Трехфазный синус генератор это - NEVINKA-INFO.RU

Трехфазный синус генератор это

Трехфазный синус генератор это Сделал совершенно ненужный прибор - трехфазный генератор синуса. К тому же, он получился довольно кривой. Поэтому не рекомендую. Но если кто-то работает в сфере

Трехфазный синус генератор это

Трехфазный синус генератор это

Сделал совершенно ненужный прибор — трехфазный генератор синуса. К тому же, он получился довольно кривой. Поэтому не рекомендую. Но если кто-то работает в сфере промышленной автоматики и такой прибор нужен — милости прошу в почту. Планируется к нему еще внешний усилитель, который будет делать три фазы 380 В, только маломощные.

Забыл указать параметры:

• диапазон генерируемых частот – 0.1…3000 Гц
• минимальный шаг установки частоты – 0.001 Гц
• диапазон установки фазового сдвига – ±360°
• шаг установки фазового сдвига – 0.1°
• амплитуда выходного сигнала – 0…10 В
• минимальный шаг установки амплитуды – 0.01 В
• выходное сопротивление – 50 Ом
• коэффициент гармоник на частоте 1 КГц, не более – 0.2 %
• 10 предустановок частоты
• цифровая калибровка частоты
• цифровая калибровка амплитуды
• интерфейс – USB (гальваническая развязка) или RS-485
• питание – сеть 220 В
• потребляемая мощность – не более 10 Вт
• габариты – 160 x 140 x 60 мм

Вложения:
SG-633.jpg [73.82 KiB]
Скачиваний: 6042

JLCPCB, всего $2 за прототип печатной платы! Цвет — любой!

Зарегистрируйтесь и получите два купона по 5$ каждый:https://jlcpcb.com/cwc

Сборка печатных плат от $30 + БЕСПЛАТНАЯ доставка по всему миру + трафарет

Объясните, пожалуйста, зачем?

Как раз в нем нет ничего сложного:

Приглашаем всех желающих 13 октября 2021 г. посетить вебинар, посвященный искусственному интеллекту, машинному обучению и решениям для их реализации от Microchip. Современные среды для глубинного обучения нейронных сетей позволяют без детального изучения предмета развернуть искусственную нейронную сеть (ANN) не только на производительных микропроцессорах и ПЛИС, но и на 32-битных микроконтроллерах. А благодаря широкому портфолио Microchip, включающему в себя диапазон компонентов от микроконтроллеров и датчиков до ПЛИС, средств скоростной передачи и хранения информации, возможно решить весь спектр задач, возникающий при обучении, верификации и развёртывании модели ANN.

Вряд ли у выходных фильтров получаются абсолютно идентичные ФЧХ

Компания TRACO представила ультракомпактные ИП, монтируемые на печатную плату. В семейство входят три серии с выходной мощностью 3, 5 и 10 Вт. Особенность серий – малогабаритность; серии на 3 и 5 Вт имеют посадочный размер 1″x1″ (25,4×25,4 мм), а модели на 10 Вт имеют размер 1,5″х1″ (38,5х25,4 мм). При этом эти серии ИП обладают усиленной изоляцией и предназначены для широкого применения в различных приложениях.

Такое, что важно то, что на выходе генератора. А соотношение фаз на выходе зависит от соотношения фаз на входе фильтров (то, что задаем с шагом 0.1°) и фазового сдвига, вносимого фильтрами.

Леонид Иванович, не воспринимайте это как «наезд» Может, я чего-то не понимаю

Это понятно. Но шаг установки и абсолютная точность установки суть разные параметры. Если Вам нужно задавать фазу точнее, чем это позволяет разброс ФЧХ фильтров, то просто измерьте реальный фазовый сдвиг между каналами на интересующей частоте (например, осциллографом) и введите необходимую поправку в задаваемое значение фазы. Этим Вы скомпенсируете разброс, а благодаря малому шагу — еще и довольно точно.

Вы не представляете, как сложно у меня с комплектацией. Ничего не могу достать. Но в этом генераторе, как раз, почти ничего редкого нет.

Параметры этого генератора посредственные. К тому же, есть проблемы с линейностью регулировки амплитуды. Из-за упрощения. Жалко было ставить умножающие ЦАП.

У Вас есть наработки? Если да, то какая выходная мощность планируется?

Что касается нужности прибора — есть множество специалистов, занимающихся ремонтом (настройкой, сервисом) средств автоматики.
Поскольку электроника не сильно-то кормит (на Украине), пришлось заняться ремонтом медицинского оборудования. Столкнулся с критичностью вражеских медицинских приборов к перекосам наших фаз. Дабы их контроллеры подкорректировать нужен имитатор трехфазной сети. Нагрузка примерно 10Вт на канал. купить готовый прибор — денег нет (и никогда не будет!). Приходиться строить самому.
Хотя я и критически отношусь к вашим разработкам:
1. Не всегда удобное меню, без инструкции не поработаешь — сделано для упрощения конструкции
2. Использование старинных индикаторов — таковы реалии нашего рынка.

Должен отдать должное ПРОФЕССИОНАЛЬНЫМ схемотехническим решениям, прекрасно понимая, что СЕРЬЕЗНАЯ разработка просто-напросто адаптируется к возможностям радиолюбителей!
Поскольку альтернативы Вашему прибору просто нет, то буду его повторять.
Искренне надеюсь, что Вы выложите прошивки.

Макетировал схему. Планировал получить мощность порядка 5 Вт, хотя особых ограничений нет. Делал так: брал стандартные сетевые трансформаторы 220 В — 6 В и включал их наоборот. Питал вторичку усилителем LA6500, а с первички снимал 220 В. Обратная связь тоже шла с первички. Частотный диапазон такого решения довольно узкий, но обычно надо только 50 Гц. И еще, при желании получить больше 220 В можно нарваться на насыщение сердечника. В таком случае лучше применить два сетевых трансформатора, у которых включить высоковольные первички последовательно, а низковольтные вторички — параллельно.

Вот я тоже такой.

Меню никак у меня не получается. Для генератора PG-862, например, написал 8 вариантов прошивок, которые отличались только меню. Но так и не смог сделать меню удобном. Индикаторы TIC-151 не такие и старинные, но уже пропали из продажи. Зато появились RDX0154GC, для которых я планирую адаптировать прошивку.

Простые звуковые генераторы синуса на цифровых КМОП микросхемах,
а также функциональные генераторы НЧ сигналов синусоидальной, прямоугольной и
треугольной форм.

Генератор сигналов — вещь, немаловажная в радиолюбительском хозяйстве.
Конечно, при нашей всесторонней занятости и умении здраво оценивать ситуацию, оптимальными явились бы такие логические построения:
1. купить готовый DDS генератор у мастеровитых китайских хунвейбинов;
2. загрузить и пользовать программный продукт под названием — генератор сигналов на базе ПК.

Отличное умозаключение, но немного скучноватое. К тому же в некоторых случаях куда удобней пользоваться миниатюрным и почти ничего не потребляющим приборчиком на батарейке. Его можно систематически забывать выключить, ронять (желательно не в унитаз), шпынять и подвергать прочему физическому насилию. Всё равно работать будет как папа Карло, за себя и за всех отсутствующих!
Вот такой малопотребляющий и трудолюбивый персонаж легко можно соорудить на логических КМОП микросхемах.

Припадём к первоисточникам:

Выходы Q0-Q3 двоичного счетчика IC1 через логические элементы IC2 подключаются к общему проводу (0) или к питанию (+15 В) через резисторы суммирующего каскада IC3, номиналы которых подобраны соответствующим образом.
Для четырех выходов существует всего 16 комбинаций, так что один полупериод строится из 16 ступенек.
Изменение уровня на выходе Q4 меняет состояние на одном из двух входов каждого логического элемента «Исключающее ИЛИ».
При логической «1» на входе элемент служит инвертором, при «О» — повторителем. Поэтому половину периода формируется положительная полуволна синусоиды, а затем — отрицательная, и весь цикл снова повторяется.
Таким образом, полный период складывается из 32 шагов, и, следовательно, выходная частота составляет 1/32 часть частоты тактового сигнала.
Амплитуда выходного сигнала определяется резистором R5. Вместо ОР77 можно использовать какой-либо другой операционный усилитель с относительно большой скоростью нарастания выходного напряжения.

Перевод А. Бельского для журнала Радиолюбитель 10/2000.
От редакции. Микросхемы IC1 — IC3 можно заменить отечественными К561ИЕ16, К561ЛП2 и К544УД2.»

Измеренный коэффициент нелинейных искажений приведённого генератора — около 6% во всем диапазоне рабочих частот. Данные результаты получились с величинами резисторов: R1=10k, R2=25k, R3=51k, R4 — отсутствует. Для номиналов резисторов, указанных на схеме, коэффициент нелинейности превысил 8%.

Более высокими характеристиками обладает схема, опубликованная в журнале Radioelektronik Audio-HiFi-Video, 1997, №11, p. 42, 43 и перепечатанная в РАДИО № 10, 1998, с. 80.

Схема формирователя приведена на рис. 2. В нем используется регистр сдвига DD2 с суммированием сигналов с восьми его выводов на резистивной матрице.
На вход С микросхемы DD2 через инвертор на элементе DD1.1 подается тактовый сигнал формы меандр с частотой F. Использование обратной связи с выхода Q7 микросхемы DD2 на ее вход D через инвертор ВВ1.2 приводит к тому, что высокий уровень на всех выходах микросхемы DD2 сохраняется в течение прохождения восьми тактовых импульсов с учетом сдвига на каждом из выходов на один такт (рис. 3).


Рис.3

В течение действия 16 тактовых импульсов выходное напряжение изменяется от минимума до максимума (в течение первых восьми импульсов) и возвращается к исходному состоянию (в течение последующих восьми импульсов). Затем процесс повторяется.
Таким образом, на выходе устройства частота периодических колебаний будет в 16 раз меньше частоты поступающих тактовых импульсов.

Сигнал на выходе суммирующей матрицы ступенчатый. Весовая часть каждой «ступеньки» определяется сопротивлениями резисторов R2—R9, поэтому при регулировании устройства потребуется их подбор с тем, чтобы прирост/спад напряжения для каждой из «ступенек» был бы одинаков. Это позволит получить квазисинусоидальный сигнал с наименьшими искажениями.

Элементы R2—R9, R10, R12, кроме функции суммирующей матрицы, совместно с резистором R11 и конденсатором C3 выполняют роль фильтра нижних частот (ФНЧ), благодаря чему ступенчатое изменение напряжения на входе повторителя (микросхема DA1) приобретает форму подобия синусоидального.

Значения емкости конденсатора С3 для нескольких граничных частот ФНЧ приведены в таблице.

Граничная частота, (Гц) 10 10 2 10 3 10 4 10 5
Ёмкость конд. С3, (мкФ) 100 10 1,0 0,1 0,01

Примечание редакции. В конструкции генератора можно применить отечественные элементы: в качестве регистра сдвига — микросхему KP1561ПР1; элементов инверторов — KP1561ТЛ1; выходного повторителя — КР140УД7, скорректированной для работы с единичным усилением.

Для номиналов резисторов, указанных на схеме, коэффициент нелинейных искажений не превышает 1% во всем диапазоне генерируемых частот.
Как часто водится, в оригинальном заграничном источнике допущена пустяковая, но вредоносная опечатка, которая прямиком перекочевала и на страницы отечественного журнала: вместо «Ёмкость конд. С3, (мкФ)» в таблице следует читать «Ёмкость конд. С3, (нФ)».

Для малоответственных измерений (не требующих высокой линейности формы сигналов) можно воспользоваться простейшей схемой функционального генератора, построенного всего на одной цифровой КМОП микросхеме.

К таким генераторам относят устройства, вырабатывающие синхронно изменяющиеся во времени сигналы разной формы. Устройство вырабатывает сигналы прямоугольной формы, треугольной формы и синусоидальный сигнал.
В зависимости от емкости конденсатора С3 частоту генерируемых колебаний можно изменить в пределах от 35 до 3500 Гц.
Основу генератора составляет компаратор на элементах D1.1 и D1.2. С выхода компаратора сигнал поступает на интегратор (С3, R6, D1.3).
Элемент D1.4 используют как нелинейный усилитель. Регулируя уровень входного напряжения резистором R7 на входе элемента D1.4, добиваются получения на его выходе синусоидальных колебаний.
Потенциометр R1 служит для получения симметричных колебаний, частоту импульсов меняют резистором R6.

Трехфазный генератор – принцип работы и его устройство

Тот, кто незнаком с генераторами, объясняем, что это агрегат, в котором из одного вида энергии получается другая. А, точнее, из механической электрическая. При этом эти приборы могут генерировать как ток постоянный, так и ток переменный. До середины двадцатого века использовались в основном генераторы постоянного тока. Это были аппараты больших размеров, которые работали не очень хорошо. Появление на рынке диодов полупроводникового типа позволило изобрести трехфазный генератор переменного тока. Именно диоды позволяют выпрямить переменный ток.

Принцип работы

В основе работы трехфазного генератора лежит закон Фарадея – закон электромагнитной индукции, который гласит, что электродвижущая сила будет обязательно индуцироваться во вращающейся прямоугольной рамке, которая установлена между двумя магнитами. При этом делается оговорка, что магниты будут создавать вращающееся магнитное поле. Направление вращения и рамки, и магнитного поля обязательно совпадают. Но электродвижущая сила будет возникать и в том случае, если рамка останется неподвижной, а внутри нее вращать магнит.

Чтобы разобраться, как работает генератор, обратите внимание на рисунок ниже. Это простейшая схема его работы.

Здесь хорошо видны магниты с разными полюсами, рамка, вал и токосъемные кольца, с помощью которых производится отвод тока.

Конечно, это просто схема, хотя лабораторные генераторы так и создавались. На практике же обычные магниты заменяют электромагнитами. Последние – это медная обмотка или катушки индуктивности. Когда по ним проходит электрический ток, образуется необходимое магнитное поле. Такие генераторы установлены во всех автомобилях (это для примера), чтобы их запустить, под капотом устанавливается аккумулятор, то есть, источник постоянного тока. Некоторые модели генераторов запускаются по принципу самовозбуждения или при помощи маломощных генераторов.

Схемa генерaторa переменного токa

Разновидности

В основе классификации заложен принцип действия, поэтому эти агрегаты переменного тока делятся на два класса:

  • Асинхронные. Это самые надежные в работе, небольших размеров и веса, простых по конструкции генераторы. Они прекрасно справляются с перегрузками и коротким замыканием. Правда, необходимо учитывать, что данный вид сразу же выходит из строя, если на него будет действовать большая перегрузка. К примеру, пусковой ток электрооборудования. Поэтому стоит учитывать этот факт, для чего придется приобретать генератор мощностью большей раза в три или четыре, чем потребляемая мощность оборудования при запуске.
  • Синхронные. А вот этот вид легко справляется с краткосрочными нагрузками. Такой генератор может выдержать перегруз раз в пять или шесть. Правда, высокой надежностью он не отличается по сравнению с асинхронным вариантов, к тому же он является обладателем больших размеров и массы.

Конечно, в данном разделении лежит принцип работы агрегата. Но есть и другие критерии.

  • Однофазный.
  • Двухфазный.
  • Трехфазный.
  • Многофазный (обычно шесть фаз).
  • Сварочный.
  • Линейный.
  • Индукционный.
  • Стационарный.
  • Переносной.

Устройство трехфазного генератора

В принципе, устройство трехфазного генератора переменного тока достаточно простое. Это корпус с двумя крышками с противоположных сторон. В каждой из них проделаны отверстия для вентиляции. В крышках устроены ниши под подшипники, в которых вращается вал. На передний конец вала устанавливается передаточный элемент. К примеру, на автомобильном генераторе установлен шкив, с помощью которого вращение передается от двигателя внутреннего сгорания на генератор. На противоположном конце вала производится передача электрического тока, ведь вал в этом случае выступает как электромагнит с одной обмоткой.

Передача производится через графитовые щетки и токосъемные кольца (они из меди). Щетки соединены с электрорегулятором (по сути, это обычное реле), который регулирует подачу напряжение 12 вольт с требуемыми отклонениями. Самое важное, что реле не повышает и не понижает напряжение в зависимости от скорости вращения самого вала.

Так вот если говорить о трехфазных генераторах переменного тока, то это три вот таких однофазных. Только трехфазный агрегат имеет обмотку не на роторе (валу), а в статоре. И таких обмоток три, которые сдвинуты относительно друг друга по фазе. Вал, как и в первой конструкции, выполняет функции электромагнита, который питается через контакты скользящего типа постоянным током.

Вращение вала создает в обмотках магнитное поле. Электродвижущая сила начинает индуцироваться, когда происходит пересечение магнитного поля обмоток с ротором. А так как обмотки располагаются на статоре симметрично, то есть, через каждые 120º, то соответственно и электродвижущая сила будет иметь одинаковое амплитудное значение.

Генератор сигналов из набора: плюсы и минусы

Генератор сигналов был в лаборатории нашего института — это такой большой ящик с десятком ручек регулировки. Он был ламповый и грелся минуты три до выхода на нормальный режим работы. Может ли маленькая платка за 7 долларов выполнять основные его функции? Посмотрим.

Технические характеристики генератора из описания магазина:

Питание: 9-12 вольт
Форма сигналов: прямоугольная, треугольная, синус
Импеданс: 600 Ом ± 10%
Частота: 1 Гц — 1 Мгц
Настройка частоты и амплитуды
Разрешение сигнала: 5 бит
Возможность грубой и тонкой настройки.

Синус:
Амплитуда: 0-3 вольта при питании 9 вольт
Дисторшн: менее 1% при частоте 1 КГц.
Равномерность: +0.05dB в диапазоне 1Гц — 100КГц.

Прямоугольный сигнал:
Амплитуда без нагрузки: 8 Вольт при питании 9 Вольт.
Возрастание сигнала — менее 50нс (на частоте 1КГц)
Спад синала — менее 30нс (на частоте 1КГц)
Симметричность: менее 5% (на частоте 1КГц)

Треугольный сигнал:
Амплитуда: 0 — 3 вольта при питании 9 вольт.
Линейность: менее 1% в диапазоне до 100 КГц при токе 10 мА.

Там же красным по белому написано, что эта версия поставки не включает в комплект корпус. Но мне прислали с корпусом. Приятная неожиданность.

Итак, генератор сигнала поставляется в разобранном виде. Но собирается настолько быстро и приятно, что это пожалуй даже плюс.

В комплекте присутствует плата, набор комплектующих, микросхема XR-2206 (основа всего проекта), инструкция, детали корпуса из оргстекла и необходимые для сборки винтики и гаечки.

Инструкция достаточно подробная, ошибиться в сборке по ней невозможно. Кроме схемы размещения деталей, там указан из список с упоминанием полярности там, где это надо, обшие рекомендации по сборке и принципиальная схема обвязки микросхемы. Все на английском.

Деталей мало, установка очевидна, справится даже чайник. Белая полоска на электролитиках должна совпадать с заштрихованной стороной круга, нарисованного на плате. Резисторы лучше проверять мультиметром, прежде чем устанавливать. Пожалуй, и вся премудрость.

Детели установлены на свои места, можно приступать к пайке.

Но прежде чем паять, я заглянул в датшит и полистал в интернете. Там советуют заменить резистор R4, отвечающий за подстройку синуса, на реостат. Это даст возможности минимизировать ненужные гармоники и приблизить сигнал к идеальной синусоиде. Так что я решил сразу впаять реостат в 500 Ом.

Вот так получилось. Паяется все легко, только перед впаиванием разъема питания нужно примерить боковину корпуса, чтобы потом все нормально собралось. Снизу платы желательно длинные «хвосты» не оставлять, так как плата должна быть прижата к дну корпуса, иначе не хватит длины болтов, фиксирующих плату.

В конце собираем корпус. Детали хорошо подогнаны друг к другу. Винты вкручиваются в фигурные отверстия в форме звездочек. Они легко и с первого раза нарезают там резьбу, сидят потом плотно, не выпадают и не выкручиваются.

Длины штатных винтов, крепящих плату, мне не хватило, так что я подобрал свои, даже с дистанционными шайбочками.

Вот итог всех трудов:

Подсоединяем осциллограф, включаем.

Все работает. Попробуем повысить напряжение питания. По датшиту микросхемы, она питается напряжением от 10 до 26 вольт.

Синхронизация сбивается, при обследованиии синусодиы видно, что начинет сбиваться фаза.

В режиме прямоугольного сигнала та же история:

При снижении напряжения питания ниже 12 вольт сигнал восстанавливается, но амплитуда выходного сигнала ограничивается входным минус 2 — 3 вольта:

Ну нам и не обещали работу от 26 вольт. В описании генератора заявлена работа как раз от 12 вольт. Так что все по-честному.

Посмотрим на диапазон частот:

Минимально получилось порядка 0,6 Гц.

Не подумайте, что это такой затейливый сигнал, это просто осциллограф дуреет и считает, что мы имеем дело с постоянным напряжением. При переключении в режим постоянного напряжение получаем такую картину:

Вот так вот! Полка 1 вольт, размах сигнала от 1 до 9,8 вольт. Амплитуда, таким образом, 8,8 вольта. Такая же история и с другими сигналами — синусом и треугольником. Для некоторых применений это не критично, а вот для тестирования аппаратуры, где нет входного фильтра, полка ни к чему. Такой сигнал надо пропускать через конденсатор, чтобы лишить его постоянной составляющей.

Устанавливаем конденсатор 2,2мкФ:

Ну вот. Теперь красивая синусоида вокруг нуля и в режиме измерения постоянки!

Крупнее, в режиме переменного напряжения:

И тот же сигнал, в режиме постоянного напряжения, с фильтрующим конденсатором 2,2мкФ:

С треугольником что-то не задалось, форма получилась такая:

При замене конденсатора на 3,3 мкФ все пришло более-менее в норму:

Но, прямо скажем, 0,6 Гц — не самый актуальный режим работы. Вот как выглядит треугольник на частоте в 1 КГц. Без конденсатора, в режиме AC:

С конденсатором, в режиме DC:

Как видим, все совершенно одинаково.

Теперь выкручиваем ручки частоты на максимум:

Синус красивый, частота получилась даже больше заявленной: 1,339 МГц.

Ну а что вы хотели — на таких-то частотах! От синуса отличается чуть большей амплитудой. На самом деле, такая разница в амплитудных значениях характерна для всего диапазона частот: в микросхеме синус делается из треугольника, у которого сглаживаются вершины.

Прямоугольный сигнал идет с другого выхода микросхемы. Он не регулируется по амплитуде, хотя она у него зависит от входного напряжения. На самом деле, это еще большой вопрос, выдает ли генератор кривой сигнал, или это осциллограф не может его отобразить. Или вообще щупы виноваты.

Амплитуда синуса и треугольника, как я уже говорил, может тоже регулироваться в известных пределах: если перестараться, то треугольник может получиться таким:

Соответственно, заваливаются и вершины синуса, но это не так заметно. Поэтому в режиме синуса полезно иногда переключаться на треугольник и проверять, хорошо ли отображаются вершины. Уменьшаем амплитуду:

Ну вот, теперь и синус будет красивый:

Для того, чтобы понять, насколько хорош этот синус, есть проверенный способ: глянуть на преобразование Фурье от него. Вот что получилось:

У нас есть хороший пик на частоте 100 КГц, есть пики второй и третьей гармоники, но они вполне допустимых размеров, для такой техники. Установленным подстроечником можно их минимизировать. Удобно использовать прецизионный реостат, там от упора до упора много оборотов винта, так что удобно настроить буквально доли ома. Эта картинка — как раз результат моей подстройки. У меня получилось оптимальное значение резистора R4 — 243 Ома. К слову, в набор положили резистор 330 Ом.
Для сравнения, вот спектр треугольного сигнала:

Видим красивые пики на боковых гармониках, ну так это же треугольник, а не синусоида. Для комплекта, вот прямоугольный сигнал:

Тут и так все понятно. Как видим, прямоугольник на 100 КГц остается более-менее прямоугольным. Проверим, что делается на 1 МГц:

Меандр похож на клюв тукана.

Картинки у меня кончились, теперь пару слов общих впечатлений.

Регулировка амплитуды грубовата в области низких значений, кроме того, ее почему-то сделали обратной: по часовой стрелке — уменьшаем, против часовой — увеличиваем. Регулировка частоты, что грубая, что тонкая — почти одинаково влияют на результат. Тонкую я сделал бы реостатиком меньшего номинала. Но это придирки, конечно, можно привыкнуть за пару раз использования.
Резистор, который влияет на дисторшн синуса, можно было бы сделать подстроечником, как и предусмотрено в датшите микросхемы. Но если уж делать резистор, то 330 Ом — явно перебор, там нужно 200-250 Ом.

В остальном прибор порадовал: собирается легко, можно даже с ребенком собрать, как конструктор. Довольно хорошо генерирует сигналы до полумегагерца, дальше хорошо получается в основном синус. Но меандр таких частот обычно и не нужен. Вообще, прибор за 7 долларов, который помещается в карман и способный перекрыть 98% потребностей радиолюбителя в генерировании сигналов — вполне хороший выбор.
Порадовал и корпус — собирается хорошо, выглядит превосходно!

Ссылка на генератор сигналов в магазине: тыц. (цена сегодня $7.68)

Подстроечный реостатик на Али — набор 15 штук разных номиналов, на все случаи жизни. Цена около ста рублей. Пятьсот Ом там тоже есть.

RC-генератор синусоидальных сигналов с регулировкой частоты одним потенциометром

Texas Instruments LM324

Михаил Шустов — г. Томск

Дано описание RC-генераторов синусоидальных сигналов с использованием сбалансированных симметричных резистивно-емкостных мостов и двух операционных усилителей, что позволяет регулировать частоту генерации одним потенциометром. Для обеспечения работы генераторов соотношение активных и реактивных сопротивлений плеч резистивно-емкостных мостов должно быть одинаково и иметь значение не менее 2.5.

Для получения периодических низкочастотных колебаний синусоидальной формы используют RC-генераторы нерегулируемой и регулируемой частоты. К генераторам первого вида относят автогенераторы с лестничной многозвенной фазосдвигающей RC-цепью (R- или С-параллель). Как несложно заметить, очевидным недостатком таких генераторов является невозможность регулирования частоты простыми средствами, что резко ограничивает область практического применения подобных генераторов.

В 1891 г. немецкий физик Макс Вин (Max Wien, 1866–1938) для измерения импедансов электрических цепей предложил пассивный четырёхполюсник на основе RC-фильтров верхних и нижних частот (мост Вина). 11 июля 1939 г. американец Уильям Реддингтон Хьюлетт (William Reddington Hewlett, 1913–2001) подал заявку на изобретение и 6 января 1942 г. получил патент США № 2268872 на «Перестраиваемый генератор звуковой частоты». Это был первый низкочастотный перестраиваемый генератор на RC-элементах [1].

Рисунок 1. Схемы RC-мостов, которые могут быть использованы в генераторах синусоидального
напряжения.

Теоретические обоснования и условия возбуждения незатухающих синусоидальных колебаний в RC-генераторах рассмотрены в работах [2–4].

Современные RC-генераторы с возможностью плавной перестройки частоты выполняют с использованием моста Вина (Вина – Робинсона), Рисунок 1а; одинарного или двойного Т-образных мостов, Рисунок 1б, а также с использованием квадратурных генераторов [2, 3], фазовращателей на операционных усилителях, функциональных генераторов [5–7]. Во всех этих случаях для регулировки частоты используют сдвоенный потенциометр.

Проблему создания RC-генератора синусоидальных сигналов с регулировкой частоты одним потенциометром удалось решить за счет использования сбалансированного симметричного резистивно-емкостного моста, Рисунок 1в, плечи которого состоят из последовательно включенных резисторов и конденсаторов, причем соотношение активных и реактивных сопротивлений плеч равно и должно иметь значение не менее 2.5.

Рисунок 2. RC-генератор синусоидального напряжения с использованием
сбалансированного симметричного резистивно-емкостного
моста.

Плечо моста низкого активно-реактивного сопротивления подключено к выходу первого операционного усилителя, Рисунки 2 и 3, а высокого – к выходу второго операционного усилителя. Диагональ моста емкостного плеча присоединена к инвертирующему входу первого усилителя, а резистивного плеча – к инвертирующему входу второго усилителя. Между входом и выходом первого операционного усилителя включен потенциометр, регулирующий частоту генерации. Инвертирующие входы усилителей соединены с общей шиной.

Рисунок 3. Вариант схемы RC-генератора синусоидального напряжения.

Генератор, Рисунок 2, выполнен на элементах DA1.1 и DA1.2 микросхемы LM324. При выполнении условия

генератор при регулировке потенциометра R1 вырабатывает сигнал синусоидальной формы частотой от 0.3 до 1 кГц. Частоту генерации можно определить из выражения:

Коэффициент нелинейных искажений зависит от точности балансировки моста и с ростом частоты меняется в пределах от 0.6 до 2.2%. Амплитуда выходных сигналов в тех же условиях снижается от 10.9 до 8.4 В.

На Рисунке 3 показана модифицированная схема генератора, отличающаяся наличием дополнительного конденсатора C1. Генератор работает в диапазоне частот от 1 до 4.8 кГц, причем коэффициент нелинейных искажений с ростом частоты меняется в пределах от 0.6 до 1.8%. Амплитуда выходных сигналов во всем диапазоне частот не изменяется и составляет 10.9 В.

В качестве RC-комплектующих генераторов следует использовать прецизионные элементы. Для генератора, Рисунок 3, для минимизации коэффициента нелинейных искажений конденсатор C1 получают путем параллельного включения двух-трех конденсаторов – постоянной и переменной (подстроечной) емкости. При разбалансе моста генераторы переходят либо в режим генерации релаксационных колебаний низкой частоты, либо амплитуда синусоидального сигнала быстро затухает во времени.

Трехфазная система ЭДС

Трехфазные электрические цепи представляют собой частный случай многофазных цепей. Многофазная система электрических цепей есть совокупность нескольких однофазных электрических цепей, в каждой из которых действуют синусоидальные ЭДС одной и той же частоты, создаваемые общим источником энергии и сдвинутые друг относительно друга по фазе на один и тот же угол. Термин «фаза» применяется для обозначения угла, характеризующего стадию периодического процесса, а также для названия однофазной цепи, входящей в многофазную цепь.

Обычно применяют симметричные многофазные системы , у которых амплитудные значения ЭДС одинаковы, а фазы сдвинуты друг относительно друга на один и тот же угол 2π где m — число фаз. Наиболее часто в электротехнике используют двухфазные, трехфазные, шестифазные цепи. В электроэнергетике наибольшее практическое значение имеют трехфазные системы.

Трехфазные цепи — это совокупность трех однофазных цепей, в которых действуют синусоидальные ЭДС одной и той же частоты, сдвинутые по фазе друг относительно друга на угол Источником электрической энергии в трехфазной цепи является синхронный генератор, в трех обмотках которого, конструктивно сдвинутых друг относительно друга на угол и называемых фазами, индуцируются три ЭДС в свою очередь, также сдвинуты относительно друг друга на угол Устройство трехфазного синхронного генератора схематически показано на рис. 1.

В пазах сердечника статора расположены три одинаковые обмотки. На переднем торце статора витки обмоток оканчиваются зажимами А, В, С (начало обмоток) и соответственно зажимами X, Y, Z (концы обмоток). Начала обмоток смещены относительно друг друга на угол и соответственно их концы также cдвинуты относительно друг друга на угол 2π/3 ЭДС в обмотках статора индуцируются в результате пересечения их витков магнитным полем, которое возбуждается постоянным током, проходящим по обмотке вращающегося ротора, которая называется обмоткой возбуждения. При равномерной частоте вращения ротора в обмотках статора индуцируются синусоидальные ЭДС одинаковой частоты, сдвинутые по фазе относительно друг друга на угол

На рис. 2 (б) показано изменение мгновенных значений ЭДС трехфазного генератора, а на рис. 3 (а, б) даны его векторные диаграммы для прямой и обратной последовательности чередования фаз. Последовательность, с которой ЭДС в фазных обмотках генератора принимает одинаковые значения, называют порядком чередования фаз или последовательностью фаз. Если ротор генератора вращать в направлении, указанном на рис. 1, то получается последовательность чередования фаз ABC, т. е. ЭДС фазы В отстает по фазе от ЭДС фазы А, и ЭДС фазы С отстает по фазе от ЭДС фазы В.

Такую систему ЭДС называют системой прямой последовательности . Если изменить направление вращения ротора генератора на противоположное, то последовательность чередования фаз будет обратной. У генераторов роторы всегда вращаются в одном направлении, вследствие чего последовательность чередования фаз никогда не изменяется.

На практике у генераторов обычно применяется прямая последовательность чередования фаз. От последовательности чередования фаз зависит направление вращения трехфазных синхронных и асинхронных двигателей. Достаточно поменять местами две любые фазы двигателя, как возникает обратная последовательность чередования фаз и, следовательно, противоположное направление вращения двигателя.

Последовательность фаз необходимо также учитывать при параллельном включении трехфазных генераторов.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: