Фазировка генераторов с сетью

Рассмотрены методы практической фазировки электрических цепей (генераторов, трансформаторов, кабельных и воздушных линий электропередачи), применяемые в энергосистемах при выполнении монтажных и ремонтных работ на станциях и в электрических сетях.

Фазировка генераторов с сетью

Фазировка оборудования — Фазировка генератора

Содержание материала

  • Фазировка оборудования
  • Основные понятия и определения
  • Приборы и приспособления, употребляемые при фазировке
  • Мегаомметр
  • Указателя напряжения для фазировки
  • Прибор ФК-80 для фазировки кабелей
  • Методы фазировки
  • Предварительная фазировка
  • Прямые методы фазировки
  • Фазировка на подстанциях с упрощенной схемой
  • Косвенные методы фазировки
  • Фазировка генератора
  • Несовпадение чередований и обозначений фаз

Фазировку генератора нельзя производить методом фазировки трансформаторов и линий. Вектор напряжения генератора вращается относительно вектора напряжения сети с разностью частот генератора и сети, и выравнять эти частоты на время, необходимое для производства всех операций по фазировке упомянутым методом, практически невозможно. Поэтому при фазировке проверяют и сравнивают лишь порядки следования фаз генератора и сети, а совпадение напряжений по фазе устанавливают каждый раз при включении генератора в сеть в процессе его синхронизации, когда в течение непродолжительного времени удается получить разность частот вращения, близкую к нулю.


Рис. 50. Принципиальная схема фазировки генератора при включении на сборные шины (в) ; то же при блочной схеме (б) :
1 — генераторы энергосистемы; 2 — фазируемый генератор; 3 — фазоуказатель; 4 — компенсаторы; 5 — трансформатор с. н.

Включаемый в сеть генератор должен иметь тот же порядок следования фаз, что и генераторы системы. Это требование вызвано тем, что включение на параллельную работу генератора, имеющего обратный порядок следования фаз, недопустимо, так как его момент вращения направлен в противоположную сторону относительно момента вращения генераторов системы.
Порядок следования фаз проверяют фазоуказателем И-517 или ФУ-2, который подключают к выводам вторичных цепей шинных трансформаторов напряжения или трансформаторов напряжения, установленных на выводах генератора (при снятых компенсаторах, отключенных разъединителях или разобранной схеме «нуля» генератора). К какой фазе трансформатора напряжения будет подключен тот или другой вывод фазоуказателя, значения не имеет, важно, чтобы фазоуказатель не переключали до конца проверки.
Если генератор по нормальной схеме должен работать на шины станции (рис. 50,с), то для его фазировки освобождают одну из систем шин (или секций). К шинному трансформатору напряжения выделенной системы шин присоединяют фазоуказатель. На шины поочередно подают напряжение сначала от системы включением шиносоединительного выключателя при отключенном выключателе генератора, а потом от возбужденного и вращающегося на холостом ходу генератора при отключенном шиносоединительном выключателе. При подаче напряжения на шины каждый раз замечают направление вращения диска фазоуказателя. Диск должен вращаться в одну и ту же сторону если порядок следования фаз проверяемого генератора и системы совпадает.
Если генератор предназначен для работы в блоке с трансформатором, его фазировку производят аналогично описанному выше методу, но на шинах ВН, к которым подключают блок. Если же освободить одну из систем шин невозможно или если генератор должен работать в блоке с трансформатором и линией (схема ГТЛ), фазировку выполняют на трансформаторах напряжения, установленных на выводах генератора (рис. 30, б). Для этого необходимо снять компенсаторы 4 (отключить генераторные разъединители, если они имеются в схеме, или разобрать схему «нуля» неподвижного генератора), включить трансформатор блока под напряжение со стороны системы и проверить направление вращения диска фазоуказателя. Затем трансформатор отключить от сети, присоединить снятые шинные компенсаторы (включить генераторные разъединители или собрать схему «нуля»), генератор развернуть до номинальной частоты вращения, возбудить и проверить порядок следования фаз у генератора.
После получения положительных результатов фазировки генератора с сетью проверяют правильность включения синхронизационных устройств, чтобы избежать несинхронного включения из-за неисправности цепей синхронизации. Сначала проверяют, работает ли синхроноскоп вообще. Для этого его подключают на заведомо несинхронное напряжение к зажимам трансформаторов напряжения сборных шин станции и вращающегося на холостом ходу генератора. Изменяя частоту вращения генератора, убеждаются в том, что приросты частоты вращения соответствуют направлению вращения стрелки синхроноскопа. При этом стрелка должна сделать один или несколько полных оборотов. Повороты стрелки на угол менее 360° не могут служить гарантией исправности синхронизационного устройства. Отклонения стрелки могут быть вызваны как неудовлетворительной работой регулирования турбины, так и обрывом цепи напряжения или неисправностью самого синхроноскопа.
Затем работу синхроноскопа проверяют на синхронном напряжении. Для этого генератор включают на резервную систему шин, а синхроноскоп подключают таким образом, чтобы его цепи были присоединены к трансформаторам напряжения резервной системы шин и генератора. Поскольку теперь к синхроноскопу будет подведено синхронное напряжение, его стрелка должна установиться на красной черте, что укажет на совпадение фаз (синфазность) напряжений. Если она установится в любом другом положении, то это значит, что синхронизационное устройство неисправно и пользоваться им при включении генератора недопустимо.
Такую же проверку работы синхронизационного устройства производят и для другой системы шин станции. Ограничиваться фазировкой между собой трансформаторов напряжения резервной и рабочей систем шин в данном случае нельзя, так как ошибка в подключении синхроноскопа может быть допущена непосредственно на его выводах.
При блочном соединении генератора с трансформатором проверяется правильность работы схемы синхронизации на стороне ВН или при отсоединенных компенсаторах и подаче напряжения на генераторные трансформаторы напряжения от сети.
Включение синхронного генератора на параллельную работу способом точной синхронизации производят по показанию синхроноскопа, в правильной работе которого нет сомнений. При совпадении фаз вращающихся векторов напряжений сети и генератора стрелка синхроноскопа должна находиться на красной черте шкалы. Практически абсолютного совпадения частот генератора и сети достичь трудно, однако стремятся так подогнать частоту вращения генератора, чтобы стрелка синхроноскопа вращалась с частотой не более 2—3 об/мин. Чтобы включение генератора произошло точно в момент совпадения фаз, импульс на включение генераторного выключателя подают (автоматически или вручную) в то время, когда стрелка не дошла до красной черты на угол 10—12°. Это опережение учитывает собственное время включения выключателя.
Перед включением в работу блока генератор — трансформатор кроме фазировки генератора с сетью должна производиться фазировка отпаечного трансформатора собственных нужд (с. н.), подключенного к шинному мосту генератора, с источником резервного питания с. н. (резервным трансформатором, шинами с. н. станции). На действующей станции такая фазировка производится при отсоединенном генераторе и питании трансформатора с. н. от системы через трансформатор блока.
Следует иметь в виду, что в процессе такого рода фазировки в ряде схем могут фазироваться непосредственно между собой трансформаторы с разными группами соединений. На рис. 51,а представлена типичная схема блока генератор — трансформатор, где на напряжении 6 кВ должен фазироваться отпаечный трансформатор 72, имеющий соединение обмоток Д/Д/Д-0-0 с резервным трансформатором с. н. ТЗ, обмотки которого соединены по схеме У/Д/Д-11-ll.


Рис. 51. Проверка углового сдвига напряжений параллельно включаемых трансформаторов с. н.:
а — схема включения трансформаторов с. н. блока генератор — трансформатор; б, в, г — векторные диаграммы сдвига векторов напряжений трансформаторов 77, Т2 и ТЗ соответственно; б — совмещенная векторная диаграмма напряжений трансформаторов 77 и Т2
Условия параллельной работы для такой схемы должны рассматриваться особо. Дело в том, что трансформатор ТЗ включается параллельно не с одним, а с двумя последовательно включенными трансформаторами 77 и Т2 на напряжении 110 и 6 кВ. Ступень генераторного напряжения 13,8 кВ в расчет не принимается. Поэтому углы сдвига фаз векторов напряжений 6 кВ для обеих параллельных цепей следует брать относительно вектора напряжения 110 кВ. И если для трансформатора ТЗ угол сдвига векторов напряжений НН относительно ВН равен 330° (рис. 51, г), то такой же суммарный угол сдвига должны иметь трансформаторы Т1 и Т2.

Рис. 52. Схема питания и резервирования собственных нужд тепловой станции блочного типа
Проверить суммарный угловой сдвиг можно совмещением векторных диаграмм 77 (рис. 51, б) и Т2 (рис. 51, в). Из совмещенной диаграммы (рис. 51, д) видно, что угол сдвига между векторами 6 и 110 кВ также равен 330°, следовательно, параллельное включение трансформаторов 77 и Т2 с трансформатором ТЗ возможно.
Фазировку рабочего и резервного источников питания на шинах РУ собственных нужд обычно разбивают на два этапа: фазировку рабочих и резервных секций шин и фазировку собственно рабочего и резервного источников питания. Порядок операций рассмотрим на примере ввода в работу первого блока генератор — трансформатор строящейся тепловой станции (рис. 52). На такой станции разворот и включение в сеть вновь смонтированного генератора могут производиться только при питании электродвигателей механизмов с. н. (механизмов пылеприготовления, дымососов, вентиляторов, маслонасосов турбин и других насосов) от резервного трансформатора, подключенного непосредственно к сети энергосистемы (к сборным шинам ВН или к вводу одной из линий). Включение электродвигателей под напряжение для опробования и обкатки механизмов производится лишь после проверки маркировки выводов вторичных обмоток шинных трансформаторов напряжения и фазировки между собой резервных и рабочих шин РУ собственных нужд.
Напряжение для фазировки подают на резервную секцию шин от трансформатора РТ включением его выключателей ВЗ и В4. Затем включают выключатели В5 и Вб и фазируют рабочие секции с резервной косвенным методом на выводах вторичных обмоток трансформаторов напряжения ТН2-ТНЗ и ТН2-ТН4. В случае совпадения фаз фазировку секций шин РУ с. н. считают законченной.
Для фазировки рабочего трансформатора 7СН и резервного РТ генератор должен быть выведен из схемы (отключены генераторные разъединители или сняты компенсаторы). К началу фазировки с рабочих секций снимают напряжение отключением выключателей В5 и Вб и с приводов этих выключателей снимают оперативный ток, чтобы исключить случайное включение (в КРУ тележки выключателей перемещают в контрольное положение). Включением выключателей В2 и В1 на трансформатор Тс к подают напряжение от энергосистемы. Затем включают выключатели В7 и В8 и производят фазировку трансформаторов Тс м и РТ на выводах вторичных обмоток трансформаторов напряжения ТН2 и ТНЗ, ТН2 и ТН4, совпадение фаз которых уже было проверено. Если фазы напряжений совпадут, на приводы выключателей В5 и В6 подают оперативный ток и включают их, тем самым включая трансформаторы Тс „ и FT на параллельную работу.
Для подготовки генератора к включению в сеть отключают выключатели В7, В8 и В1. В процессе пуска генератора питание двигателей механизмов с. н. производят от резервного трансформатора РТ и только после включения генератора с. н. станции переводят на питание от рабочего трансформатора 7, оставляя резервный трансформатор под АВР.
В заключение напомним, что при создании тех или иных схем фазировки необходимо соблюдать правила оперативных переключений, в частности должны приниматься меры против ошибочного включения генератора в сеть без его синхронизации, даже если последовательности фаз совпадают. Достаточной гарантией в этом отношении является снятие оперативного тока с привода выключателя, отделяющего генератор от сети или от других работающих генераторов.

Читайте также  Шум в генераторе ниссан альмера классик

Что такое чередование фаз и как его проверить?

Большинство трехфазных электродвигателей и других устройств учитывают такой параметр, как чередование фаз. На практике, несоответствие данного параметра изначальным настройкам может привести к различным аварийным ситуациям, некорректной работе электрических приборов и к травмированию персонала.

Что такое чередование фаз?

Под чередованием фаз следует понимать последовательность, в которой напряжение нарастает в каждой из них. Во всех трехфазных цепях напряжение представляет собой синусоидальную кривую. В каждой линии напряжение отличается на 120º от остальных.

Рис. 1. Напряжение в трехфазной сети

Как видите, на рисунке 1, там где а) — показаны кривые напряжения во всех фазных проводах, смещенные на 120º. На соседнем рисунке б) изображена векторная диаграмма этих напряжений, На обоих рисунках показана разница между фазным и линейным напряжением.

Если взять за основу, что из нулевой точки на рисунке а) выходит U­A, то эта фаза является первой, на диаграмме б) наглядно стрелками показано, что очередность нарастания напряжения переходит от U­A к U­B, а за ним к U­C. Это означает, что фазы чередуются в порядке A, B, C. Такой порядок чередования считается прямым.

Прямое и обратное чередование фаз

В трехфазной сети порядок чередования фаз может отличаться в зависимости от способов подключения к силовым трансформаторам на подстанциях, от последовательности включения обмоток генератора, из-за несоответствия выводов кабеля и по прочим причинам.

Рисунок 2: Прямая и обратная последовательность

Обратите внимание, цветовая маркировка определяет последовательность в соответствии их очередностью в алфавите по первым буквам цвета:

  • Желтый – первый;
  • Зеленый – второй;
  • Красный – третий.

На рисунке 2 изображен классический вариант прямой последовательности A – B – C (где A имеет желтый цвет и является первой, B – зеленый и является второй, а C – красный и является третей) и классический вариант обратной последовательности C – B – A. Но, помимо них на практике могут встречаться и другие варианты, прямого: B – C – A, C – A – B, и обратного чередования: A – C – B, B – A – C. Соответственно, в каждом из приведенных примеров чередование фаз будет начинаться с первой.

Зачем нужно учитывать порядок фаз?

Последовательность чередования играет значительную роль в таких ситуациях:

  • При параллельном включении в работу – ряд устройств (трансформаторы, генераторы и прочие электрические машины), могут соединяться в параллельную работу для повышения надежности системы или для обеспечения большего резерва мощности. Но, в случае неправильного подключения из-за соединения разноименных фаз произойдет короткое замыкание.
  • При подключении трехфазного счетчика – так как его работа основана на совпадении фаз с соответствующими выводами прибора, то при нарушении правильности подключения может произойти сбой и самопроизвольное движение в отсутствии какой-либо нагрузки. Из-за чего такое подключение электросчетчика приведет к необходимости оплаты потребителем киловатт, которые он не расходовал.
  • При включении двигателя – следование фаз в сети определяет для электрической машины и направление вращения двигателя. В случае отсутствия правильной фазировки изменится и направление движения элементов, механически соединенных с ротором. Из-за чего может произойти нарушение технологического процесса или возникнуть угроза жизни персонала.

С целью предотвращения негативных последствий от перекоса фаз и других несовпадений, на практике выполняют проверку чередования и устанавливают защиту.

Как выполнить проверку?

Проверка может производиться несколькими способами. Целесообразность выбора того или другого варианта осуществляется в зависимости от параметров электрической сети и задач, которые необходимо решить. Так чередование можно узнать при помощи фазоуказателя, мегаомметра, мультиметра или по расцветке изоляции кабеля. Рассмотрите каждый из вариантов более подробно.

С помощью фазоуказателя

По принципу действия, фазоуказатель можно сравнить с обычным асинхронным двигателем. Рассмотрим в качестве примера наиболее распространенную модель фазоуказателя — ФУ-2 .

Рисунок 3: Принципиальная схема работы ФУ-2

Как видите на рисунке 3, у указателя последовательности фаз присутствуют три обмотки, которые подсоединяются к одноименным фазам в сети или устройстве. Между обмотками находится вращающийся ротор Р, который приводит в движение диск фазоуказателя Д.

На практике, после подсоединения к зажимам фазоуказателя соответствующих проводов, работник нажимает кнопку К, которая замыкает цепь обмоток. В зависимости от порядка чередования фаз, диск Д начнет вращаться по часовой или против часовой стрелки.

На самом приборе имеется стрелка, показывающая прямое чередование. Если при нажатии кнопки диск вращается в том же направлении, что и показано стрелкой, то эта трехфазная нагрузка имеет прямое чередование. Если диск начнет крутиться в противоположную от стрелки сторону, то чередование фаз обратное. Следует отметить, что этот прибор не способен определить, какая фаза на каком проводе находится, он может определить лишь порядок их чередования.

С помощью мегаомметра

Как один из способов прозвонки жил широко используется прибор для измерения сопротивления – мегаомметр.

Рис. 4: Прозвонка кабеля мегаомметром

Посмотрите на рисунок 4, для реализации такой схемы, вам понадобится отключить кабель от сети и от потребителя. При этом, с одного конца кабеля фазы поочередно соединяются с землей З, как и металлическая оболочка у бронированных кабелей. С другой стороны присоединяется мегаомметр М, один из зажимов которого заземляется, а второй поочередно подводится к каждой из фаз. На той, где мегаомметр покажет нулевое сопротивление, и будет одним проводом.

На концах одноименного провода устанавливается соответствующая маркировка. Недостатком такого способа прозвонки является большой объем трудозатрат. Так как каждая жила заземляется поочередно, после чего выполняется проверка. При этом на обоих концах кабеля должны устанавливаться ответственные сотрудники. Между ними должна обеспечиваться связь, для согласования действий и предупреждения подачи напряжения на работников.

По расцветке изоляции жил

Если в каком-либо устройстве имеется подключение разноцветными жилами, то фазировку оборудования можно выполнять по цветам. Для определения нахождения одноименных напряжений тех или иных фаз необходимо добраться до каждой жилы кабеля. Если на каждом проводе присутствует изоляция разных цветов, то сравнив их с местом присоединения к трансформатору или распедустройству, можно определить, где какая фаза находится.

Недостатком такого метода следует отметить ложную цветовую маркировку, так как производитель кабеля не всегда обеспечивает один и тот же цвет для каждой жилы на всей протяженности провода. Поэтому предварительно его все равно рекомендуется прозванивать и маркировать.

При помощи мультиметра

Для этого метода используется обычный мультиметр. Он наиболее актуален в тех ситуациях, когда необходимо включить в параллельную работу два смежных устройства и их шины расположены поблизости.

Рис. 5: фазировка мультиметром

Необходимо выполнить сравнение фазных напряжений в соседних линиях, на рисунке 5 приведен пример для фаз А и А1. Коммутационная аппаратура при этом должна быть разомкнута. Перед тем как пользоваться мультиметром, на нем выставляется класс напряжения, для линии, на которой будет производиться замер. Щупы подводятся к выводам фаз, при этом их изоляция должна обеспечивать защиту от напряжения, а на руки надеваются диэлектрические перчатки.

Если при подключении щупов к выводам A — A1 стрелка останется на нулевой отметке, то это значит, что фазы одинаковые. Если стрелка отклонится на величину линейного напряжения, вы меряете разноименные фазы.

Защита от нарушения порядка чередования

Для защиты электрического оборудования от неправильного чередования на практике применяется реле контроля фаз. Это реле настроено на работу двигателя или другого устройства в его прямом включении. Если из-за каких-то неполадок или неправильного подключения чередование нарушается, то трехфазное реле сразу отключит устройство. Его работа основана на анализе трехфазных токов и напряжений и последующем контроле этих параметров.

Подключение может выполняться через трансформаторы тока или напрямую, в зависимости от модели и класса напряжения в сети. Такая защита нашла широкое применение при подключении счетчиков индукционного типа, электрических машин и другого высокоточного оборудования.

Предварительная фазировка

Дополнительно по теме

ПРЯМЫЕ МЕТОДЫ ФАЗИРОВКИ

КОСВЕННЫЕ МЕТОДЫ ФАЗИРОВКИ

ПРЕДВАРИТЕЛЬНАЯ ФАЗИРОВКА (ПРОВЕРКА ЧЕРЕДОВАНИЯ ФАЗ)

Проверка чередования фаз генератора.

Обмотки электрических машин переменного тока выполняют простыми (имеющими одну ветвь) и составными (имеющими две параллельные ветви в каждой фазе). Выводы обмоток маркируют по ГОСТ. Начала простых обмоток статора обозначают С1, С2, СЗ, концы — С4, С5, С6 соответственно. Выводы составных обмоток маркируют теми же буквами, что и выводы простых обмоток, но впереди прописных букв ставят цифры. Так, в случае двух обмоток на статоре выводы первой обозначают 1С1 — 1С4; 1C2-1C5; 1СЗ-1С6, выводы второй — 2С1-2С4; 2С2-2С5; 2СЗ-2С6. Выводы, подсоединяемые к сети, называют линейными, а соединяемые вместе в звезду — нулевыми. У генераторов с простыми обмотками линейными считают выводы от начал: C1, С2 и СЗ, у мощных генераторов с параллельными обмотками — выводы С4, С5, С6. В последнем случае нулевыми будут выводы C1, С2, СЗ. На рис. 19 показана схема обмотки статора турбогенератора ТВФ-100-2. Обмотка имеет девять кольцевых выводов — три линейных и шесть нулевых. Объединены выводы 1С1, 1СЗ, 1С2 и 2С1, 2СЗ, 2С2. Нейтрали соединены шинной перемычкой с установленным на ней трансформатором тока, предназначенным для включения поперечной дифференциальной токовой защиты от к. з. между витками в одной из фаз обмотки статора. Для фазировки генератора необходимо знать, какие его выводы являются линейными.

Рис. 19. Схема следования фаз и чередования обозначений выводов двухслойной обмотки статора турбогенератора ТВФ-100-2 (вид со стороны возбудителя).

Порядок следования фаз генератора зависит от направления вращения ротора и чередования фаз обмотки статора. Направление вращения ротора определяется по расположению лопаток на дисках турбины, а чередование фаз устанавливается визуально, когда статор монтируемого генератора находится на фундаменте. Для этого, начиная от линейных выводов, прослеживают места входа в пазы трех обмоток статора. Очередность, в которой расположены эти места по окружности статора, если обход вести в направлении вращения ротора, и определит собой действительное чередование фаз обмотки.

Подводка соединительных шин к генератору и их раскраска производятся в зависимости от установленного порядка следования фаз генератора и сети. При этом варианты возможного подсоединения монтируемого генератора приведены в табл. 1.

Установленный порядок следования фаз на линейных

Варианты соединения выводов генератора с фазами сети при порядке их следования А — В — С

Укажем, что все варианты подсоединения генератора равноценны и выбор того или другого определяется исключительно удобством прокладки соединительных шин от выводов к шинам действующего распределительного устройства. Если порядок следования фаз сети не прямой (А, В, С), а обратный (А, С, В), то в табл. 1 следует поменять местами буквы В и С.

Читайте также  Угловая характеристика синхронных генераторов

Проверка чередования фаз синхронного компенсатора.

Проверка производится в процессе монтажа статора при снятых торцевых щитах аналогично описанному выше способу определения чередования фаз генератора. Проверкой устанавливают соответствие чередования фаз на выводах статора заданному направлению вращения ротора. Это важно для обеспечения нормальной циркуляции масла в подшипниках. При подсоединении выводов синхронного компенсатора к фазам сети руководствуются теми же соображениями, что и при подключении генератора.

Проверка чередования фаз силовых трансформаторов.

В соответствии с ГОСТ вводы у трансформаторов располагают так, чтобы чередование их (слева направо), если смотреть со стороны вводов высшего напряжения, было:

у трехфазных трансформаторов

у однофазных трансформаторов

Проследить, правильно ли подсоединены концы обмоток к соответствующим вводам без вскрытия трансформатора, не представляется возможным. Поэтому правильность обозначений вводов трехфазных трансформаторов и полярность вводов однофазных трансформаторов устанавливаются при проверке групп соединений, которая производится при монтаже и капитальном ремонте трансформаторов с частичной или полной сменой обмоток.

Проверка чередования фаз воздушных линий.

Сооружение новой воздушной линии электропередачи производится на основании проектной документации, содержащей среди прочих документов трехлинейную схему линии (по всей ее длине) с транспозицией проводов и заранее нанесенной расцветкой фаз. На этой схеме расположение проводов на ближайшей к линейному порталу ОРУ опоре предусматривают в том порядке, который обеспечил бы совпадение фаз линии с соответствующими фазами оборудования подстанции. Особое значение это имеет при прокладке новых линий между действующими подстанциями. Транспозиция проводов в этом случае выполняется с учетом фактического расположения оборудования и порядка чередования фаз на ОРУ с обоих концов линии.

Чтобы избежать ошибок при производстве монтажных работ на линиях, установлен порядок, при котором 32 организация, принимающая линию в эксплуатацию, обязана вести технический надзор за ее строительством в соответствии с проектной документацией.

Проверка чередования фаз новой линии состоит в том, что приемочная комиссия сверяет выполнение работ с имеющейся документацией. Особенно тщательно проверяется монтаж проводов на транспозиционных опорах и на подходах линии к подстанциям.

Проверка чередования фаз силовых кабелей. Простейшим способом отыскания в конце кабеля токоведущих жил, соответствующих определенным фазам его начала, является способ проверки («прозвонки») жил при помощи телефонных трубок, например при проверке силовых кабелей, прокладываемых между различными помещениями станций и подстанций.

Схема подсоединения телефонных трубок показана на рис. 20. В качестве одного из проводов для установления связи используют заземленные конструкции (заземленную металлическую оболочку кабеля), к которым подсоединяют телефонные трубки. Далее, с одной из сторон кабеля провод от батарейки соединяют с токоведущей жилой (допустим, фазой С), С другой стороны кабеля вторым проводом от телефонной трубки поочередно касаются токоведущих жил, каждый раз подавая голосом сигнал в трубку. Найдя жилу, по которой будет получен отзыв проверяющего, ее помечают как фазу С и в том же порядке продолжают поиск других жил. Вместо телефонных трубок в последнее время стали применять телефонные гарнитуры, которые освобождают руки проверяющих для работы.

Рис. 20. Схема присоединения телефонных трубок при фазировке кабеля.

Для проверки чередования фаз достаточно широко используют мегаомметр, схема включения которого показана на рис. 21. Для фазировки поочередно заземляют жилы в начале кабеля, а в конце производят измерение сопротивления изоляции жил относительно земли.

Заземленную жилу обнаруживают по показанию мегаомметра, так как сопротивление ее изоляции на землю будет равно нулю, а двух других жил — десяткам и даже сотням мегаом.

Рис.21 Схема присоединения мегаомметра при фазировке кабеля.

При этом способе проверки трижды устанавливают и снимают заземления. Кроме того, персонал, находящийся по концам кабеля, должен иметь между собой связь, чтобы координировать свои действия. Все это относится к недостаткам такого способа проверки. Более совершенным является способ измерений по схеме, приведенной на рис. 22. Одну из трех жил кабеля (назовем ее фазой А) жестко соединяют с заземленной оболочкой, другую жилу (фазу С) заземляют через сопротивление 8-10 МОм. В качестве сопротивления обычно используют трубку с резисторами указателя УВНФ. Третью жилу (фазу В) не заземляют, она остается свободной. С другого конца кабеля мегаомметром измеряют сопротивление жил относительно земли. Очевидно, что фазе Л будет соответствовать жила, сопротивление которой на землю равно нулю, фазе С — жила, имеющая сопротивление на землю 8-10 МОм, и фазе В — жила с бесконечно большим сопротивлением.

Рис. 22. Схема присоединения мегаомметра и дополнительного сопротивления при фази-ровке кабеля.

Условия безопасности при производстве фазировки кабелей.

Фазировка производится только на отключенной со всех сторон кабельной линии. При этом должны быть приняты меры против подачи на кабель рабочего напряжения. Перед началом фазировки при помощи мегаомметра весь персонал, находящийся вблизи кабеля, предупреждается о недопустимости прикосновения к токоведущим жилам.

Соединительные провода от мегаомметра должны иметь усиленную изоляцию (например, провод типа ПВЛ). Присоединение их к токоведущим жилам производится после того, как кабель будет разряжен от емкостного тока. Для снятия остаточного заряда кабель заземляют на 2-3 мин.

Проверка чередования фаз силовых кабелей по расцветке изоляции жил.

Токоведущие жилы силовых кабелей с изоляцией из пропитанной бумаги расцвечивают навитыми на их изоляцию лентами цветной бумаги. Одну из жил, как правило, опоясывают красной лентой, другую синей, а изоляцию третьей специально не расцвечивают — она сохраняет цвет кабельной бумаги. При изготовлении кабелей жилы скручивают между собой так, что на протяжении одного шага скрутки каждая жила меняет свое положение в площади сечения, делая один оборот вокруг оси кабеля. Рассматривая площади сечений с обеих концов кабеля, можно обнаружить, что по отношению к наблюдателю фазы в сечениях чередуются в разных направлениях (рис. 23). Эти особенности конструкции кабелей учитывают при фазировке и соединении жил.

Рис. 23. Чередования фаз в сечениях кабеля. Стрелками показаны направления обхода фаз.

Допустим, что необходимо произвести фазировку и соединение жил двух концов трехфазного кабеля. Фазировка в данном случае элементарно проста. Она заключается в том, что из шести жил выбирают пары, имеющие одинаковую расцветку. Эти жилы замечают и готовят к 1 соединению. Для соединения необходимо, чтобы оси жил одинаковой расцветки совпадали, а направление чередования фаз в площади сечения одного конца кабеля было бы зеркальным отражением другого (рис. 24,а). При укладке кабелей в траншею вероятность совпадения осей жил невелика. Чаще всего фазы одного цвета оказываются повернутыми относительно друг друга на некоторый угол, значение которого может доходить до 180° (рис. 24,б). Кабели с несовпадающими осями одинаково расцвеченных жил при монтаже (или ремонте) подкручивают вокруг оси, пока не будет зафиксировано точное совпадение осей жил. Однако сильное подкручивание не безопасно. Оно вызывает механические напряжения в защитных и изоляционных покровах кабелей и влечет за собой снижение надежности в работе.

Для того чтобы по цвету совпали все соединяемые между собой жилы, направления чередований фаз в сечениях кабелей должны быть противоположными. Это проверяется, заранее, до укладки кабеля в траншею, если на его концах отсутствуют метки с указанием направления чередования фаз. Заметим, что у кабелей с чередованием фаз, направленным в одну сторону, по цвету совпадает только одна жила, а две другие не могут совпадать (рис. 24, в).

Рис. 24. Некоторые варианты чередования расцвеченных жил в сечениях двух кабелей.

а -соединение жил одинакового цвета возможно; б — то же после поворота сечения на 180°; в — соединение трех жил по их цветам невозможно.

Преимущество способа соединения кабелей одинаково расцвеченными жилами состоит в том, что фазировка здесь не является самостоятельной операцией, она выполняется в ходе самих работ, а процесс прокладки, ремонта и эксплуатации кабелей приобретает более стройную систему и требует меньших трудозатрат.

БЛОГ ЭЛЕКТРОМЕХАНИКА

Студенческий блог для электромеханика. Обучение и практика, новости науки и техники. В помощь студентам и специалистам

  • главная
  • инфо
  • блог
  • словарь электромеханика
  • электроника
  • крюинговые компании
    • Одесса/Odessa
    • Николаев/Nikolaev
  • Обучение
    • Предметы по специальности
      • АГЭУ
      • АСЭЭС
      • Диагностика и обслуживание судовых технических средств
      • Мехатронные системы
      • Микропроцессоры
      • Моделирование электромеханических систем
      • МПСУ
      • САЭП
      • САЭЭС
      • СДВС
      • СИВС
      • Силовая электроника
      • Судовые компьютерные ceти
      • СУЭ и ОСУ
      • ТАУ
      • Технология судоремонта
      • ТЭП
      • ТЭЭО и АС
    • Общие предметы
      • Безопасность жизнедеятельности
      • Высшая математика
      • Ділова українська мова
      • Интеллектуальная собственность
      • Культурология
      • Материаловедение
      • Охрана труда
      • Политология
      • Системы технологий
      • Судовые вспомогательные механизмы
      • Судовые холодильные установки
    • I курс
      • конспекты
      • ргр
      • контрольные
      • лабораторные
      • курсовые
      • зачёты
      • экзамены
    • II курс
      • конспекты
      • ргр
      • контрольные
      • лабораторные
      • курсовые
      • зачёты
      • экзамены
    • III курс
      • конспекты
      • ргр
      • контрольные
      • лабораторные
      • курсовые
      • зачёты
      • экзамены
    • IV курс
      • конспекты
      • ргр
      • контрольные
      • лабораторные
      • курсовые
      • зачёты
      • экзамены
    • V курс
      • конспекты
      • ргр
      • контрольные
      • лабораторные
      • курсовые
      • зачёты
      • экзамены
  • Теория
    • английский
    • интернет-ресурсы
    • литература
    • тематические статьи
  • Практика
    • типы судов
    • пиратство
    • видеоуроки
  • мануалы
  • морской словарь
  • технический словарь
  • история
  • новости науки и техники
    • авиация
    • автомобили
    • военная техника
    • робототехника

04.10.2014

Синхронизация генераторов

В предыдущей статье были определены условия, необходимые для синхронизации генераторов. Разберем, какими средствами осуществляется выполнение этих условий.

Порядок чередования фаз обмоток статора проверяется при монтаже генераторов и их первоначальном подключении к шинам главного распределительного щита (так называемая «фазировка»); Все остальные условия надо контролировать при каждом включении генераторов на параллельную работу.

Совпадение напряжений подключаемого генератора и на шинах щита проверяется по вольтметру и достигается регулировкой возбуждения генератора. Эту проверку рекомендуется производить с помощью одного вольтметра, подключаемого через переключатель поочередно к генератору или к шинам щита.

Совпадение частот контролируется по частотомеру и осуществляется регулировкой скорости вращения первичного двигателя. Регулировка производится с главного распределительного щита посредством органов дистанционного управления подачей топлива или пара. Для удобства сравнения частот обычно применяется сдвоенный частотомер, имеющий две шкалы, расположенные непосредственно одна под другой. Одна из этих шкал включена на генератор, а вторая — на шины щита.

Равенство углов сдвига фаз между э. д. с. каждого генератора и напряжением на шинах будет иметь место при условии совпадения по фазе синусоидальных кривых напряжений обоих генераторов.

Проверка такого совпадения выполняется либо с помощью ламп синхронизации, либо с помощью синхроноскопа.

Различают два способа включения ламп синхронизации: на «темное» и на «светлое» включение.

При первом способе лампы синхронизации включаются на одноименные фазы шин распределительного щита и обмоток статора подключаемого генератора (рис. 1).

Читайте также  Шумит генератор гольф 4

Если скорости вращения генераторов несколько отличаются, одна от другой, то сила света ламп будет периодически изменяться от погасания до максимальной. Эти изменения силы света происходят у всех ламп одновременно. Когда фазы синусоидальных кривых напряжений на клеммах генератора и на шинах распределительного щита совпадают, все лампы гаснут и автомат генератора может быть включен.

Этот способ включения неудобен тем, что нельзя определить, вращается ли подключаемый генератор быстрее или медленнее работающего.

При втором способе между одноименными фазами обмоток генераторов включается только одна лампа, две же другие включаются на разноименные фазы (рис. 2). В этом случае все лампы будут загораться и гаснуть в разное время.

Если такие лампы расположить в вершинах равностороннего треугольника, то по направлению вспышек ламп можно судить о необходимости увеличения или уменьшения скорости вращения подключаемого генератора. В момент совпадения синусоид напряжений, т. е. в момент синхронизации генераторов, лампа, включенная на одноименные фазы, погаснет, а две другие будут гореть с одинаковой силой света.

Более удобно определять момент синхронизации по стрелочному синхроноскопу. Один из способов синхронизации генераторов называется способом точной синхронизации.

Синхронизация по этому способу является достаточно сложной и ответственной операцией, требующей высокой квалификации обслуживающего персонала, а в некоторых случаях и длительного времени для ее осуществления.

Гораздо проще и быстрее включение генераторов на параллельную работу осуществляется по методу самосинхронизации.

При этом способе генератор в невозбужденном состоянии разворачивается первичным двигателем до скорости, при которой его частота отличается от частоты на шинах на 1—2 гц (эта скорость называется подсинхронной скоростью), затем подключают его к шинам и немедленно дают ему возбуждение.

Для проверки частоты синхронизируемого генератора (при отсутствии специального частотомера, который может работать на напряжении, развиваемом генератором при остаточном магнетизме) его до подключения к шинам возбуждают, при достижении подсинхронной частоты быстро снимают возбуждение, не изменяя положения маховика регулятора возбуждения, затем включают автомат генератора и снова дают возбуждение.

Включение методом самосинхронизации сопровождается возникновением кратковременного броска тока, не превышающего обычно трехкратного значения номинального тока (при низкой величине коэффициента мощности) и поэтому безопасного для генератора.

С целью уменьшить бросок тока, возникающий при включении генератора, за последнее время стали применять метод грубой синхронизации генераторов через реактор.

При этом методе генератор, возбужденный до номинального напряжения так же, как и при методе самосинхронизации, доводится до подсинхронной скорости вращения. После этого включают генератор на шины сначала через реактор, а затем (через несколько секунд) на прямую. После включения генератора на шины реактор выключают. Соответствующим подбором сопротивления реактора можно достигнуть того, что ток включения генератора не будет превышать его номинального тока.

На рис. 3 дана схема автоматизированного включения генератора на параллельную работу методом грубой синхронизации. При нажатии кнопки «Вкл.» катушка контактора К, получив питание включает генератор Г на шины через реактор Р. Одновременно контактор подает питание на катушку реле времени РВ. Через 6—8 сек после включения контактора реле времени срабатывает и подает питание на катушку электромагнитного привода автомата генератора А. После включения автомата кнопка «Вкл». отпускается. Контактор К, лишившись питания, отключает реактор и катушку реле времени. Чтобы избежать одновременного включения двух генераторов, цепи питания катушек контакторов К1 и К2 сблокированы с помощью блок-контактов этих же контакторов.

Включение на параллельную работу методом грубой синхронизации через реактор является наиболее простым, удобным и надежным, в связи с чем получает все большее распространение на судах.

Отключение работающего генератора осуществляется нажатием кнопки «Откл.», которая прерывает питание катушки автомата генератора А.

Электростанции

  • Главная
  • карта сайта
  • статьи

Навигация

  • Меню сайта
    • Организация эксплуатации
    • Электрические схемы
    • Турбогенераторы
    • Трансформаторы и автотрансформаторы
    • Распределительные устройства
    • Электродвигатели
    • Автоматика

    Фазировка

    После монтажа, перед включением в сеть, а также после капитального ремонта, связанного с возможным изменением схемы силовых цепей между выводами обмотки статора и шинами (замена одного из кабелей, реконструкция ошиновки и пр.), необходимо после подъема напряжения сфазировать подключаемую машину с сетью. Фазировка состоит в проверке чередо-
    вания фаз подключаемой машины и внешней сети. Наиболее распространенным способом фазировки в настоящее время является проверка чередования фаз подключаемой машины и сети на зажимах вторичных обмоток трансформаторов напряжения. Различные варианты фазировки генераторов с сетью показаны на рис. 3-41. Если генератор должен быть включен непосредственно на шины, фазировку проверяют следующим образом: для подключаемого генератора выделяется отдельная (обычно трансферная) система шин, к маркированным выводам вторичных цепей трансформатора напряжения выделенной системы шин подключается прибор, определяющий чередование фаз (фазоуказатель), причем концы проводов от прибора /, //, III, должны быть подключены к фазам А, В, С на панели зажимов под болт. Затем на выделенную систему шин подают напряжение от системы с работающими генераторами через шиносое-динительный выключатель и убеждаются в правильном чередовании фаз по соответствию вращения диска прибора направлению стрелки на диске. Не отсоединяя подключенных концов от фазоуказателя, напряжение с системы шин снимают отключением шиносоединительного выключателя (схема которого должна быть после этого разобрана), после чего собирают схему подключаемого генератора и генераторным выключателем (подают напряжение на ту же систему шин от (Подключаемого генератора. Сравнение направления вращения диска фазоуказателя с первым замером подтверждает совпадение или несовпадение чередования фаз подключаемого генератора и сети.
    Если генератор включается блоком с трансформатором, фазировку можно проводить аналогично описанному выше способу либо на трансформаторе напряжения, установленном на выводах генератора (рис. 3-41,6). В последнем случае перед фазировкой на остановленном генераторе снимаются шинные компенсаторы, соединяющие обмотку статора с шинным мостом, затем выключателем на высокой стороне трансформатора подается напряжение на шинный мост генератора от системы и проверяется правильность чередования фаз фазоуказате-лем, одновременно проверяется совпадение маркировки выводов трансформаторов напряжения генератора и системы шин. После восстановления ошиновки выводов генератор разворачивается до номинальной скорости, возбуждается и по фазоуказателю проверяется чередование фаз напряжения генератора. Частный дом монтаж отопления цена.
    Перед включением в работу ответвления собственных нужд от шин генераторного напряжения на секцию шин собственных нужд, на которую, кроме того, можно подать напряжение от резервного трансформатора собственных нужд, обязательно должна быть проверена фа-зировка источников рабочего и резервного питания между собой, причем в этом случае, кроме правильности чередования фаз, определяется также их совпадение, фазировку трансформаторов).
    Ошибка при проверке фазировки может привести к тяжелым повреждениям машины в момент включения ее в сеть, так как при этом моменты вращения генератора и системы будут направлены в разные стороны. При фазировке во вторичных цепях трансформаторов напряжения могут быть допущены ошибки при соединении вторичных цепей, поэтому фазировку следует производить на одном и том же комплекте трансформаторов напряжения либо на двух комплектах, предварительно проверенных синхронным напряжением. Включение генератора на параллельную работу с работающими генераторами энергосистемы может производиться только после получения положительных результатов его фазировки с сетью. Синхронные генераторы могут включаться на параллельную работу способом точной синхронизации и ‘способом самосинхронизации.

    Параллельная работа генераторов, способы синхронизации

    Под параллельной работой двух или более генераторов подразумевается их параллельное подключение между собой — объединение в единую автономную сеть для постоянного электроснабжения потребителей электроэнергии.

    Данный способ в электроснабжении нередко используется для организации электропитания ответственных потребителей. Помимо очевидного увеличения надежности и бесперебойности электроснабжения можно отметить следующие преимущества его применения:

    — возможность компенсации роста мощности в часы с наибольшим потреблением электроэнергии; — более равномерное распределение нагрузки на генераторы (особенно актуально для часов пик); — бесперебойность электроснабжения при необходимости проведения плановых и аварийных ремонтов оборудования.

    Параллельное включение генератора в сеть предполагает, как и в случае параллельной работе трансформаторов обязательное выполнение определенных условий:

    Равенство частот напряжения сети и подключаемого к ней генератора; зависит от частоты вращения электрической машины. Большая разность определяет больший избыток кинетической энергии при включении его в сеть.

    При недопустимо большой разнице значений частот (более 0,2 Гц) успешная синхронизация может быть не достигнута; подключаемый генератор может не втянуться в синхронизм.

    Равенство напряжений включаемого и работающего генератора (или сети). Успешная синхронизация может быть выполнена при расхождении значений в 5-10%. Регулируется изменением тока в обмотке возбуждения.

    Соответствие порядка следования фаз (“фазировка”) включаемого генератора и сети (или рабочего генератора).

    Способы синхронизации. Выполнение перечисленных условий может быть реализовано точной синхронизацией или самосинхронизацией.

    Первый способ как правило, выполняется в автоматическом или полуавтоматическом режиме — с использованием специальной аппаратуры — синхроскопа. определяющего необходимый момент для параллельного включения добавочного генератора, находящегося в рабочем состоянии.

    Высокая точность соответствия состояния параметров подключаемого генератора перечисленным выше требованиям в момент его включения в сеть делает этот способ наиболее предпочтительным в использовании.

    Синхронизация генераторов мощностью до 15 МВт может быть выполнена и в ручном режиме; в этом случае должна быть предусмотрена блокировка от несинхронного включения.

    К серьезным недостаткам данного способа синхронизации можно отнести относительную его сложность; поэтому, ввод генератора в работу в этом случае должен производиться только высококвалифицированным персоналом. Кроме того, нельзя не учитывать длительность процесса; в аварийных ситуациях, отличающихся нестабильностью частоты, он может занять несколько десятков минут.

    Самосинхронизация — способ заключается в использовании невозбужденного вспомогательного генератора с включенным автоматом гашения поля с частотой вращения близкой к частоте вращения генератора сети.

    При скольжении в 2-3% производится включение генератора с одновременной подачей возбуждения, после чего происходит постепенное втягивание генератора в синхронизм. Во избежание возникновения недопустимых толчков тока, остаточное напряжение на выводах статорной обмотки должно быть не более 0,3Uном.

    Главное преимущество включения генератора без возбуждения в сеть — отсутствие необходимости подгонки рабочих параметров как при описанном выше способе точной синхронизации.

    Однако, необходимо учесть и недостаток данного способа: процесс сопровождается снижением напряжения на выводах, что в некоторых случаях может стать причиной нарушения нормального режима работы оборудования.

    Кроме того, нельзя не отметить некоторые ограничения использования метода — невозможности использования параллельной работы генератора в качестве источника резервного электроснабжения.

Яков Кузнецов/ автор статьи

Приветствую! Я являюсь руководителем данного проекта и занимаюсь его наполнением. Здесь я стараюсь собирать и публиковать максимально полный и интересный контент на темы связанные ремонтом автомобилей и подбором для них запасных частей. Уверен вы найдете для себя немало полезной информации. С уважением, Яков Кузнецов.

Понравилась статья? Поделиться с друзьями:
NEVINKA-INFO.RU
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: