Электронный генератор тока это

Устройства, преобразующие эл-ю источника постоянного тока в незатухающую энергию электрических колебаний, называются электронные генераторы...

Электронный генератор тока это

Электронные генераторы. Виды и устройство. Работа и особенности

Устройства, преобразующие электроэнергию источника постоянного тока в незатухающую энергию электрических колебаний расчетной частоты и формы, называются электронные генераторы.

Электронные генераторы

Такие генераторы приобрели популярность в электронике, компьютерной технике, радиоприемниках. Генераторами может выдаваться сигнал частотой до нескольких мегагерц. Форма выходного напряжения имеет формы синусоиды, прямоугольника и пилы.

Контур колебаний получает возбуждение от наружного источника тока, появляются колебания, которые со временем затухают, так как сопротивление поглощает энергию. Чтобы колебания не затухали, в контуре нужно восполнять потерю энергии. Этот процесс восполнения выполняется положительной обратной связью. Эта связь подает в контур некоторую часть сигнала, который должен совпадать с сигналом обратной связи.

Электронные генераторы состоят из следующих частей:

  • Контур колебаний, задающий частоту генератора.
  • Усилитель, повышающий амплитуду сигнала на выходе контура колебаний.
  • Обратная связь, подающая некоторое количество энергии в контур.

Электронные генераторы используют постоянный ток для образования колебаний переменного тока, и являются схемами с положительной связью.

Классификация

Электронные генераторы делятся на несколько классов по различным параметрам. Рассмотрим основные разновидности таких генераторов.

По форме сигнала:
  • В виде синусоиды.
  • Прямоугольные.
  • В форме пилы.
  • Специальные.
По частоте:
  • Высокочастотные (более 100 килогерц).
  • Низкочастотные (менее 100 килогерц).
По возбуждению:
  • С независимым возбуждением.
  • Автогенераторы (самовозбуждение).

Автоматическим генератором называют устройство, которое самостоятельно возбуждается, без воздействия извне, преобразует поступающую энергию в колебания. Электронные генераторы выполняются по схемам, аналогичным усилителям, за исключением отсутствия питания сигнала входа. Вместо него используют обратную связь, которая является передачей некоторого количества сигнала выхода на вход.

Определенная форма сигнала создается обратной связью. Частота колебаний создается на цепях RС или LС, и зависит от времени зарядки емкости. Сигнал обратной связи приходит на вход усилителя, где повышается в несколько раз и выходит. Часть сигнала возвращается и ослабевает в несколько раз, что дает возможность поддерживать одинаковую амплитуду сигнала на выходе.

Генераторы с внешним видом возбуждения считаются усилителями мощности с определенным частотным интервалом. На его вход подается сигнал от автогенератора, усиливается определенный интервал частот.

Электронные генераторы RС

Для образования низкочастотных генераторов применяют усилители. В них вместо обратной связи монтируют RС цепи для создания некоторой частоты колебаний. Эти цепи являются фильтрами частоты, которые пропускают сигналы в специальном интервале частот и не пропускают за его пределами. По обратной связи возвращается некоторая полоса частот.

Типы фильтров

  • Низкочастотные фильтры.
  • Высокочастотные фильтры.
  • Полосовые фильтры.
  • Заграждающие фильтры.

Характеристикой фильтра является частота среза. Если взять положение ниже этой частоты, или выше, то сигнал значительно уменьшается. Заграждающие и полосовые фильтры имеют характеристику в виде ширины полосы.

На рисунке изображена цепь генератора с синусоидальным сигналом. Усиление определяется цепью обратной связи R1, R2. Для создания нулевого сдвига по фазе обратная связь подключена от выхода усилителя на неинвертирующий его вход. Цепь обратной связи выступает в качестве полосового фильтра.

Для стабилизации величины частоты пользуются кварцевыми резонаторами, которые состоят из минеральной тонкой пластины, закрепленной в держателе. Кварц славится своим пьезоэффектом. Это дает возможность применять его в качестве системы, аналогичной колебательному контуру со свойством резонанса. Частота резонанса пластин колеблется от единиц до тысяч мегагерц.

Мультивибраторы

Эти электронные генераторы создают колебания формы прямоугольника, являются 2-х каскадным усилителем с обратной связью на основе резисторов. Выходы каскадов соединены со входами. Название этого генератора объясняет наличие значительного количества гармоник.

Мультивибратор способен действовать в нескольких режимах:
  • Автоколебательный режим.
  • Синхронизация.
  • Ждущий режим.

В первом виде режима мультивибратор работает с самовозбуждением. При синхронизации на генератор оказывает воздействие внешнее напряжение с частотой импульсов. Ждущий режим подразумевает работу с внешним возбуждением.

Автоколебательный режим мультивибратора

Устройство мультивибратора включает в себя два каскада усилителя с резисторами. Выходы каскадов подключены ко входам других каскадов через емкости С1 и С2.

Мультивибраторы с аналогичными транзисторами и симметричными компонентами имеют название симметричных.

В режиме автоколебаний мультивибратор может находиться в 2-х состояниях равновесия:
  1. Один транзистор в насыщении, второй в отсечке.
  2. Первый транзистор на отсечке, другой в насыщении.

Такие положения неустойчивы. Одна схема переходит в другую с эффектом лавины с помощью обратной связи. Для оптимизации формы импульсов на выходе генератора подключают разделительные диоды в схемы коллекторов. Через диоды подключают вспомогательные резисторы.

По такой схеме после закрытия одного транзистора и уменьшения потенциала коллектора диод тоже закрывается. При этом он отключает конденсатор от цепи. Конденсатор заряжается через вспомогательный резистор. Наибольшая длина импульсов определяется параметрами частоты транзисторов.

Такой тип схемы дает возможность создать импульсы практически прямоугольной формы. В качестве недостатков можно отметить малую скважность и невозможность плавного регулирования периода колебаний.

По такой схеме резисторы R2 и R5 включены параллельно емкостям С1 и С2. Резисторы R(1, 3, 4, 6) создают делители напряжения, которые стабилизируют потенциал базы транзистора. При коммутации мультивибратора ток базы резко меняется. Это уменьшает время снижения зарядов в базе и увеличивает скорость выхода транзистора из насыщения.

Ждущий мультивибратор (одиночный)

Если мультивибратор действует в режиме автоколебаний и не имеет устойчивости, то его можно преобразовать в генератор с одной устойчивой позицией и одной неустойчивой позицией. Такие цепи имеют название одновибраторов (релаксационных реле). Чтобы перевести схему из одного состояния в другое, необходимо воздействие внешнего импульса.

В неустойчивой позиции цепь находится некоторое время, зависящее от ее параметров. Далее она скачкообразно возвращается в устойчивую позицию. Чтобы получить ждущий режим генератора, необходимо собрать следующую схему:

В исходном положении транзистор VТ1 находится в закрытом виде. При поступлении на вход плюсового импульса по транзистору идет ток коллектора. При изменении разности потенциалов на транзисторе VТ1 оно подается через емкость С2 на базу VТ2. С помощью обратной связи повышается лавинный эффект, который приводит к закрытию VТ2 и открытию VТ1.

В такой неустойчивой позиции схема находится до полного разряда емкости С2. Далее транзистор VТ2 открывается, VТ1 закрывается. Положение схемы возвращается в первоначальную позицию.

Генератор тока.

Генератор тока — это такой тип электрической машины, которая способствует преобразованию механической энергии в электрическую. Основано действие генераторов тока по принципу электромагнитной индукции: электродвижущая сила (ЭДС) наводится в движущемся в магнитном поле проводе.

Производить генератор тока может не только постоянный, но и переменный ток. На латыни слово генератор (generator) означает — производитель.

На мировом рынке наиболее известными поставщиками генераторов являются компании: General Electric (GE), ABB, Siemens AG, Mecc Alte.

Генераторы постоянного тока.

Единственным типом источника для получения электроэнергии на протяжении долгого времени были электрические генераторы.

Переменный ток индуктируется в обмотке якоря генератора постоянного тока, затем он электромеханическим выпрямителем — коллектором преобразуется в постоянный ток. Особенно при большой частоте вращения якоря генератора, процесс выпрямления тока коллектором связан с очень частым износом щеток и коллектора.

Различаются генераторы постоянного тока по характеру их возбуждения, они бывают с самовозбуждением и независимого возбуждения. К независимому источнику питания в генераторах с электромагнитным возбуждением подключается обмотка возбуждения, располагающаяся на главных полюсах.

Постоянными магнитами, из которых производятся полюсы машины, возбуждаются генераторы с магнитоэлектрическим возбуждением. Основное применение генераторы постоянного тока находят в тех отраслях промышленности, где постоянный ток является предпочтительным по условиям производства (предприятия электролизной и металлургической промышленности, суда, транспорт и прочие). В качестве источников постоянного тока и возбудителей синхронных генераторов применяются генераторы постоянного тока на электростанциях.

Может достигать до 10 Мегаватт мощность генератора тока.

Генераторы переменного тока.

При достаточно высоком напряжении получать большие токи позволяют генераторы переменного тока. Несколько типов индукционных генераторов различают в настоящее время.

Они состоят из создающего магнитное поле постоянного магнита или электромагнита и обмотки, индуцируется в которой переменная ЭДС. Так как складываются наводимые в последовательно соединенных витках ЭДС, то в рамке индукции амплитуда ЭДС будет пропорциональна количеству в ней витков. Также она пропорциональна через каждый виток амплитуде переменного магнитного потока. В генераторах тока, чтобы получить большой магнитный поток применяется специальная магнитная система, состоящая из двух сердечников, изготовленных из электротехнической стали. В пазах одного из сердечников размещены создающие магнитное поле обмотки, а в пазах второго располагаются обмотки, в которых индуцируется ЭДС. Один из сердечников называется ротором, так как он вращается вокруг вертикальной или горизонтальной оси, вместе со своей обмоткой.

Другой сердечник называется статором — это неподвижный сердечник с его обмоткой. Как можно меньшим делается зазор между сердечниками ротора и статора, наибольшее значение потока магнитной индукции обеспечивается этим. Электромагнит, являющийся ротором вращается в больших промышленных генераторах, а обмотки, уложенные в пазах статора и в которых наводится ЭДС остаются неподвижными.

С помощью скользящих контактов приходится во внешнюю цепь подводить ток к ротору или отводить его из обмотки ротора. Контактными кольцами, которые присоединены к концам его обмотки для этого снабжается ротор. К кольцам прижаты неподвижные пластины-щетки, они осуществляют связь с внешней цепью обмотки ротора. В обмотках создающего магнитное поле электромагнита, сила тока значительно меньше той силы тока, которую отдает генератор тока во внешнюю цепь. Поэтому гораздо удобнее снимать генерируемый ток с неподвижных обмоток, а сравнительно слабый ток подводить через скользящие контакты к вращающемуся электромагниту. Вырабатывается этот ток, расположенным на том же валу отдельным генератором постоянного тока (возбудителем). Вращающимся магнитом создается магнитное поле в маломощных генераторах тока, щетки и кольца в таком случае вообще не требуются.

Бывают двух типов обмотки возбуждения синхронных генераторов: с явнополюсными и неявнополюсными роторами. Выступают из индуктора несущие обмотки возбуждения в генераторах с явнополюсными роторами полюса. На сравнительно низкие частоты вращения рассчитаны генераторы данного типа, они используются для работы с приводом от поршневых паровых машин, гидротурбин, дизельных двигателей. Для привода синхронных генераторов с неявнополюсными роторами применяются газовые и паровые турбины. Стальную поковку с фрезерованными продольными пазами для витков обмотки возбуждения, которые обычно выполнены в виде медных пластин, представляет собой ротор такого генератора. В пазах фиксируются витки, а для снижения потерь мощности и уровня шума, связанных с сопротивлением воздуха шлифуется, а затем полируется поверхность ротора.

Читайте также  Форд фокус 2008 замена ремня генератора

По большей части трехфазными делаются обмотки генераторов тока. Подобное сочетание движущихся частей, способных создавать энергию также экономично и непрерывно, встречается в механике редко.

Современный генератор тока является внушительным сооружением, состоящим из медных проводов, стальных конструкций и изоляционных материалов. С точностью до 1 миллиметра изготавливаются важнейшие детали генераторов, которые сами имеют размеры несколько метров.

Электронный генератор

Электронный генератор

Электронные генераторы — большое множество устройств в радиотехнике и электронике (радиоэлектронике). Генератор представляет собой электронный усилитель охваченный цепью положительной обратной связи с фильтром.

Содержание

Виды электронных генераторов

  • По форме выходного сигнала:
    • Синусоидальных, гармонических колебаний (сигналов) (генератор Мейснера, генератор Хартли (индуктивная трёхточка), генератор Колпитца (ёмкостная трёхточка) и др.) [1]
    • Прямоугольных импульсов — мультивибраторы, тактовые генераторы
    • Функциональный генератор — прямоугольных, треугольных и синусоидальных импульсов
  • По частотному диапазону:
    • Низкочастотные
    • Высокочастотные
  • По принципу работы:
    • Стабилизированные кварцевым резонатором — Генератор Пирса
    • Блокинг-генераторы
    • LC-генераторы
    • RC-генераторы[2][3]
  • По назначению:
    • Генератор тактовых импульсов

Большинство генераторов являются преобразователями постоянного тока в переменный ток. Маломощные генераторы строят на однотактных усилительных каскадах. Более мощные однофазные генераторы строят на двухтактных (полумостовых) усилительных каскадах, которые имеют больший КПД и позволяют на транзисторах той же мощности построить генератор с приблизительно вдвое большей мощностью. Однофазные генераторы ещё большей мощности строят по четырёхтактной (полномостовой) схеме, которая позволяет приблизительно ещё вдвое увеличить мощность генератора. Ещё большую мощность имеют двухфазные и трёхфазные двухтактные (полумостовые) и четырёхтактные (полномостовые) генераторы. Мощные преобразователи называются силовыми инверторами и относятся к силовой электронике.

Генераторы гармонических колебаний

Генератор (производитель) электрических колебаний представляет собой усилитель с положительной обратной связью. Усилитель с отрицательной обратной связью является дискриминатором (подавителем, активным фильтром). Усилитель генератора может быть как однокаскадным, так и многокаскадным.

Цепи положительной обратной связи выполняют две функции: сдвиг сигнала по фазе для получения петлевого сдвига близкого к n*2π и фильтра, пропускающего нужную частоту. Функции сдвига фазы и фильтра могут быть распределены на две составные части генератора — на усилитель и на цепи положительной обратной связи или целиком возложены на цепи положительной обратной связи. В цепи положительной обратной связи могут стоять усилители.

Необходимыми условиями для возникновения гармонических незатухающих колебаний являются:
1. петлевой сдвиг фазы равный n*360°±90°,
2. петлевое усиление >1,
3. рабочая точка усилительного каскада в середине диапазона входных значений.
Необходимость третьего условия.
Петлевой сдвиг фазы и в триггере и в генераторе равен около 360°. Петлевое усиление в триггере почти вдвое больше, чем в генераторе, но триггер не генерирует, т.к. рабочие точки каскадов в триггере смещены на края диапазона входных значений и эти состояния в триггере устойчивы, а состояние со средней величиной входных значений — неустойчиво. Такой характеристикой обладает компаратор.
В гармоническом генераторе среднее состояние устойчивое, а отклонения от среднего состояния неустойчивые.

История

В 1887 году Генрих Герц на основе катушки Румкорфа изобрёл и построил искровой генератор электромагнитных волн.

В 1913 году Александр Мейснер (Германия) изобрёл электронный генератор Мейснера на ламповом каскаде с общим катодом с колебательным контуром в выходной (анодной) цепи с трансформаторной положительной обратной связью на сетку. [4]

В 1914 году Эдвин Армстронг (США) запатентовал электронный генератор на ламповом каскаде с общим катодом с колебательным контуром во входной (сеточной) цепи с трансформаторной положительной обратной связью на сетку.

В 1915 году американский инженер из Western Electric Company Ральф Хартли, разработал ламповую схему известную как генератор Хартли, известную также как индуктивная трёхточечная схема («индуктивная трёхточка»). В отличие от схемы А. Мейсснера, в ней использовано автотрансформаторное включение контура. Рабочая частота такого генератора обычно выше резонансной частоты контура.

В 1919 году Эдвин Колпитц изобрёл генератор Колпитца на электронной лампе с подключением к колебательному контуру через ёмкостной делитель напряжения, часто называемый «ёмкостная трёхточка».

В 1932 году американец Гарри Найквист разработал теорию устойчивости усилителей, которая также применима и для описания устойчивости генераторов. (Критерий устойчивости Найквиста-Михайлова).

Позже было изобретено множество других электронных генераторов.

Устойчивость генераторов

Устойчивость генераторов складывается из двух составляющих: устойчивость усилительного каскада по постоянному току и устойчивость генератора по переменному току.

Фазовый анализ генератора Мейснера.

Генераторы «индуктивная трёхточка» и «ёмкостная трёхточка» могут быть построены как на инвертирующих каскадах (с общим катодом, с общим эмиттером), так и на неинвертирующих каскадах (с общей сеткой, с общим анодом, с общей базой, с общим коллектором).

Каскад с общим катодом (с общим эмиттером) сдвигает фазу входного сигнала на 180°. Трансформатор, при согласном включении обмоток, сдвигает фазу ещё на приблизительно 180°. Суммарный петлевой сдвиг фазы составляет приблизительно 360°. Запас устойчивости по фазе максимален и равен почти ± 90°. Таким образом генератор Мейснера относится, с точки зрения теории автоматического управления (ТАУ), к почти идеальным генераторам. В транзисторной технике каскаду с общим катодом соответствует каскад с общим эмиттером.

Фазовый анализ LC-генератора с СR положительной обратной связью

LC-генераторы на каскаде с общей базой наиболее высокочастотны, применяются в селекторах каналов почти всех телевизоров, в гетеродинах УКВ приёмников. Для гальванической развязки в цепи положительной обратной связи с коллектора на эмиттер стоит CR-цепочка, которая сдвигает фазу на 60°. Генератор работает, но не на частоте свободных колебаний контура, а на частоте вынужденных колебаний, из-за этого генератор излучает две частоты: большую — на частоте вынужденных колебаний и меньшую на частоте свободных колебаний контура. При первой итерации две частоты образуют четыре: две исходные и две суммарноразностные. При второй итерации четыре частоты производят ещё большее число суммарноразностных частот. В результате, при большом числе итераций получается целый спектр частот, который в приёмниках смешивается с входным сигналом и образует ещё большее число суммарноразностных частот. Затем всё это подаётся в блок обработки сигнала. Кроме этого, запас устойчивости работы по фазе этого генератора составляет +30°. Чтобы уменьшить шунтирование контура каскадом применяют частичное включение контура через ёмкостной делитель, но при этом происходит дополнительный перекос фазы. При одинаковых ёмкостях дополнительный перекос фазы составляет 45°. Суммарный петлевой сдвиг фазы 60°+45°=105° оказывается больше 90° и устройство попадает из области генераторов в область дискриминаторов, генерация срывается. Существует ряд формул для определения ёмкостей делителя, чтобы не сорвалась генерация, но запас устойчивости по фазе составляет менее 30°, что образно похоже на корабль плывущий с креном 60° и более градусов.

Генератор Мейснера на каскаде с общей базой, с частичным включением контура без перекоса фазы.

Если в «ёмкостной трёхточке» на каскаде с общей базой в цепи положительной обратной связи вместо CR-цепочки включить трансформатор со встречным включением обмоток, то петлевой сдвиг фазы составит около 360°. Генератор станет почти идеальным. Чтобы уменьшить шунтирование контура каскадом и не внести дополнительного перекоса фазы, нужно применить частичное включение контура без дополнительного перекоса фазы через два симметричных отвода от катушки индуктивности. Такой генератор будет излучать одну частоту, то есть будет подобен монохроматорам в оптике, и будет иметь наибольший запас устойчивости по фазе (± 90°), что образно похоже на корабль плывущий без крена.

Применение

  • Гетеродин в супергетеродинных радиоприёмниках, в телевизорах, в мобильных телефонах, в приёмопередатчиках и др.
  • Генераторы в научных и медицинских приборах.

См. также

  • Электронный усилитель
  • Фильтр
  • Автогенератор
  • Генератор Мейснера (Генератор Армстронга)
  • Генератор Хартли
  • Генератор Колпитца
  • Генератор Клаппа
  • Генератор Вачкара
  • Генератор Пирса (кварцевый)
  • RC-генератор
  • Критерий устойчивости Найквиста-Михайлова
  • Измерительный генератор
  • Гетеродин
  • Стабильность частоты

Ссылки

  • Шамшин И. Г., История технических средств коммуникации. Учеб. пособие., 2003. Дальневосточный Государственный Технический Университет.
  1. http://logic-bratsk.ru/radio/ewb/ewb2/CHAPTER2/2-8/2-8-1/2-8-1.htm На рис.8.1.а) изображён генератор Мейснера, а не генератор Хартлея
  2. http://radiomaster.ru/stati/radio/gen.php Рис.1.7 RC-генератор на транзисторе. Рис.1.8 RC-генератор с мостом Вина.
  3. http://logic-bratsk.ru/radio/ewb/ewb2/CHAPTER2/2-8/2-8-1/2-8-1.htm Рис.8.9. RC-генератор с трёхзвенной фазосдвигающей цепочкой (а) и осциллограмма выходного сигнала (б)
  4. http://historic.ru/books/item/f00/s00/z0000027/st054.shtml Радиотехника и радиофизика
  • http://radiomaster.ru/stati/radio/gen.php Генераторы синусоидальных колебаний
  • http://projects.org.ua/project/generators/generators.html Генераторы

Wikimedia Foundation . 2010 .

электронный генератор — elektroninis generatorius statusas T sritis Standartizacija ir metrologija apibrėžtis Elektroninis įtaisas nuolatinės srovės šaltinio arba pirminių elektrinių virpesių energijai versti tam tikro dažnio ir pavidalo elektrinių virpesių energija.… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

электронный генератор — elektroninis generatorius statusas T sritis fizika atitikmenys: angl. electronic generator; electronic oscillator vok. elektronischer Generator, m rus. электронный генератор, m pranc. oscillateur électronique, m … Fizikos terminų žodynas

Генератор сигналов — Генератор сигналов это устройство, позволяющее получать сигнал определённой природы (электрический, акустический или другой), имеющий заданные характеристики (форму, энергетические или статистические характеристики и т. д.).… … Википедия

Генератор колебаний электрический — Электронные генераторы большое множество устройств в радиотехнике и электронике (радиоэлектронике). Генератор представляет собой электронный усилитель охваченный цепью положительной обратной связи с фильтром. Содержание 1 Виды генераторов 2… … Википедия

Генератор переменного тока — Эта страница требует существенной переработки. Возможно, её необходимо викифицировать, дополнить или переписать. Пояснение причин и обсуждение на странице Википедия:К улучшению/23 октября 2012. Дата постановки к улучшению 23 октября 2012 … Википедия

Читайте также  Частота выходного сигнала генератора

Генератор, управляемый напряжением — Микроволновый (12 18 ГГц) ГУН Генератор, управляемый напряжением (ГУН) электронный генератор для управления частотой колебаний при помощи напряжения … Википедия

Генератор с мостом Вина — (выделен зеленым) на операционном усилителе. R1=R2, C1=C2 Генератор с мостом Вина разновидность … Википедия

ЭЛЕКТРОННЫЙ МИКРОСКОП — прибор для наблюдения и фотографирования многократно (до 106 раз) увеличенного изображения объекта, в к ром вместо световых лучей используются пучки электронов, ускоренных до больших энергий (30 1000 кэВ и более) в условиях глубокого вакуума. Физ … Физическая энциклопедия

ГЕНЕРАТОР ИЗМЕРИТЕЛЬНЫЙ — мера, воспроизводящая дискретный или непрерывный ряд значений параметров перем. электрич. величины (напряжения, тока) в определ. диапазоне. Применяется в измерит. практике, а также для поверки и регулировки радиотехнических и вычислительных… … Физическая энциклопедия

Электронные генераторы

Электронный генератор — электронное устройство, вырабатывающее электрические колебания определенной частоты и формы, используя энергию источника постоянного напряжения (тока).

Различают генераторы с самовозбуждением (автогенераторы) и генераторы с внешним возбуждением. Любой автогенератор содержит колебательную систему и усилительный элемент (на биполярном или полевом транзисторе), связанные положительной обратной связью.

Основными характеристиками генератора являются форма, частота и мощность колебаний. По форме различают электронные генераторы гармонических (почти синусоидальных) колебаний и так называемые релаксационные генераторы различной формы. По частоте автогенераторы подразделяются на генераторы инфранизкой (от долей герц до 10 Гц), низкой (от 10 Гц до 100 кГц), высокой (от 100 кГц до 10 МГц) и сверхвысокой (свыше 10 МГц) частот.

Структурная схема генератора гармонических колебаний представлена на рис. 4.12.

Генератор состоит из усилителя У (нелинейного элемента НЭ) с комплексным коэффициентом усиления по напряжению

и четырехполюсника положительной обратной связи ОС (линейного элемента ЛЭ в видеLC— или RC-звеньев) с комплексным коэффициентом передачи .

Так как то напряжение

Следовательно, установившиеся колебания будут существовать в схеме при условии, что произведение Ки β=1, т. е. при коэффициенте усиления усилителя У, равном единице. При Киβ >1 амплитуда выходного напряжения Um.вых будет непрерывно возрастать (до насыщения активных элементов).

Представляя комплексные коэффициенты Ки и β в показательной форме, т. е. и их произведение получим условие самовозбуждения автоколебаний:

Первое условие отражает процесс баланса фаз, при котором сдвиг фаз в замкнутой цепи автоколебательной системы должен равняться 2πn радиан, а второе условие самовозбуждения — баланс амплитуд — сводится к тому, что на резонансной частоте ω0 активные потери энергии в автогенераторе должны восполняться от источника питания ИП посредством положительной обратной связи. Отметим, что баланс амплитуд обуславливает неизменную амплитуду стационарных колебаний.

При стабильной частоте колебаний условия баланса фаз и баланса амплитуд должны выполняться на одной частоте. Для этого автогенератор должен иметь частотно-зависимую (фазосдвигающую) LC— или RC-цепь, настроенную на эту частоту.

4.7.1. Автогенератор типа LС

Простейший автогенератор с индуктивной связью (рис. 4.13, а) представляет собой однокаскадный усилитель на транзисторе , включенном по схеме с общим эмиттером, с нагрузкой в виде параллельного колебательного контура LКСК и цепи обратной связи, созданной обмоткой LБ, индуктивно связанной с индуктивным элементом LК контура. Усилитель выполнен по схеме с фиксированным напряжением смещения делителем RБ1 и RБ2 и термостабилизируюшей RЭCЭ-цепью.

На вход усилителя через конденсатор CБ, ёмкостное сопротивление которого на частоте генерации незначительно, поступает сигнал обратной связи, представленный ЭДС базовой обмотки LБ.

Коллекторный ток, появившийся в момент включения источника питания — Uп, заряжает конденсатор СК, который затем разряжаясь на индуктивный элемент LК создает в контуре колебания с резонансной частотой

Эти колебания напряжения посредством индуктивной связи передаются на базу транзистора VT, вызывая колебания напряжения Uвх на входе усилителя и пульсации тока коллектора, которые, подпитывая LКСК -контур, восполняют активные потери энергии в нем. Чтобы колебания были незатухающими, нужно выполнить указанные выше два условия самовозбуждения.

Анализ электрического состояния усилителя показывает, что баланс фаз удовлетворяется, если амплитуда напряжения на контуре Um.p равна и противоположна по фазе амплитуде выходного напряжения Um.вых. Это возможно, если обмотка LК включена таким образом, что фаза индуктируемой в ней ЭДС находится в противофазе с напряжением контура uр, а напряжение uвых в однокаскадном усилителе, как известно, противофазно напряжению uвх. Очевидно, что фазы uвх и uвых сдвинуты на 180° + 180° = 360°.

Второе условие самовозбуждения — баланс амплитуд — сводится к тому, чтобы коэффициент усиления был больше или равен 1/β , т. е. Ки > 1/β.

Процесс возникновения, нарастания и установления колебательного режима удобно пояснить с помощью графика (рис. 4.13, б), где нанесены:

Ки = uвых/ uвх — амплитудная характеристика собственно усилителя и 1/β= uвых/ uвх.ос — прямая, характеризующая обратную связь.

Условию Ки > 1/β на графике соответствует расположение кривой Ки над прямой 1/β на участке .

Пусть наличие колебания uвх1 вызвало на выходе (в соответствии с кривой Ки) колебание uвых1, которое через ПОС создает на входе возросшее колебание uвых2— что вызовет дальнейшее увеличение выходного напряжения до тех пор, пока не будет достигнута точка а (см. рис. 4.13,б), в которой Ки > 1/β или Ки β=1. В точке а переходный процесс заканчивается и устанавливается стационарный режим гармонических колебаний.

4.7.2. Автогенераторы типа RС

На частотах, меньших 15. 20 кГц, при которых обмотки резонансных контуров получаются громоздкими, целесообразно применение RC-генераторов, выполняемых по структурной схеме (рис. 4.14, а).

Усилитель У (рис. 4.14. в) строится по обычной резистивной схеме, а положительная обратная связь осуществляется с помощью фазовозвращателя Фвр (RC-звеньев,рис. 4.14,б). Условия самовозбуждения таких генераторов прежние. Так как одно RC-звено сдвигает фазу своего выходного напряжения по отношению к её входному на угол, меньший 90°, то применяют трехзвенную структуру. Каждое Г-образное звено должно сдвигать фазу напряжения на 60°.

Частота генерируемых такими схемами синусоидальных колебаний при условии равенства сопротивлений резисторов R и ёмкостей С конденсаторов во всех трех звеньях определяется формулой

Как показывают расчеты, из-за падений напряжения на элементах, отношение uвх/uвых на фазовозвращателе (см. рис. 4.14,б) равно β= 29, поэтому для обеспечения условия баланса амплитуд коэффициент усиления собственно усилителя должен удовлетворять условию Ки ≥29.

Электронные генераторы

Генераторами называются электронные устройства, преобразующие энергию источника постоянного тока в энергию переменного тока (электромагнитных колебаний) различной формы требуемой частоты и мощности.

Электронные генераторы применяются в радиовещании, медицине, радиолокации, входят в состав аналого-цифровых преобразователей, микропроцессорных систем и т. д.

Ни одна электронная система не обходится без внутренних или внешних генераторов, задающих темп ее работы. Основные требования к генераторам – стабильность частоты колебаний и возможность снятия с них сигналов для дальнейшего использования.

Классификация электронных генераторов:

1) по форме выходных сигналов:

— сигналов прямоугольной формы (мультивибраторы);

— сигналов линейно изменяющегося напряжения (ГЛИН) или их еще называют генераторами пилообразного напряжения;

— сигналов специальной формы.

2) по частоте генерируемых колебаний (условно):

— низкой частоты (до 100 кГц);

— высокой частоты (свыше 100 кГц).

3) по способу возбуждения:

— с независимым (внешним) возбуждением;

— с самовозбуждением (автогенераторы).

Автогенератор — генератор с самовозбуждением, без внешнего воздействия преобразующий энергию источников питания в незатухающие колебания, например, колебательный контур.

Рисунок 1 – Структурная схема генератора

Схемы электронных генераторов (рисунок 1) строятся по тем же схемам, что и усилители, только у генераторов нет источника входного сигнала, его заменяет сигнал положительной обратной связи (ПОС). Напоминаем, что обратная связь — это передача части выходного сигнала во входную цепь. Необходимая форма сигнала обеспечивается структурой цепи обратной связи. Для задания частоты колебаний цепи ОС строятся на LC или RC-цепях (частоту определяет время перезаряда конденсатора).

Сигнал, сформированный в цепи ПОС, поступает на вход усилителя, усиливается в К раз и поступает на выход. При этом часть сигнала с выхода возвращается на вход через цепь ПОС, где ослабляется в К раз, что позволят поддерживать постоянную амплитуду выходного сигнала генератора.

Генераторы с независимым внешним возбуждением (избирательные усилители) являются усилителями мощности с соответствующим частным диапазоном, на вход которых подаётся электрический сигнал от автогенератора. Т.е. происходит усиление только определенной полосы частот.

Для создания генераторов низкой частоты обычно используют операционные усилители, в качестве цепи ПОС устанавливают RC-цепи для обеспечения заданной частоты f0 синусоидальных колебаний.

RC-цепи представляют собой частотные фильтры — устройства, пропускающее сигналы в определённом диапазоне частот и не пропускающее в не этого диапазона. При этом по цепи обратной связи на вход усилителя возвращается, а значит и усиливается только определённая частота или полоса частот.

На рисунке 2 показаны основные типы частотных фильтров и их амплитудно-частотная характеристика (АЧХ). АЧХ показывает пропускную способность фильтра в зависимости от частоты.

Рисунок 2 – Типы частотных фильтров и их амплитудно-частотная характеристика

— фильтры нижних частот (ФНЧ);

— фильтры верхних частот (ФВЧ);

— полосовые частотные фильтры (ПЧФ);

-заграждающие частотные фильтры (ЗЧФ).

Фильтры характеризуются частотой среза fc, выше либо ниже которой идет резкое ослабление сигнала. Полосовые и заграждающие фильтры характеризуются также шириной полосы пропускания у ПЧФ (непропускания у ЗЧФ).

На рисунке 3 приведена схема синусоидального генератора. Необходимый коэффициент усиления задаётся с помощью цепи ООС на резисторах R1, R2.Для обеспечения сдвига по фазе равного 0, цепь ПОС подключена между выходом ОУ и его неинвертирующим входом. При этом цепь ПОС представляет собой полосовой фильтр. Частота резонанса f0 определяется по формуле: f0 = 1/(2πRC)

Читайте также  Трехпозиционный рубильник для генератора

Для стабилизации частоты генерируемых колебаний в качестве частотозадающей цепи используют кварцевые резонаторы. Кварцевый резонатор представляет собой тонкую пластину минерала, установленную в кварцедержателе. Как известно, кварц обладает пьезоэффектом, что позволяет использовать его как систему, эквивалентную электрическому колебательному контуру и обладающую резонансными свойствами. Резонансные частота кварцевых пластин лежат в пределах от нескольких единиц килогерц до тысяч МГц с нестабильностью частоты, обычно порядка 10 -8 и ниже.

Рисунок 3 – Схема RC-генератора синусоидальных сигналов

Мультивибраторы — это электронные генераторы сигналов прямоугольной формы.

Мультивибратор в подавляющем большинстве случаев выполняет функцию задающего генератора, формирующего запускающие входные импульсы для последующих узлов и блоков в системе импульсного или цифрового действия.

На рисунке 4 приведена схема симметричного мультивибратора на ИОУ. Симметричный – время импульса прямоугольного импульса равно времени паузы tимп = tпаузы.

ИОУ охвачен положительной обратной связью – цепь R1,R2, действующей одинаково на всех частотах. Напряжение на неивертирующем входе постоянно и зависит от сопротивления резисторов R1,R2. Входное напряжение мультивибратора формируется при помощи ООС через цепочку RC.

Рисунок 4 – Схема симметричного мультивибратора

Уровень напряжения на выходе изменяется с +Uнас на -Uнас и обратно.

Если напряжение выхода Uвых = +Uнас конденсатор заряжается и напряжение Uс, действующее на инвертирующем входе возрастает по экспоненциальному закону (рис. 5).

При равенстве Uн = Uс произойдёт скачкообразное изменение выходного напряжения Uвых = -Uнас, что вызовет перезаряд конденсатора. При достижении равенства -Uн = -Uс снова произойдёт изменение состояние Uвых. Процесс повторяется.

Рисунок 5 – Временные диаграммы работы мультивибратора

Изменение постоянной времени RC-цепи приводит к изменению времени заряда и разряда конденсатора, а значит и частоты колебаний мультивибратора. Кроме того, частота зависит от параметров ПОС и определяется по формуле: f = 1/T = 1/2tи = 1/[2 ln(1+2 R1/R2)]

При необходимости получить несимметричные прямоугольные колебания для tи ≠ tп, используют несимметричные мультивибраторы, в которых перезаряд конденсатора происходит по разным цепочкам с различными постоянными времени.

Одновибраторы (ждущие мультивибраторы) предназначены для формирования прямоугольного импульса напряжения требуемой длительности при воздействии на входе короткого запускающего импульса. Одновибраторы часто называют еще электронными реле выдержки времени.

В технической литературе встречается еще одно название одновибратора – ждущий мультивибратор.

Одновибратор обладает одним длительно устойчивым состоянием равновесия, в котором он находится до подачи запускающего импульса. Второе возможное состояние является временно устойчивым. В это состояние одновибратор переходит под действием запускающего импульса и может находиться в нем конечное время tв, после чего автоматически возвращается в исходное состояние.

Основными требованиями к одновибраторам являются стабильность длительности выходного импульса и устойчивость его исходного состояния.

Генераторы линейно-изменяющихся напряжений (ГЛИН) формируют периодические сигналы, изменяющиеся по линейному закону (пилообразные импульсы).

Пилообразные импульсы характеризуются длительностью рабочего хода tр, длительностью обратного хода tо и амплитудой Um (рисунок 6, б).

Для создания линейной зависимости напряжения от времени чаще всего используют заряд (или разряд) конденсатора постоянным током. Простейшая схема ГЛИН приведена на рисунок 6, а.

Когда транзистор VT закрыт, конденсатор С2 заряжается от источника питания Uп через резистор R2. При этом напряжение на конденсаторе, а значит и на выходе линейно возрастает. При поступлении на базу положительного импульса транзистор открывается, и конденсатор быстро разряжается через его малое сопротивление, чем обеспечивается быстрое уменьшение выходного напряжения до нуля – обратный ход.

ГЛИН применяются в устройствах развертки луча в ЭЛТ, в аналого-цифровых преобразователях (АЦП) и других преобразовательных устройствах.

Рисунок 6 – а) Простейшая схема для формирования линейно изменяющегося напряжения б) Временная диаграмма импульсов пилообразной формы.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Виды электрических генераторов и принципы их работы

Электрическим генератором называется машина или установка, предназначенная для преобразования энергии неэлектрической — в электрическую: механической — в электрическую, химической — в электрическую, тепловой — в электрическую и т. д. Сегодня в основном, произнося слово «генератор», мы имеем ввиду преобразователь механической энергии — в электрическую.

Это может быть дизельный или бензиновый переносной генератор, генератор атомной электростанции, автомобильный генератор, самодельный генератор из асинхронного электродвигателя, или тихоходный генератор для маломощного ветряка. В конце статьи мы рассмотрим в качестве примера два наиболее распространенных генератора, но сначала поговорим о принципах их работы.

Так или иначе, с физической точки зрения принцип работы каждого из механических генераторов — один и тот же: явление электромагнитной индукции, когда при пересечении линиями магнитного поля проводника — в этом проводнике возникает ЭДС индукции. Источниками силы, приводящей к взаимному перемещению проводника и магнитного поля, могут быть различные процессы, однако в результате от генератора всегда нужно получить ЭДС и ток для питания нагрузки.

Принцип работы электрического генератора — Закон Фарадея

Принцип работы электрического генератора был открыт в далеком 1831 году английским физиком Майклом Фарадеем. Позже этот принцип назвали законом Фарадея. Он заключается в том, что при пересечении проводником перпендикулярно магнитного поля, на концах этого проводника возникает разность потенциалов.

Первый генератор был построен самим Фарадеем согласно открытому им принципу, это был «диск Фарадея» — униполярный генератор, в котором медный диск вращался между полюсами подковообразного магнита. Устройство давало значительный ток при незначительном напряжении.

Позже было установлено, что отдельные изолированные проводники в генераторах проявляют себя гораздо эффективнее с практической точки зрения, чем сплошной проводящий диск. И в современных генераторах применяются теперь именно проволочные обмотки статора (в простейшем демонстрационном случае — виток из проволоки).

Генератор переменного тока

В подавляющем своем большинстве современные генераторы — это синхронные генераторы переменного тока. У них на статоре располагается якорная обмотка, от которой и отводится генерируемая электрическая энергия. На роторе располагается обмотка возбуждения, на которую через пару контактных колец подается постоянный ток, чтобы получить вращающееся магнитное поле от вращающегося ротора.

За счет явления электромагнитной индукции, при вращении ротора от внешнего привода (например от ДВС), его магнитный поток пересекает поочередно каждую из фаз обмотки статора, и таким образом наводит в них ЭДС.

Чаще всего фаз три, они смещены физически на якоре друг относительно друга на 120 градусов, так получается трехфазный синусоидальный ток. Фазы можно соединить по схеме «звезда» либо «треугольник», чтобы получить стандартное сетевое напряжение.

Частота синусоидальной ЭДС f пропорциональна частоте вращения ротора: f = np/60, где — p — число пар магнитных плюсов ротора, n – количество оборотов ротора в минуту. Обычно максимальная скорость вращения ротора — 3000 оборотов в минуту. Если подключить к обмоткам статора такого синхронного генератора трехфазный выпрямитель, то получится генератор постоянного тока (так работают, кстати, все автомобильные генераторы).

Упрощенная схема трехфазного генератора переменного тока:

Трехмашинный синхронный генератор

Конечно, у классического синхронного генератора есть один серьезный минус — на роторе располагаются контактные кольца и щетки, прилегающие к ним. Щетки искрят и изнашиваются из-за трения и электрической эрозии. Во взрывоопасной среде это не допустимо. Поэтому в авиации и в дизель-генераторах более распространены бесконтактные синхронные генераторы, в частности — трехмашинные.

У трехмашинных устройств в одном корпусе установлены три машины: предвозбудитель, возбудитель и генератор — на общем валу. Предвозбудитель — это синхронный генератор, он возбуждается от постоянных магнитов на валу, генерируемое им напряжение подается на обмотку статора возбудителя.

Статор возбудителя действует на обмотку на роторе, соединенную с закрепленным на ней трехфазным выпрямителем, от которого и питается основная обмотка возбуждения генератора. Генератор генерирует в своем статоре ток.

Газовые, дизельные и бензиновые переносные генераторы

Сегодня очень распространены в домашних хозяйствах дизельные, газовые и бензиновые генераторы, которые в качестве приводных двигателей используют ДВС — двигатель внутреннего сгорания, передающий механическое вращение на ротор генератора.

У генераторов на жидком топливе имеются топливные баки, газовым генераторам — необходимо подавать топливо через трубопровод, чтобы затем газ был подан в карбюратор, где превратится в составную часть топливной смеси.

Во всех случаях топливная смесь сжигается в поршневой системе, приводя во вращение коленвал. Это похоже на работу автомобильного двигателя. Коленвал вращает ротор бесконтактного синхронного генератора (альтернатора).

Лучшие инверторные генераторы домашних электростанций имеют встроенный аккумулятор для компенсации перепадов и систему двойного преобразования, у таких устройств переменное напряжение получается более стабилизированным.

Автомобильные генераторы

Еще один пример генератора переменного тока — самый распространенный в мире вид генератора — автомобильный генератор. Данный генератор традиционно содержит обмотку возбуждения с контактными кольцами на роторе и трехфазную обмотку статора с выпрямителем.

Встроенный электронный регулятор удерживает напряжение в допустимых для автомобильного аккумулятора пределах. Автомобильный генератор — высокооборотный генератор, его обороты могут достигать 9000 в минуту.

Хотя изначально ток получается переменным (полюсные наконечники ротора поочередно и в разной полярности пересекают своими магнитными потоками три фазы обмотки статора), затем он выпрямляется диодами и превращается в постоянный, пригодный для зарядки аккумулятора.

Необычные конструкции электрических генераторов:

Яков Кузнецов/ автор статьи

Приветствую! Я являюсь руководителем данного проекта и занимаюсь его наполнением. Здесь я стараюсь собирать и публиковать максимально полный и интересный контент на темы связанные ремонтом автомобилей и подбором для них запасных частей. Уверен вы найдете для себя немало полезной информации. С уважением, Яков Кузнецов.

Понравилась статья? Поделиться с друзьями:
NEVINKA-INFO.RU
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: