Футбольный генератор постоянного тока 6 букв - NEVINKA-INFO.RU

Футбольный генератор постоянного тока 6 букв

футбольный "генератор постоянного тока", 6 букв, сканворд Слово из 6 букв, первая буква - «Д», вторая буква - «И», третья буква - «Н», четвертая буква - «А», пятая буква - «М», шестая буква -

Футбольный генератор постоянного тока 6 букв

футбольный «генератор постоянного тока», 6 букв, сканворд

Слово из 6 букв, первая буква — «Д», вторая буква — «И», третья буква — «Н», четвертая буква — «А», пятая буква — «М», шестая буква — «О», слово на букву «Д», последняя «О». Если Вы не знаете слово из кроссворда или сканворда, то наш сайт поможет Вам найти самые сложные и незнакомые слова.

Отгадайте загадку:

Маленький, кругленький, беленький; Разобьётся — никакой столяр не склеит. Показать ответ>>

Маленький, лёгонький, А за хвост не подымешь. Показать ответ>>

Маленький, серенький, собой любую дверь открывает. Показать ответ>>

Другие значения этого слова:

  • «в разговор вмешалась мама: эти ноги у «. «, очень жаль, что наш «Спартак» не догонит их никак!»
  • «Спортклуб» обманщицы
  • (спортивное общество) название ряда спортивных обществ социалистических стран. Первоначально в СССР относилось к системе ГПУ НКВД РСФСР
  • Велосипедный генератор
  • Генератор постоянного тока (устар.)
  • Генератор постоянного тока (устар.).
  • двигатель, служащий для выработки электрического тока из механической работы и наоборот
  • дюнкерская эвакуация
  • Его крутят девушки
  • За какую футбольную команду долгие годы выступал великий вратарь Лев Яшин
  • известный московский стадион
  • Их девиз: «Сила в движении»
  • Какое спортивное общество дало путевку в жизнь будущему олимпийскому чемпиону по биатлону Александру Тихонову
  • какой спортивный клуб имеет девиз «Сила в движении»?
  • Киевский и московский спортклубы
  • Клуб Анатолия Бышовца
  • клуб бело-голубых
  • Клуб Валерия Лобановского
  • Клуб Воронина и Кураньи
  • Клуб дяди Стёпы
  • Клуб Лобановского
  • Клуб Льва Яшина
  • Клуб МВД
  • клуб милиционеров
  • Клуб с буквой «Д»
  • Клуб Яшина и Степашина
  • команда бело-голубых
  • Команда белоголубых
  • команда Блохина
  • Команда Блохина.
  • Команда дяди Стёпы
  • Команда Льва Яшина
  • Ментовский спортклуб
  • Милицейский спортклуб
  • Название генератора постоянного тока
  • название известного спортивного клуба
  • название известного спортивного отечественного клуба
  • Название известного спортклуба
  • Общество Бышовца
  • Первый клуб А. Шевченко
  • Прежнее название генератора постоянного тока
  • спорт-клуб МВД
  • Спортивн. клуб с генераторн. названием.
  • спортивное общество МВД
  • Спортивное общество ментов
  • Спортивное общество милиционеров
  • Спортивное общество, которому в 1998 году исполнилось 75 лет
  • Спортивный клуб
  • Спортивный клуб ментов
  • спортивный клуб, за который выступал дядя Степа
  • Спортклуб дяди Стёпы
  • Спортклуб Льва Яшина
  • Спортклуб МВД
  • спортклуб с генераторным названием
  • Стадион Анжи
  • Украинский футбольный клуб (Киев)
  • Физкультурно-спортивное общество
  • Финалист кубка России «97
  • Футб. «генератор постоянного тока»
  • Футболист Каладзе играет в киевской команде.
  • Футболист Каладзе играет в киевской команде.
  • футбольный «генератор постоянного тока»
  • Хоккейный клуб России

Случайная загадка:

В огороде у дорожки Стоит солнышко на ножке. Только жёлтые лучи У него не горячи.

Случайный анекдот:

— Девушка, какие у вас красивые, ровные, белые зубы!
— Да (смущается). Они достались мне от бабушки.
— Надо же как подошли! Сидят как родные!

Знаете ли Вы?

Пропорции человека: согласно канонам Поликлита, окружность талии барышни должна быть в два раза больше шеи. Окружность голени равна шее, а окружность бедра – составлять полторы окружности голени. Расстояние от пяток до талии обязано относиться к длине тела как 2:3. С учетом таких пропорций создавались классические античные статуи.

Сканворды, кроссворды, судоку, кейворды онлайн

Генераторы постоянного тока

Принцип действия генератора постоянного тока

Работа генератора основана на использовании закона электромагнитной индукции, согласно которому в проводнике, движущемся в магнитном поле и пересекающем магнитный поток, индуцируется э д. с.

Одной из основных частей машины постоянного тока является магнитопровод, по которому замыкается магнитный поток. Магнитная цепь машины постоянного тока (рис. 1) состоит из неподвижной части — статора 1 и вращающейся части — ротора 4. Статор представляет собой стальной корпус, к которому крепятся другие детали машины, в том числе магнитные полюсы 2. На магнитные полюсы насаживается обмотка возбуждения 3, питаемая постоянным током и создающая основной магнитный поток Ф0.

Рис. 1. Магнитная цепь машины постоянного тока с четырьмя полюсами

Рис. 2. Листы, из которых набирают магнитную цепь ротора: а — с открытыми пазами, б — с полузакрытыми пазами

Ротор машины набирают из стальных штампованных листов с пазами по окружности и с отверстиями для вала и вентиляции (рис. 2). В пазы (5 на рис. 1) ротора закладывается рабочая обмотка машины постоянного тока, т. е. обмотка, в которой основным магнитным потоком индуцируется э. д. с. Эту обмотку называют обмоткой якоря (поэтому ротор машины постоянного тока принято называть якорем).

Значение э. д. с. генератора постоянного тока может изменяться, но ее полярность остается постоянной. Принцип действия генератора постоянного тока показан на рис. 3.

Полюсы постоянного магнита создают магнитный поток. Представим, что обмотка якоря состоит из одного витка, концы которого присоединены к различным полукольцам, изолированным друг от друга. Эти полукольца образуют коллектор, который вращается вместе с витком обмотки якоря. По коллектору при этом скользят неподвижные щетки.

При вращении витка в магнитном поле в нем индуцируется э. д. с

где В — магнитная индукция, l — длина проводника, v — его линейная скорость.

Когда плоскость витка совпадает с плоскостью осевой линии полюсов (виток расположен вертикально), проводники пересекают максимальный магнитный поток и в них индуцируется максимальное значение э. д. с. Когда виток занимает горизонтальное положение, э. д. с. в проводниках равна нулю.

Направление э. д. с. в проводнике определяется по правилу правой руки (на рис. 3 оно показано стрелками). Когда при вращении витка проводник переходит под другой полюс, направление э. д. с. в нем меняется на обратное. Но так как вместе с витком вращается коллектор, а щетки неподвижны, то с верхней щеткой всегда соединен проводник, находящийся под северным полюсом, э. д. с. которого направлена от щетки. В результате полярность щеток остается неизменной, а следовательно, остается неизменной по направлению э. д. с. на щетках — ещ (рис. 4).

Рис. 3. Простейший генератор постоянного тока

Рис. 4. Изменение во времени э.д.с. простейшего генератора постоянного тока

Хотя э. д. с. простейшего генератора постоянного тока постоянна по направлению, по значению она изменяется, принимая за один оборот витка два раза максимальное и два раза нулевое значения. Э. д. с. с такой большой пульсацией непригодна для большинства приемников постоянного тока и в строгом смысле слова ее нельзя назвать постоянной.

Для уменьшения пульсаций обмотку якоря генератора постоянного тока выполняют из большого числа витков (катушек), а коллектор — из большого числа коллекторных пластин, изолированных друг от друга.

Рассмотрим процесс сглаживания пульсаций на примере обмотки кольцевого якоря (рис. 5), состоящей из четырех катушек (1, 2, 3, 4), по два витка в каждой. Якорь вращается по направлению часовой стрелки с частотой n и в проводниках обмотки якоря, расположенных на внешней стороне якоря, индуцируется э. д. с. (направление показано стрелками).

Обмотка якоря представляет собой замкнутую цепь, состоящую из последовательно соединенных витков. Но относительно щеток обмотка якоря представляет собой две параллельные ветви. На рис. 5, а одна параллельная ветвь состоит из катушки 2, вторая — из катушки 4 (в катушках 1 и 3 э. д. с. не индуцируется, и они обеими концами соединены с одной щеткой). На рис. 5, б якорь показан в положении, которое он занимает через 1/8 оборота. В этом положении одна параллельная ветвь обмотки якоря состоит из последовательно включенных катушек 1 и 2, а вторая — из последовательно включенных катушек 3 и 4.

Рис. 5. Схема простейшего генератора постоянного тока с кольцевым якорем

Каждая катушка при вращении якоря по отношению к щеткам имеет постоянную полярность. Изменение э. д. с. катушек во времени при вращении якоря показано на рис. 6, а. Э. д. с. на щетках равна э. д. с. каждой параллельной ветви обмотки якоря. Из рис. 5 видно, что э. д. с. параллельной ветви равна или э. д. с. одной катушки, или сумме э. д. с. двух соседних катушек:

В результате этого пульсации э. д. с. обмотки якоря заметно уменьшаются (рис. 6, б). При увеличении числа витков и коллекторных пластин можно получить практически постоянную э. д. с. обмотки якоря.

Конструкция генераторов постоянного тока

В процессе технического прогресса в электромашиностроении конструктивный вид машин постоянного тока изменяется, хотя основные детали остаются теми же.

Рассмотрим устройство одного из типов машин постоянного тока, выпускаемых промышленностью. Как указывалось, основными частями машины являются статор и якорь. Статор 6 (рис 7), изготовленный в виде стального цилиндра, служит как для крепления других деталей, так и для защиты от механических повреждений и является неподвижной частью магнитной цепи.

Читайте также  Что вращает ротор в генераторе

К статору крепятся магнитные полюсы 4, которые могут представлять собой постоянные магниты (у машин малой мощности) или электромагниты. В последнем случае на полюсы насаживается обмотка возбуждения 5, питаемая постоянным током и создающая неподвижный относительно статора магнитный поток.

При большом числе полюсов их обмотки включают параллельно или последовательно, но так, чтобы северный и южный полюсы чередовались (см. рис. 1). Между главными полюсами располагаются добавочные полюсы со своими обмотками. К статору крепятся подшипниковые щиты 7 (рис. 7).

Якорь 3 машины постоянного тока набирается из листовой стали (см. рис. 2) для уменьшения потерь мощности и от вихревых токов. Листы изолируются друг от друга. Якорь является подвижной (вращающейся) частью магнитопровода машины. В пазы якоря укладывается обмотка якоря, или рабочая обмотка 9.

Рис. 6. Изменение во времени э.д.с катушек и обмотки кольцевого якоря

В настоящее время выпускаются машины с якорем и обмоткой барабанного типа. Рассмотренная ранее обмотка кольцевого якоря имеет недостаток, заключающийся в том, что э. д. с. индуцируется только в проводниках, расположенных на внешней поверхности якоря. Следовательно, активными являются только половина проводников. В обмотке барабанного якоря все проводники — активные, т. е. для создания той же э. д. с, что и в машине с кольцевым якорем, требуется почти в два раза меньше проводникового материала.

Расположенные в пазах проводники обмотки якоря соединяются между собой лобовыми частями витков. В каждом пазу обычно располагается несколько проводников. Проводники одного паза соединяются с проводниками другого паза, образуя последовательное соединение, называемое катушкой или секцией. Секции соединяются последовательно и образуют замкнутую цепь. Последовательность соединения должна быть такой, чтобы э. д. с. в проводниках, входящих в одну параллельную ветвь, имели одинаковое направление.

На рис. 8 показана простейшая обмотка якоря барабанного типа двухполюсной машины. Сплошными линиями показано соединение секций друг с другом со стороны коллектора, а пунктирными — лобовые соединения проводников с противоположной стороны. От точек соединения секций делаются отпайки к коллекторным пластинам. Направление э. д. с. в проводниках обмотки показано на рисунке: «+» — направление от читателя, «•» — направление на читателя.

Обмотка такого якоря имеет также две параллельные ветви: первая, образованная проводниками пазов 1, 6, 3, 8, вторая — проводниками пазов 4, 7, 2, 5. При вращении якоря сочетание пазов, проводники которых образуют параллельную ветвь, все время изменяется, но всегда параллельная ветвь образуется проводниками четырех пазов, занимающих постоянное положение в пространстве.

Рис. 7. Устройство машины постоянного тока якоря барабанного типа

Рис. 8. Простейшая обмотка

Выпускаемые заводами машины имеют десятки или сотни пазов по окружности барабанного якоря и число коллекторных пластин, равное числу секций обмотки якоря.

Коллектор 1 (см. рис. 7) состоит из медных изолированных друг от друга пластин, которые соединяют с точками соединения секций обмотки якоря, и служит для преобразования переменной э. д. с. в проводниках обмотки якоря в постоянную э. д. с. на щетках 2 генератора или преобразования постоянного тока, подводимого к щеткам двигателя из сети, в переменный ток в проводниках обмотки якоря двигателя. Коллектор вращается вместе с якорем.

При вращении якоря по коллектору скользят неподвижные щетки 2. Щетки бывают графитовые и медно-графитовые. Они крепятся в щеткодержателях, которые допускают поворот на некоторый угол. С якорем соединена крыльчатка 8 для вентиляции.

Классификация и параметры генераторов постоянного тока

В основу классификации генераторов постоянного тока положен вид источника питания обмотки возбуждения. Различают:

1. генераторы с независимым возбуждением, обмотка возбуждения которых питается от постороннего источника (аккумулятора или другого источника постоянного тока). У генераторов малой мощности (десятки ватт) основной магнитный поток может создаваться постоянными магнитами,

2. генераторы с самовозбуждением, обмотка возбуждения которых питается от самого генератора. По схеме соединения обмоток якоря и возбуждения по отношению к внешней цепи бывают: генераторы параллельного возбуждения, у которых обмотка возбуждения включена параллельно с обмоткой якоря (шунтовые генераторы), генераторы последовательного возбуждения, у которых эти обмотки включены последовательно (сериесные генераторы), генераторы смешанного возбуждения, у которых одна обмотка возбуждения включена параллельно обмотке якоря, а вторая — последовательно (компаундные генераторы).

Номинальный режим генератора постоянного тока определяется номинальной мощностью — мощностью, отдаваемой генератором приемнику, номинальным напряжением на зажимах обмотки якоря, номинальным током якоря, током возбуждения, номинальной частотой вращения якоря. Эти величины обычно указываются в паспорте генератора.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Генераторы тока: переменного и постоянного

Отсутствие электричества сегодня не становится проблемой как в быту, так и в промышленности. Широкий ассортимент генераторов тока позволяет решить проблему быстро, с минимальными трудозатратами. Резервные источники питания незаменимы в современной реальности — всему нужна электроэнергия. Гарантии, что подачу электроэнергии не прекратят в самый неподходящий момент – не может дать ни она организация. Поэтому резервная электростанция на базе генератора постоянного или переменного тока — важное, а зачастую незаменимое оборудование, которое обеспечивает непрерывность производства, комфорт в бытовой сфере, безопасность и непрерывность технологических процессов.

Что такое генератор тока

Когда нет электрической энергии, требуется получить её из другого источника. Наши предки, например, использовали силу ветра, течения рек. Впрочем, сегодня подобную энергию применяют, если не жалко времени и сил на возведение плотин и ветряков. Генераторы тока стандартно «работают» на топливе, за счет вращения обмотки в магнитном поле преобразовывая механическую энергию вращения в электричество. Ток возникает в замкнутом контуре, протекает по обмоткам, когда к электростанции подключается потребитель — именно так работает генератор тока.
В зависимости от того, как вращается магнитное поле (при неподвижном или подвижном проводнике) различают два типа этих электрических машин — генераторы постоянного или переменного тока.

В чем разница между постоянным и переменным током

Вспоминаем уроки физики. Электроток — заряженные микрочастицы, которые «бегут» в определенном направлении. У постоянного тока частицы движутся по прямой, в одном направлении от минуса к плюсу. У переменного движение электронов идет по синусоиде с определенной частотой (полярность между проводами меняется несколько раз за заданный промежуток времени).

Разница между движением заряженных частиц заложена в принцип работы генераторов электрического тока. Для простого обывателя можно сказать так: в розетке — переменный, в батарейке — постоянный. В качестве частного случая, с очень большим упрощением, можно сказать так: всё что с напряжением до 48 Вольт — всё постоянный, всё что от 100 до 500 Вольт — переменный.

Автор статьи и специалисты Mototech прекрасно осведомлены о том, что и постоянный ток может иметь практически любое напряжение (например, 380 Вольт на шине постоянного тока в ИБП), так же как и переменный ток для узких задач.

Несмотря на то, что конечный результат работы электростанций один — потребитель получает электроэнергию, методы преобразования механической энергии в электродвижущую силу и электричество различаются. Элементы (комплектующие) также отличны.

  • Внешней силовой рамы, изготовленной из высокопрочных сплавов. Корпус рассчитан на интенсивную нагрузку, возникающую при передаче магнитного потока от полюса к полюсу. Проще говоря: чугунный кожух не «пробивается» разрядами тока.
  • Магнитных полюсов, закрепленные на корпусе болтами или шпильками. На «плюс» и «минус» монтируется обмотка.
  • Статора. Остов с катушкой возбуждения изготавливают из ферромагнитных материалов, на сердечнике устанавливают магнитные полюса, которые и образуют магнитное поле.
  • Вращающегося ротора (якоря). Задача магнитопровода — снизить вихревые токи и повысить КПД генератора постоянного тока.
  • Коммутационного узла, оснащенного щетками (обычно изготовленными из графита) и коллекторными пластинами из меди.

Полюсов может быть несколько (число минусов и плюсов всегда идентично). Поэтому сегодня потребитель может купить электростанцию необходимой мощности и обеспечить электричеством как дом, так и промышленный объект.

Конструктивной разницы в статоре и роторе между устройствами постоянного и переменного тока нет. Практически идентичны и силовые рамы. Существенное отличие в комплектации коммуникационного узла. Каждый выход механизма помимо щеток оснащен токопроводящими кольцами. «Закольцованный» ток движется по синусоиде и несколько раз в секунду достигает пика мощности. По типу устройства, характеристикам и принципу работы современные генераторы переменного тока делятся на синхронные и асинхронные.

Читайте также  Эксплуатация генератора в зимних условиях

Специфика синхронного устройства: скорость вращения ротора равна скорости вращения магнитного поля в рабочем зазоре.

  • Отсутствие электрической связи с ротором;
  • Вращение якоря под воздействием остаточного механизма статора;
  • Измененная электрическая нагрузка на статоре.

Такие агрегаты могут быть однофазными и трехфазными.

  • Рамка вращается вокруг оси, расположенная на корпусе обмотка регулярно проходит через «минус» и «плюс» полюсов.
  • Каждый раз при достижении разнополюсных точек, происходит смена направления тока на противоположное.
  • Выходной цепи благодаря полукольцу, расположенному на коллекторном узле, создается постоянный ток.
  • С помощью щеток с положительного или отрицательного полюса снимается потенциал и по схеме передается потребителю.

Такая схема работает в простейшей конструкции, с одним плюсом и минусом, если положительных/отрицательных точек больше, ЭДС и ориентировочное количество электроэнергии рассчитываются по формуле.

  • Небольшой вес и компактность агрегата;
  • Возможность использовать в экстремальных условиях;
  • Отсутствие потерь, связанных с вихревыми токами.

Минус: на большую мощность при использовании устройств такого типа рассчитывать не стоит.

Устройства такого типа преобразуют механику в электроэнергию, вращая проволочную катушку в магнитном поле. Ток вырабатывается, когда силовые линии пересекают обмотку. До тех пор, пока магнитное поле соприкасается с проводником, в нем индуцируется электроток.
Идентичный принцип действует и в случае, если рамка вращается относительно магнита, пересекая силовые линии.

В электростанциях с синусоидальной подачей тока отсутствует реактивная мощность. То есть весь запас электроэнергии (с вычетом потерь на проводах) расходуется на нужды потребителя, а не на поддержание работоспособности устройства.

  • Большая выходная мощность при одинаковых габаритах устройств постоянного и переменного тока;
  • Выработка электроэнергии на низких скоростях вращения ротора;
  • Проще конструкция и схема, соответственно, меньше узлов, нуждающихся в техобслуживании и ремонте;
  • Конструкция токосъемного узла отличается большей надежностью;
  • Больше эксплуатационный ресурс и меньше эксплуатационные затраты.

Дополнительное преимущество: агрегаты с трехфазным питанием можно использовать для питания высоковольтных потребителей.

Оба вида генераторов популярны в бытовой и промышленной сфере. Станции постоянного тока нашли применение в сфере транспорта. Так, в трамваях, троллейбусах обычно установлены двигатели, работающие на постоянном токе. Низковольтные устройства незаменимы для питания систем освещения в местах, где нет доступа к централизованной подачи электроэнергии. Например, на борту самолетов. Если большая мощность — не основополагающая характеристика электростанции, то генераторы постоянного тока отлично справятся с питанием оборудования в учебных, медицинских учреждениях, лабораториях. Полноценные дизельные электростанции постоянного тока используются на аэродромах для зарядки и питания бортовых систем летной техники.

Электростанции переменного тока необходимы практически для всего остального. 99% того, что питается от централизованной сети — это устройства переменного тока. Соответственно, аварийное питание этих объектов так же должно осуществляться от соответствующего оборудования.

Мototech специализируется на продаже электростанций различного типа. Поможем выбрать оптимальный вариант электростанции мощностью от 5 до 6000 кВА и конечно же, это будут электростанции переменного тока. Мы обеспечим сопроводительные строительные и электромонтажные работы, грамотную пуско-наладку и обслуживание устройств. С клиентами работают сотрудники с энергетическим образованием, поэтому квалифицированную информацию, ответы на вопросы и правильные расчеты характеристик в соответствии с вашими потребностями гарантируем.

Первый генератор постоянного тока, или что такое динамо-машина?

В позапрошлом веке, динамо-машиной называли генератор постоянного тока. Со временем промышленные генераторы, были вытеснены генераторами переменного тока, пригодного для преобразования посредством трансформаторов, и очень удобного для передачи тока на большие расстояния с незначительными потерями.

Сегодня под словом «динамо», как правило, подразумевают маленькие велосипедные генераторы (для фар) или ручные генераторы (для туристических фонариков). Что касается промышленных генераторов, то на сегодняшний день все это — генераторы переменного тока. Давайте, однако, вспомним, как развивались и совершенствовались первые «динамо».

Динамо-машина для велосипеда

Первый образец генератора постоянного тока, или униполярного динамо, был предложен в далеком 1832 году Майклом Фарадеем, когда он только открыл явление электромагнитной индукции. Это был так называемый «диск Фарадея» — простейший генератор постоянного тока. Статором в нем служил подковообразный магнит, а в качестве ротора выступал вращаемый вручную медный диск, ось и край которого пребывали в контакте с токосъемными щетками.

Диск Фарадея

Когда диск вращали, то в той части диска, которая пересекала магнитный поток между полюсами магнита статора, наводилась ЭДС, приводящая, в случае если цепь между щетками была замкнута на нагрузку, к появлению радиального тока в диске. Подобные униполярные генераторы по сей день используются там, где требуются большие постоянные токи без выпрямления.

Генератор переменного тока впервые построил француз Ипполит Пикси, это произошло в том же 1832 году. Статор динамо-машины содержал включенные последовательно пару катушек, ротор представлял собой подковообразный постоянный магнит, кроме того в конструкции имелся щеточный коммутатор.

Первый генератор переменного тока

Магнит вращался, пересекал магнитным потоком сердечники катушек, наводил в них гармоническую ЭДС. А автоматический коммутатор служил для выпрямления и получения в нагрузке постоянного пульсирующего тока.

Позже, в 1842 году, Якоби предложит разместить магниты на статоре, а обмотку — на роторе, который также вращался бы через редуктор. Это сделает генератор более компактным.

В 1856 году, для питания серийных дуговых ламп Фредерика Холмса, (эти лампы использовали в прожекторах маяков), самим Фредериком Холмсом была предложена конструкция генератора, похожая на генератор Якоби, но дополненная центробежным регулятором Уатта для поддержания напряжения на лампе постоянным при разном токе нагрузки, что достигалось путем автоматического сдвига щеток.

Генератор Холмса

Статор содержал 50 магнитов, а конструкция в общем весила 4 тонны, и развивала мощность чуть больше 7 кВт. Было выпущено примерно 100 таких генераторов под маркой «Альянс».

Между тем, машины с постоянными магнитами отличались одним существенным недостатком, магниты теряли со временем намагниченность и портились от вибрации, в итоге генерируемое машиной напряжение становилось со временем все ниже и ниже. При этом намагниченностью нельзя было управлять, чтобы стабилизировать напряжение.

В качестве решения пришла идея электромагнитного возбуждения. Идея пришла в голову английского изобретателя Генри Уайльда, который в 1864 году запатентовал генератор с возбудителем на постоянном магните, — магнит возбуждения просто монтировался на валу генератора.

Позже настоящую революцию в генераторах совершит немецкий инженер Вернер Сименс, который откроет подлинный динамоэлектрический принцип, и поставит производство новых генераторов постоянного тока на поток.

Принцип самовозбуждения заключается в том, чтобы использовать остаточную намагниченность сердечника ротора для пускового возбуждения, а затем, когда генератор возбудится, использовать в качестве намагничивающего тока ток нагрузки, или включить в работу специальную обмотку возбуждения, питаемую генерируемым током параллельно нагрузке. В результате, положительная обратная связь приведет к увеличению магнитного потока возбуждения генерируемым током.

В числе первых принцип самовозбуждения, или динамоэлектрический принцип, отметит инженер из Дании Сорен Хиорт. Он упомянет в своем патенте от 1854 года возможность использования остаточной намагниченности с целью реализации явления электромагнитной индукции для получения генерации. Однако, опасаясь того, что остаточного магнитного потока будет недостаточно, Хиорт предложит дополнить конструкцию динамо постоянными магнитами. Этот генератор так и не будет воплощен.

Позже, в 1856 году, аналогичную идею выскажет Аньеш Йедлик — член Венгерской академии наук, но ничего так и не запатентует. Только спустя 10 лет Самюэль Варлей, ученик Фарадея, реализует на практике принцип самовозбуждающегося динамо. Его заявка на патент (в 1866 году) содержала описание устройства очень похожего на генератор Якоби, только постоянные магниты уже были заменены обмоткой возбуждения — электромагнитами возбуждения. Перед стартом сердечники намагничивались постоянным током.

Генератор постоянного тока Сименса

В начале 1867 года в Берлинской Академии наук с докладам выступал изобретатель Вернер Сименс. Он представил публике генератор похожий на генератор Варлея, названный «динамо-машиной». Старт машины осуществлялся в режиме двигателя, для того чтобы обмотки возбуждения намагнитились. Затем машина превращалась в генератор.

Это была настоящая революция в понимании и проектировании электрических машин. В Германии начался широкий выпуск динамо-машин Сименса — генераторов постоянного тока с самовозбуждением — первых промышленных динамо-машин.

Конструкция динамо-машин с течением времени менялась: Теофил Грамм, в том же 1867 году, предложил кольцевой якорь, а в 1872 году главный конструктор компании Сименс-Гальске, Гефнер Альтенек, предложит барабанную намотку.

Так генераторы постоянного тока примут свой окончательный облик. В 19 веке, с переходом на переменный ток, гидроэлектростанции и тепловые электростанции станут вырабатывать уже переменный ток на генераторах переменного тока. Но это уже совсем другая история…

Читайте также  Шоколадка в генераторе газ

Генератор авиационный

Генератор — устройство, аппарат или машина вырабатывающие электрическую энергию.

По принципу действия авиационные генераторы не отличаются от аналогичных наземных генераторов, но обладают рядом особенностей: малый вес и габариты, большая плотность тока якоря, принудительное воздушное, испарительное или жидкостное охлаждение, высокая частота вращения ротора, применение высококачественных конструкционных материалов. В качестве источников постоянного тока обычно применяют бесконтактные синхронные генераторы и бесколлекторные генераторы различных типов и синхронные генераторы переменного тока. Генераторы устанавливаются на двигателях и вспомогательных силовых установках (ВСУ), при этом частота вращения турбовинтовых двигателей самолётов и вертолётов стабилизирована изменением шага винта, а вот на турбореактивных двигателях частота вращения ротора может меняться в широких пределах и при жёстком механическом приводе на генератор переменного тока частота также существенно изменяется, что часто недопустимо по ТУ потребителей.

Поэтому электрические сети строят по разным принципиальным схемам. Построение сети зависит от назначения ЛА, его конструктивных особенностей и применяемого оборудования. Например, на самолёте Ту-134 в качестве основных источников электроэнергии применяются генераторы постоянного тока на двигателях, а для питания переменным током стабильной частоты 208/115 вольт 400 гц применяются электромашинные преобразователи.

Применение на летательных аппаратах переменного тока вместо постоянного дает возможность повысить напряжение в системе электроснабжения до 200-400 В и тем самым снизить передаваемые токи, а следовательно, и массу бортовой сети; применить безколлекторные генераторы и электродвигатели, которые более надежны, чем коллекторные машины; получить постоянный ток с помощью трансформаторно-выпрямительных блоков, имеющих высокий КПД. Поэтому на современных самолетах применение переменного тока вместо постоянного, находит широкое распространение.

Однако применение только переменного тока на самолетах связано с рядом трудностей:

  • для многих потребителей требуется ток стабильной частоты
  • поскольку скорость вращения авиадвигателя переменная, то для получения стабильной частоты генератора требуется редуктор с плавно изменяющимся передаточным отношением
  • сложность осуществления параллельной работы генераторов переменного тока
  • малые пусковые моменты электродвигателей переменного тока
  • сложность регулирования скорости вращения мощных электродвигателей переменного тока

Генераторы переменного тока. Основными типами являются генераторы СГ, СГК, СГО, СГС, ГТ и ГО. Буквы в условных обозначениях расшифровываются следующим образом:

С самолётный
Г генератор
К комбинированный
О однофазный
С (вторая) синхронный
Т трёхфазный

Цифры обозначают номинальную мощность генератора.

Синхронные генераторы имеют закрытое исполнение, фланцевое крепление и охлаждаются воздухом, продуваемым через полость генератора. Частота тока жестко связана со скоростью вращения. Поэтому в системах переменного тока стабильной частоты применяются специальные приводы постоянной частоты вращения, в качестве которых используются гидравлические, дифференциальные, гидромеханические, воздушно-турбинные, турбомеханические и электромашинные приводы.

Генераторы переменного тока бывают контактные и бесконтактные. В последнее время все более широкое распространение начинают находить бесконтактные безщеточные генераторы (ГТ-30П46, ГТ-30П48, ГТ-40П48, ГТ-60П48, ГТ-120ПЧ6, СГК-11/1,5 КИС, СГК-30/1,5).

Стабилизация напряжения генераторов переменного тока независимо от частоты вращения и величины нагрузки осуществляется так же, как и у генераторов постоянного тока, путем изменения тока возбуждения. Для регулирования напряжения синхронных генераторов используются угольные, транзисторные, тиристорные регуляторы и регуляторы на магнитных усилителях..

Для защиты сети от перенапряжения применяют автоматы защиты сети переменного тока АЗП1-3СД (для трехфазного), АЗП1-1СД, АЗП1-1СДТ (для однофазного).

В системах защиты по частоте в качестве чувствительных элементов используются резонансные контуры или дроссели насыщения, реагирующие на частоту и управляющие работой генераторов с помощью мостовой схемы или магнитного усилителя.

Включение синхронного генератора в сеть производится автоматически с помощью синхронизатора, состоящего из выпрямительного моста, конденсатора и ряда реле. Схема подключает генератор к сети, когда выполняются все перечисленные выше условия.

После включения генераторов на параллельную работу необходимо обеспечить автоматическое распределение между ними активных и реактивных мощностей (нагрузок).

Активной называется мощность, которая отбирается генераторами от привода и преобразуется в потребителях электрической энергии. Равномерное распределение активных мощностей достигается воздействием на привод через регуляторы скорости вращения.

Реактивной называется мощность, которая в течение одного полупериода отдается генератором в сеть, накапливается в магнитных полях индуктивных катушек (или емкостях), а в течение другого полупериода возвращается в генератор. Среднее значение мощности за период оказывается равным нулю. Равномерное распределение реактивных мощностей между генераторами достигается воздействием на возбуждение параллельно работающих генераторов через регуляторы напряжения. Для уравнивания токов возбуждения параллельно работающих генераторов в регуляторах напряжения имеются корректирующие обмотки.

Комбинированные устройства. В последнее время находят все большее применение комбинированные устройства, обеспечивающие включение генераторов в сеть, регулирование их напряжения, защиту от коротких замыканий и обрывов в цепи генератора, а также сигнализацию отключения генератора от бортсети. К ним относятся коробки типа КВР-1М, КВР-3-2Ф, КВР-11. Кроме гого, в системе защиты и регулирования напряжения генераторов переменного гока применяются программные механизмы (ПМК-14, ПМК-1113А), предназначенные для автоматического отключения генераторов от сети при коротких замыканиях внутри генераторов и на участках сети.

Особенности параллельной работы генераторов переменного тока. По сравнению с параллельной работой генераторов постоянного тока параллельная работа синхронных генераторов имеет ряд особенностей: при включении генератора переменного тока порядок следования фаз и ЭДС генератора должны соответствовать порядку следования фаз сети; ЭДС и частота по величине должны быть примерно равны напряжению и частоте сети; фазы ЭДС должны совпадать с фазой напряжения сети.

Основные ТТД синхронных генераторов типа СГК

генератор постоянного тока

1 генератор постоянного тока

2 генератор постоянного тока

3 DC generator

4 dc generator

5 direct-current generator

6 dc generator

7 d-c generator

8 DC generator

9 direct-current generator

10 constant-current generator

11 dynamo à courant continu

12 génératrice à courant continu

13 dinamo

14 generatore di corrente continua

15 direct-current generator

16 direct current generator

17 düz akım jeneratörü

18 direct current generator

19 d.c. generator

20 dynamo

См. также в других словарях:

Генератор постоянного тока — General Electric в Джо … Википедия

генератор постоянного тока — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN dc generator … Справочник технического переводчика

генератор постоянного тока — nuolatinės srovės generatorius statusas T sritis automatika atitikmenys: angl. continuous current generator; direct current generator vok. Gleichstromgenerator, m rus. генератор постоянного тока, m pranc. génératrice de courant continu, f … Automatikos terminų žodynas

генератор постоянного тока — nuolatinės srovės generatorius statusas T sritis Standartizacija ir metrologija apibrėžtis Generatorius, kuriantis nuolatinę elektros srovę. atitikmenys: angl. continuous current generator vok. Gleichstromdynamo, m; Gleichstromgenerator, m rus.… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

генератор постоянного тока — nuolatinės srovės generatorius statusas T sritis fizika atitikmenys: angl. continuous current generator; direct current generator vok. Gleichstromdynamo, m; Gleichstromgenerator, m rus. генератор постоянного тока, m pranc. génératrice de courant… … Fizikos terminų žodynas

Генератор постоянного тока — English: Direct current generator Генератор, вырабатывающий постоянный ток и напряжение (по СТ МЭК 50(411) 73) Источник: Термины и определения в электроэнергетике. Справочник … Строительный словарь

телефонный генератор постоянного тока без пульсации — — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN telephonically silent generator … Справочник технического переводчика

чисто-жидкостной МГД-генератор постоянного тока — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN pure liquid dc MHD generator … Справочник технического переводчика

Генератор переменного тока — Эта страница требует существенной переработки. Возможно, её необходимо викифицировать, дополнить или переписать. Пояснение причин и обсуждение на странице Википедия:К улучшению/23 октября 2012. Дата постановки к улучшению 23 октября 2012 … Википедия

Постоянного тока машина — Машина постоянного тока электрическая машина для преобразования механической энергии в электрическую постоянного тока (генератор) или для обратного преобразования (двигатель). Машина постоянного тока обратима. Машины постоянного тока могут быть… … Википедия

Постоянного тока машина — электрическая машина, в которой происходит преобразование механической энергии в электрическую энергию постоянного тока (генератор) или обратное преобразование (двигатель). П. т. м. обратима, т. е. одна и та же машина может работать и как … Большая советская энциклопедия

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: