направлении. Для этого нужно переключать контакты внешней цепи в тот момент, когда ЭДС падает до нуля, прежде чем она начнет нарастать в другом направлении. Это делается с помощью коллектора, схематически изображенного на рис. 1,в. В показанном простейшем случае он представляет собой кольцо, разрезанное на две части по диаметру. Один конец витка присоединен к одному из полуколец, другой — к другому. Щетки расположены так, что они перекрывают зазоры между полукольцами, когда плоскость витка перпендикулярна магнитному полю (в положениях 1 и 3) и ЭДС равна нулю. Как явствует из рисунка, каждый раз, когда ЭДС меняет знак, переключаются концы внешней цепи, так что ток в ней течет всегда в одном направлении (рис. 1,г). Если к витку, показанному на рис. 1,в, добавить еще один, перпендикулярный ему, то его ЭДС будет соответствовать кривой bb, сдвинутой относительно первоначальной на 90? (рис. 2). Полная ЭДС будет соответствовать сумме двух кривых, т.е. значительно более гладкой кривой e. На практике используется большое число витков и коллекторных сегментов (рис. 3), так что пульсации ЭДС незаметны.

Генератор с параллельным возбуждением. Многие генераторы сами создают магнитное поле возбуждения (работают в режиме самовозбуждения). В генераторе с параллельным возбуждением, схема которого представлена на рис. 4, цепь возбуждения присоединена к зажимам якоря, причем предусмотрен последовательный реостат для изменения тока и, следовательно, напряжения генератора. Обмотка возбуждения состоит из большого числа витков сравнительно тонкой проволоки, так что ее сопротивление велико и ток возбуждения обычно не превышает 0,5-3% номинального выходного тока генератора. Генератор развивает свое напряжение от нуля за счет небольшого остаточного магнетизма в железной магнитной цепи. Якорь пересекает это слабое поле, и в обмотке возбуждения появляется слабый ток. Его направление таково, что создаваемое им слабое поле возбуждения добавляется к остаточному полю. В результате начинает увеличиваться наводимая ЭДС, снова увеличивается ток возбуждения, а с ним и магнитное поле. ЭДС начинает быстро нарастать, и ее рост ограничивается только реостатом в цепи возбуждения и магнитным насыщением железа.

Генератор со смешанным возбуждением. При подключении нагрузки к генератору с параллельным возбуждением напряжение на его зажимах падает, в частности, из-за того, что нагрузка отбирает часть тока возбуждения. Такое понижение нежелательно по многим соображениям: это может приводить, например, к изменению яркости осветительных ламп и пр. Его можно исключить, добавив еще одну обмотку возбуждения, соединенную последовательно либо с нагрузкой (короткий шунт), либо с якорем (длинный шунт), как показано на рис. 5. Тогда ток нагрузки будет проходить через последовательную обмотку возбуждения и увеличивать магнитное поле. Степень компаундирования можно регулировать посредством переменного резистора с малым сопротивлением, шунтирующего последовательную обмотку возбуждения (рис. 5). Если напряжение в отсутствие нагрузки равно напряжению при номинальной нагрузке, то генератор называется плоско-компаундированным (кривая В на рис. 6); если напряжение под нагрузкой больше, чем в ее отсутствие, то он — перекомпаундированный (кривая А). Недокомпаундированные генераторы (кривая D) используются редко.

Применение. Некогда генераторы постоянного тока были основными источниками электроэнергии в крупных городах, но затем их вытеснили генераторы переменного тока. В настоящее время их применяют в основном в сочетании с электродвигателями постоянного тока в промышленности и на транспорте.

Яков Кузнецов/ автор статьи

Приветствую! Я являюсь руководителем данного проекта и занимаюсь его наполнением. Здесь я стараюсь собирать и публиковать максимально полный и интересный контент на темы связанные ремонтом автомобилей и подбором для них запасных частей. Уверен вы найдете для себя немало полезной информации. С уважением, Яков Кузнецов.

Понравилась статья? Поделиться с друзьями:
NEVINKA-INFO.RU
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: