Трассоискатель кабельных линий с генератором схема - NEVINKA-INFO.RU

Трассоискатель кабельных линий с генератором схема

Трассоискатель кабельных линий с генератором схема Поисковый комплект автоэлектрика «Trekker» Автор: Simurg, ghjdflf@mail.ru Опубликовано 02.10.2013 Создано при помощи КотоРед. Участник

Трассоискатель кабельных линий с генератором схема

Трассоискатель кабельных линий с генератором схема

Поисковый комплект автоэлектрика «Trekker»

Автор: Simurg, ghjdflf@mail.ru
Опубликовано 02.10.2013
Создано при помощи КотоРед.
Участник Конкурса «Поздравь Кота по-человечески 2013!»

Инструмент для автодиагностики.

Кратко опишу причину создания искателя. Причина, от необходимости в быстром поиске проводов и жгутов проводов в автомобиле, до банальной лени. Так как надоело разбирать по пол машины, чтобы проследить «куда же пошел нужный провод?». Поисковый комплект для того, чтобы не доводить до состояния автомобиль, как на картинке ниже, в поисках оборванного провода. Поможет и при поиске перебитых проводов, нужного провода в жгуте. И всё это без повреждения изоляции прокалыванием для проверки мультиметром.

Дело в том, что электропроводка автомобиля похожа на венозную систему человека. Она снабжает “блоки” автомобиля “питательными веществами”, необходимыми для функционирования, то есть током. Поломка или отказ, казалось бы, совсем не связанной с текущей проблемой, части автомобильной электропроводки может дать “отголоски” практически в любое место. Ремонт электропроводки автомобиля заключается в замене её неисправной части на новую. Ремонт проводки автомобиля – дело, требующие оборудования для нахождения этой самой проводки.

Так же очень часто просят помочь в разработке устройства по поиску прокладки автомобильной проводки и обрывов. Уже пару устройств приобретали на рынке, но результат был отрицательный. В описании устройства предполагался поиск повреждений проводки, а в реальности они определяли все кроме нужного кабеля.

Данное устройство будет состоять из четырех частей.

1. генератора амплитудно-модулированного сигнала частотой 62 кГц с модуляцией звуковой частотой 520 Гц.

2. приемного устройства оснащенного магнитной антенной.

3. два зарядных устройства для зарядки аккумуляторов. Одно автомобильное, второе сетевое.

4. наушники с встроенным регулятором громкости.

Приемник и генератор оснащены внутренними литиевыми аккумуляторами от мобильных телефонов.

Как пользоваться.

Бесконтактный приёмник присутствия сигнала ВЧ генератора на проводе в кабеле, не требует подключения массового провода. Что очень удобно!

Генератор ВЧ сигнала в большинстве случаев включается в разрыв плюсового провода. Удобно включить генератор вместо предохранителя, для этой цели вынимают предохранитель. Ниже показаны различные схемы возможных подключений ВЧ генератора.

Также можно подключать генератор без подключения черного провода (минусовой выход генератора), для нахождения конкретного провода в кабеле. Провода необходимо распушить, что бы они немного удалялись друг от друга. При всех поисках провода или кабеля, магнитная антенна искателя подносится к тестируемому проводу перпендикулярно, так достигается наилучшая чувствительность. Перемещая ферритовый стержень, проводим настройку – расстройку контура. Точная настройка нужна для существенно увеличения чувствительности приемника, при поиске кабеля, а расстройка для её снижения, при поиске конкретного провода в кабеле. После подключения к искомому проводу на одном конце, проводим настройку приемника с помощью перемещения ферритового стержня, до появления громкого и отчетливого звука сигнал — генератора. Для этого подносим приемник контурной катушкой перпендикулярно к подключенному проводу автомобиля. Теперь ищем провод, кабель, например под пластмассовой обшивкой в салоне. Все это будет показано в видеоролике. Мы найдем кабель, идущий от заднего фонаря указателя поворотов, без разборки и подъема обшивки салона автомобиля.

Можно находить на какое конкретно реле, в блоке реле, приходит провод, например, с лампы дальнего света без схем автомобиля. Можно искать конкретный провод в плотном кабеле. Иногда, при большой засветке проводов в кабеле, когда контур антенны настроен в резонанс, может показаться, что в кабеле все провода звучат. Для этого вносим в контур расстройку (выдвигаем феррит), тогда все засвеченные провода дают малый сигнал, а тот который подключен к генератору звучит громче других на порядок.

С помощью данного искателя можно точно определять проводку 220в под небольшой нагрузкой в железобетонных стенах и потолке дома. В данном случае катушкой магнитной антенны проводят по стене в предполагаемых местах прохождения проводов. Искать можно и с генератором, если отключить напряжение сети, и подключать генератор к искомым проводам.

Можно искать нужные жилы в многожильном кабеле, искать пути пролегания жгутов, и много разных применений на все случаи жизни. Поднеся приемник контурной антенной к работающему кварцу, будет слышен рокот в наушниках, проверять пульты ДУ, и многое другое.

Как сделать.

Схема комплекта простая, и для сборки и настройки не требуются ни каких сложных приборов. Собрать и настроить может начинающий радиолюбитель. Схема не содержит контроллеров, и каких либо сложных элементов.

Рассмотрим схему генератора ВЧ.

Схема состоит из мультивибратора на транзисторах VT1 и VT2, модулятора на транзисторе VT3. Есть две версии модулятора, на полевом транзисторе и биполярном. Работают одинаково. Двухтактного генератора ВЧ с резонансной частотой контура 62кГц. За основу взята схема генератора из магнитофона «Беларусь – М310С». В нем генератор работал на стирающую головку. Смотрим фрагмент схемы.

Так как напряжение на индуктивности при резонансе достигает значений 80 вольт, то необходимо использовать конденсаторы с максимальным напряжением не менее 100 вольт. На выходе имеем амплитудно- модулированное напряжение с размахом около 80 вольт. Выходной ток очень маленький в пределах нескольких микроампер, и к повреждению блоков автомобиля не приведет. Конденсаторы С5-С8 обязательно должны быть полипропиленовыми и напряжение не менее 100 вольт. Развязка контура с испытуемым проводником с помощью развязывающего конденсатора 0,01 мкф, также на 100 вольт. СМД конденсаторы С5-С8 применять нельзя. Работать генератор ВЧ будет непредсказуемо, по причине сильной зависимости емкости от приложенного напряжения. Смотрим иллюстрацию из даташита на СМД конденсаторы:

Генератор имеет индикатор включения на светодиоде HL1, белого свечения. Транзисторы можно заменить на любые с допустимым напряжением КЭ не менее 20 вольт. Подойдут КТ3107 и КТ3102. Плата после пайки должна быть вымыта на чисто. Стремиться к точной установке частоты не нужно, и она может быть в пределах от 50 кГц до 80 кГц. Правильно собранная схема работает сразу и в настройке не нуждается, если это не так — причиной тому могут быть ошибки монтажа либо неисправные компоненты.

Плата после сборки:

Передатчик собран в корпусе компьютерной мыши.

Приемник собран по простой схеме прямого усиления с амплитудным детектором на транзисторе VT2.

На полевом транзисторе VT1 собран усилитель высокой частоты. Применение полевого транзистора позволяет обойтись без дополнительной катушки связи с контуром. В качестве L1 используется готовая заводская катушка ДВ диапазона и сама магнитная антенна с приемника «Берестье 004». С неё сматывается ненужная катушка связи. Данные на неё можно найти в книге по ремонту бытовой аппаратуры. «Переносные кассетные магнитолы: Справочник/ И. Ф. Белов, А. Е. Денин, А. Ф. Ососков. Радио и связь, 1988.— 224— (Массовая радиобиблиоте­ка; Вып. 1124)». По данным на катушку, её можно легко намотать самому. Провод использовать литцендрат не обязательно, подойдет и ПЭЛ-0,15.

Усилитель звуковой частоты выполнен на распространенном маломощном усилителе LM386. Изменяя резистор R6 обратной связи, можно изменять усиление, подобрав по своему желанию максимальную громкость.

По желанию, можно применить любой другой низковольтный УЗЧ. Регулятор громкости в УЗЧ не используется в целях экономии места в приемнике. Его роль выполняет штатный регулятор в готовых покупных наушниках.

Фото разводки печатной платы:

Вид сверху собранной платы:

Вид приемника в корпусе:

На контурную катушку надевается защитный колпачок, взятый от флакона лекарственных средств, и приклеивается к основанию катушки клеем «Момент». Для обеспечения плавности хода ферритового стержня на крышку наклеивается кусочек плотного упаковочного поролона. На ферритовый стержень, что бы он не выпадал, и не потерялся, надет ограничитель, нарезанный из термоусадочной трубки. Аккумулятор от старого телефона «самсунг» имеет свой пластмассовый корпус и просто приклеивается на заднюю стенку крышки «Моментом».

Фото собранного приемника:

Зарядные устройства взяты готовые. В сетевом зарядном устройстве настроен ток с помощью резистора датчика тока с изначального 500мА на 300мА. В автомобильном зарядном, собранном на ИМС МС34063, так же с помощью токозадающего резистора, которое стоит между выводами 6 и 7, с изначального 600мА на 300мА. К ним припаяны провода со стандартным разъемом, для подключения питания. Так как аккумуляторы уже имеют встроенные контроллеры заряда, то дополнительно ничего дорабатывать не надо. По достижению 4,20 вольта контроллер отключит аккумулятор от зарядного устройства.

Кабельный тестер-трассоискатель своими руками

Приветствую всех зашедших!

В хозяйстве полезно иметь такое устройство, как кабельный тестер. Он станет незаменимым помощником во всех тех случаях, когда необходимо найти обрыв в кабеле, будь то удлинитель, проводка в стене, или даже переломившийся провод наушников. Проверить целостность кабеля можно и мультиметром, однако он никогда не скажет, в каком именно месте находится обрыв. Данный же прибор специально предназначен для поиска места разрыва — во многих случаях это сэкономит время и силы, а также позволит не резать лишний раз кабель на куски, вызванивая, в каком именно сидит обрыв. Такими тестерами пользуются многие электрики, например, популярностью пользуется модель Mastech MS6812 — профессиональный прибор по соответствующей цене.

Однако, если взглянуть на схему данного прибора, будет видно, что в ней нет ничего сверхъестественного и повторить её можно довольно легко, используя дешёвые радиодетали.

Состоит весь тестер из двух отдельных устройств — приёмника и передатчика. Передатчик является генератором, настроенным на частоту несколько килогерц — он подключается к тестируемого проводу, заставляя его работать как небольшая антенна, излучая сигнал с частотой генератора с небольшом радиусе вокруг себя. Приёмник ловит сигнал генератора, если находится в непосредственной близости от кабеля, генерируемая частота передатчика лежит в звуковом диапазоне, поэтому её можно будет услышать в динамике приёмника. Таким образом, генератор закрепляется на одном конце кабеля, а приёмник перемещается оператору по кабелю — в каком месте потеряется сигнал, так и обрыв, всё очень просто.

Читайте также  Форд галакси ремень генератора схема

Генератор построен на микросхеме MC14069, которая представляет собой 6 логических элементов «НЕ», выпускается данная микросхема в SMD корпусе, при желании её можно заменить отечественным аналогом К561ЛН2 в выводном корпусе. Выход генератора имеет две клеммы — плюсовую и минусовую, при работе плюсовая будет соединяться с концом тестируемого кабеля, минусовая — с землёй (заземлением), однако работать вся система может и без подключения минусового выхода. Схема генератора имеет несколько ошибок в полярности диодов: все диоды, VD1, VD2, VD3 нужно перевернуть — поменять местами анод и катод, тогда схема будет работать. Диод VD3 служит для защиты от переполюсовки — не желании можно не ставить, хотя вещь полезная. Диоды можно использовать, например, 1N4007 или 1N4148, светодиод HL1 служит индикатором включения, выключатель S1 включает питание. Напряжение питания составляет 9В, потребляемый ток небольшой, поэтому в качестве источника питания годится «крона».

Теперь схема щупа. На оригинальной схеме во входном каскаде применён довольно редкий JFET транзистор MPF102, поэтому автор приводит альтернативную и чуть упрощённую схему щупа с отечественным транзистором КП302, найти который куда проще. Сам щуп устроен довольно примитивно — к затвору транзистора через резистор 1 МОм крепится антенна — отрезок проволоки длиной 1-2 см, который улавливает все «летающие в воздухе» электромагнитные наводки. Затем, через регулятор громкости R4, подключается усилитель низкой частоты, который воспроизводит все сигналы на небольшом динамике. Данный щуп принимает сигнал не только от описанного выше генератора, но и в том числе поля частотой 50 Гц, таким образом, его можно использовать отдельно от генератора просто как детектор скрытой проводки, на слух по возрастающему гулу в динамике определять местонахождение кабеля. Сигнал от генератора будет слышен как звонкий писк. В качестве усилителя в щупе работает популярная микросхема LM386, часто используется во многих портативных аудиоустройствах. В данном к её выходу можно подключить как динамик, так и наушники, подпаяв соответствующий разъём 3,5 мм, при этом следует соединить правый и левый наушники последовательно, а не параллельно, чтобы уровень громкости не был чрезмерно высок. Напряжение питания для данной схемы то же самое, 9 вольт, для питания также можно использовать «крону».


Что приёмник, что генератор должны собираться в подходящих по размеру и компоновке корпусах. В качестве корпуса приёмника автор использует корпус от ненужной пьезозажигалка — это отличный вариант, учитывая, что он уже содержит отсек для батарейки и вытянутую переднюю часть для расположения антеннки, а места хватает как раз для платы с небольшим динамиком. Скачать печатную плату для приёмника можно в архиве в конце статьи. При использовании тестера для поиска скрытой проводки можно даже не обесточивать квартиру можно снабдить генератор штырьком и втыкать его в один (один, не оба) контакт розетки, а затем идти с приёмником и смотреть расположение кабеля в стене. Однако при этом генератор должен быть хорошо изолирован, так как он будет находится под фазным напряжением. Таким образом, получился отличный, простой но многофункциональный прибор, который поможет не только с проводкой 220 вольт, но и при ремонтах, например, каких-либо акустических кабелей, USB-шнуров, наушников и т.д. Удачной сборки!

Самодельный трассоискатель из китайского плеера. Трассоискатель кабельных линий своими руками

Трассоискатель своими руками

При проведении любых строительно-монтажных работ необходимо иметь точное знание места расположения под землей трасс трубопровода, линий кабелей. Чтобы не прибегать к разрытию грунта для их поиска, что стоит дорого и можно повредить коммуникации, лучше использовать трассоискатель. Его можно купить в магазине, а можно собрать трассоискатель самостоятельно.

Схема генератора

Этот прибор собирается из двух основных блоков: генератора и приемника. Устройство позволяет точно определить осевую линию прохождения коммуникаций с большой точностью до 10 см, проложенных на метровой глубине, и определяет примерное место повреждения, его дальность действия 3-4 км. Ниже на рисунке показана схема трассоискателя. Питание прибора поддерживается аккумулятором напряжением в 24 В, емкость КБС-0,5 батареи способна обеспечить 100 часов бесперебойной работы прибора. В основном вся схема трассоискателя своими руками не сложная, задающий генератор с модулятором собирается на транзисторе Т1, П14. Когда выключатель Вк1 разомкнут транзистор Т1 с контуром L1C3 в цепи коллектора и с элементами R1C2 в цепи базы создают разновидность LC генератора, имеющего рабочую частоту 1 кГц. Даже частичное включение контура в коллекторную цепь позволит подключить большие нагрузки к коллектору Т1 транзистора.

Включая конденсатор С1 при помощи Вк1, постоянная времени основной цепи резко растет и генератор становится сверх генератором действующим в диапазоне УКВ, только так частота модуляции может достичь 2-3 Гц. Каскад на Т2, П14 транзисторе служит буфером между генератором и двухтактным выходным каскадом, он собирается на транзисторах Т3, Т4 – П201. R2 сопротивление образует нужный режим Т2 транзистору по току, а R3 понижает напряжение питания, которое подается на первые 2 маломощных транзистора в цепях предохраняющих от перегрузки по предельно допустимому параметру. R4, R5 создают начальный режим для транзисторов выходного каскада, чтобы они работали не искажая отдаваемую мощность. Обмотка секционная выходного трансформатора предназначена согласовать выход генератора с нагрузками 1-2 ома, 50 и 200 ом. Мощность генератора на выходе 5-8 Вт.

Схема приемника

Чтобы собрать трассоискатель своими руками необходимо знать и то, из чего состоит его вторая часть – приемник с магнитной антенной, он показан на рисунке ниже.

Контур антенны L1C1 должен настраиваться на частоту генератора, напряжение его звуковой частоты проходит через сопротивление R1 на вход усилителя, он состоит из 4 транзисторов П14. Первых 2 транзистора создают совместно с Т‑образным мостом избирательный усилитель, а применение проводимости моста позволяет не использовать переходные емкости, в результате получается стабильная схема. R1 обеспечивает нормальное условие работы усилителя, а два каскада на транзисторе Т3 и Т4 создают нужное усиление, применяются также высокоомные телефоны наподобие ТОН-2.

Детали и конструкция прибора

Монтируется прибор трассоискатель на гетинаксовой плате, в его корпус она вставляется на салазках, ее размер 150*100 мм. На передней панели устанавливают два тумблера, клеммы подключения питания и выхода. Катушка прибора L1 состоит из 500+500 витков ПЭЛ 0,1 провода. Трансформатор Т1 наматывается на ферритовое кольцо диаметром 8 мм, а Т2 — на сердечнике из специальной стали. Катушка антенны наматывается на обычном ферритовом стержне размером 140*8 мм. Как видим собрать трассоискатель своими руками вполне возможно, но если не хочется этим заниматься, то можно купить уже готовую модель в интернет-магазине.

Активные способы

Возможны три способа подключения генератора:

  1. Прямое подключение – это подключение генератора напрямую к силовому кабелю через проводник. Это самый простой способ, он доступен даже для устаревших и самодельных трассоискателей.
  2. Подключение с помощью пассивного устройства сопряжения – устройство сопряжения создаёт наводку только на нужный кабель, требуется доступ к силовому кабелю, для установки.
  3. Подключение с помощью индуктивной антенны – генератор передаёт сигнал на кабель с помощью специальной антенный, промой контакт с кабелем не требуется, антенна создаёт «наводку» на все кабели в зоне её действия. Метод особо популярен у инженеров-геодезистов, для безопасной разведки грунтового пласта земли, сталкеров, охотников за цветными металлами на заброшенной людьми местности. Судя по отзывам бывалых сталкеров, цена трассоискателя легко окупается за счёт высокой цены на цветные металлы. Схема работы с прибором проста и требует минимальных навыков, вырабатываемых экспериментально в зависимости от типа устройства и методов поиска коммуникации.

Вопрос 7. Как сузить область поиска места повреждения?

Во многом точность локализации утечки определяется характеристикой грунта. Поэтому возникает ситуация, когда на достаточно значительном расстоянии от места фактического повреждения, значения показаний течеискателей практически не изменяются. Это вызвано наличием емкостной составляющей в значении утечки.

Решение 1. Трассодефектоискатели ТДИ-05М-3, ТДИ-МА можно перевести в режим работы на пониженной частоте – 893Гц. Это в значительной степени позволит отфильтровать емкостную утечку.

Решение 2. Цифровой трассодефектоискатель ТДИ-МА имеет инфранизкую частоту работы – 7Гц, позволяющую максимально сузить область поиска утечки.

Виды повреждений кабельных линий и выбор метода их устранения

  • Обрыв одной или нескольких жил – импульсный метод будет наиболее подходящим для такого типа повреждений, потому сюда подойдёт практически любой трассоискатель. Направление силовых линий нужно определять по минимуму показаний, а не по максимуму, определяя перпендикулярное к линии коммутаций направление, тем самым значительно повысив точность поиска.
  • Межфазное короткое замыкание двух жил – контактный и акустический метод следуют выбирать в зависимости от типа коммуникации и предполагаемом типа разрыва. Частота устанавливается в зависимости от типа грунта, в котором находится кабель либо труба. При контактном методе направление линии определяется по схеме подключения и расстояниям от замеряемых точек. При акустическом методе по наиболее сильным звуковым воздействиям, перпендикулярным силовой линии.
  • Попадание воды в кабель или в кабельную муфту – в зависимости от количества воды и времени воздействия её на кабель. Если присутствуют большие пустоты, в местах сгибов и низких участков при отсутствии замыкания справится трассоискатель в пассивном режиме, для поиска затоплений с наличием замыкания нужен трассоискатель с рефлектометром либо запись измерений и ручной подсчёт с учётом сопротивлений на каждом из измеряемых участков.
  • Повреждение оболочки кабеля – акустический метод будет тут бесполезен, индукционный и контактный следует выбирать в зависимости от доступа к силовому кабелю, если доступ есть – контактный, доступа нет – индукционный с антенной.
Читайте также  Электрическая схема генераторов huter

Вы можете спокойно купить трассоискатель в Москве, а также в любом крупном городе, естественно, что в Москве выбрать будет проще, да и цена пониже, нежели в провинциальном поселении. Так как стоимость данных приборов весьма высока (может доходить до миллиона рублей за импульсный трассоискатель), сталкеры часто берут приборы в аренду либо покупают у радиолюбителей самодельные приборы, собранные по схемам из интернета. Новые приборы покупают строительные компании и предприятия, для которых необходима высокая точность определения местоположения кабеля достигаемая импульсными трассоискателями кабельных линий.

Акустический метод отлично справляется с поиском разрыва внутри бетонных стен. Была б ещё точность повыше и можно было бы купить такой трассоискатель.

Контактный метод удобен в работе геологов, для поиска старых кабельных линий. Купить бы ещё парочку запасных.

Индукционный метод один из самых надёжных и точных методов определения кабельной линии. Это первое, что нужно купить новенькому сталкеру.
Василий

Трассоискатель кабельных линий с генератором схема

На первой схеме самое оптимальное включение генератора для трассировки кабеля. Ток проходит по одной или нескольким жилам кабеля и возвращается через экран того же кабеля и землю.

Как вариант для кабелей без экрана обратный ток может идти и просто через заземление, и именно так чаще всего подключают к генератору кабеля связи. Однако подключение через «землю» всё же хуже и более подвержено ошибкам в трассировке из-за паразитных наводок на трубопроводы и прочие коммуникации (подробней → Подключение и использование частот генератора).

Неправильное включение генератора кабелеискателя

На следующей схеме неправильное подключение генератора. При этом ток в кабеле будет течь и индикатор прибора будет показывать его правильные значения, но кабелеискатель трассу не увидит. Связано это явление с симметричностью линии и соответственно с её защищённостью. Наводка от подключенной жилы кабеля будет равна и противоположна по знаку наводке на другой жиле с проходящим обратным током. В результате за пределы кабеля электромагнитное поле не выйдет. Тот же самый эффект может возникнуть в коаксиальных кабелях при отсутствии заземления экрана на противоположном от генератора конце.

Чтобы как-то снизить это явление надо нарушить симметрию линии увеличив количество проводящих элементов (жил) в плече обратного тока.

Подобным включением можно искать место разбитости пар. Но практически это неосуществимо: катушкой кабелеискателя нужно проводить по поверхности кабеля, а он в свою очередь на поверхности бывает крайне редко. Битость же, как правило, происходит в муфтах, которые в свою очередь и так создадут увеличенный фон сигнала (Поиск кабелеискателем разбитости пар).

Включение генератора через электрическую ёмкость кабеля

Следующая схема, скорее вынужденная и применяется в тех случаях когда сложно или невозможно заземлить дальний конец кабеля. Иногда её называют ёмкостной или «через ёмкость». Цепь по постоянному току оказывается не замкнутой, и всевозможные автоматические измерения импеданса показывают бесконечное сопротивление линии. Выходное напряжение прибора выставляется максимальным, частоту то же предпочтительно повысить до 1000 Гц и более.

Трассировка при таком включении никогда не доводит до конца кабеля и удовлетворительно работает на длинных, от 500 метров, линиях. Уровень сигнала при прохождении трассы постоянно падает от генератора к противоположному концу, что обусловлено особенностью ёмкостной связи.

Включение генератора для поиска повреждений

Далее представлена схема включения генератора для поиска повреждения. Она такая же, как и предыдущая, но из-за сопротивления повреждения (R), и соответственно тока утечки сопротивление (импеданс) не будет бесконечным. «Умные» современные приборы при автоматическом измерении импеданса это сопротивление будут видеть и соответственно станут настраиваться.

При большом сопротивлении повреждения подобная схема используется для поиска места повреждения щупами (контактный метод). И именно такой вариант использования наиболее характерен для кабелей связи.

В силовых кабелях часто используется методы преобразования (прожига) повреждения. Сопротивление при прожиге доводится до минимальных, близких к нулю значений. В этом случае место повреждения ищут одним кабелеискателем методом минимума. Из-за изменения направления тока в кабеле в месте повреждения изменяется направление электромагнитного поля (фиолетовые стрелки). Место повреждения определяется по отсутствию фиксации минимума в месте повреждения.

Здесь, конечно же есть свои нюансы, например мест с изменением направления электромагнитного поля вблизи повреждения несколько и связано это с особенностями повива силовых кабелей.

Включение генератора на экран

Ну и наконец, следующие две схемы скорее для примера того, что к делу подключения генератора к кабелю надо относиться творчески. Экран, броня, жила — всё условно. Экран изолированный с обоих концов это та же жила. А на оптоволоконных кабелях из токопроводящих материалов есть только броня.

Схема иллюстрирует подключение прибора и прохождение тока при трассировке и использовании экрана кабеля.

Обе схемы могут использоваться на оптоволоконных кабелях.

ТРАССОИСКАТЕЛЬ

Описание схемы трассоискателя. На рис. 1 схема тонального генератора. RC-генератор собран на транзисторе Т1 и работает в диапазоне 959 – 1100 Гц. Плавная регулировка частоты осуществляется переменным резистором R 5. В коллекторную цепь транзистора Т 2, который служит для согласования генератора Т1 с фазоинвертором Т3 с помощью выключателя Вк1 могут подключаться контакты реле Р1 предназначенного для манипуляции колебаниями генератора Т1 с частотой 2-3 Гц. Такая манипуляция необходима для четкого выделения сигналов в приемном устройстве при наличии помех и наводок от подземных кабелей и воздушных цепей переменного тока. Частота манипуляции определяется ёмкостью конденсатора С7. Предоконечный и оконечный каскады выполнены по двухтактной схеме. Вторичная обмотка выходного трансформатора Тр3 имеет несколько выходов. Это позволяет подключать к выходу различную нагрузку, которая может встретится на практике. При работе с кабельными линиями требуется подключение более высокого напряжения 120-250 Вольт. На Рис.2 изображена схема сетевого блока питания со стабилизацией выходного напряжения 12В.

Принципиальная схема приемного устройства с магнитной антенной — Рис 3. Оно содержит колебательный контур L1 C1. Напряжение звуковой частоты, наведенное в контуре L1 C1 через конденсатор С2 поступает на базу транзистора Т1 и далее усиливается последующими каскадами на транзисторах Т2 и Т3. Транзистор Т3 нагружен на головные телефоны. Не смотря на простоту схемы, приемник обладает достаточно большой чувствительностью. Конструкция и детали трассоискателя. Генератор собран в корпусе и из деталей имеющегося усилителя низкой частоты, переделанного по схеме рис.1,2 . На переднюю панель выведены ручки регулятора частоты R5, и регулятора выходного напряжения R10. Выключатели Вк1 и Вк2 – обычные тумблеры. В качестве трансформатора Тр1 можно использовать межкаскадный трансформатор от старых транзисторных приемников «Атмосфера”, «Спидола” и пр. Он собран из пластин Ш12, толщина пакета 25мм, первичная обмотка 550 витков провода ПЭЛ 0.23, вторичная – 2 х100 витков провода ПЭЛ 0.74. Трансформатор Тр2 собран на таком же сердечнике. Его первичная обмотка содержит 2 х110 витков провода ПЭЛ 0.74, — вторичная 2 х 19 витков провода ПЭЛ 0.8. Трансформатор Тр3 собран на сердечнике Ш-32, толщина пакета 40 мм; первичная обмотка содержит 2 х 36 витков провода ПЭЛ 0.84; вторичная обмотка 0-30 содержит 80 витков; 30-120 — 240 витков; 120-250 – 245 витков провода 0.8. Иногда в качестве Т3 мной использовался силовой трансформатор 220 х 12+12 В. При этом вторичная обмотка 12+12 В включалась как первичная, а первичная как выходная 0 – 127 — 220. Транзисторы Т4-Т7 и Т8, должны быть установлены на радиаторы. Реле Р1 типа РСМ3.

Монтаж усилителя приемного устройства трассоискателя сделан на печатной плате которая вместе с элементами питания А4 и выключателем Вк1 закреплена в коробке из пластика. В качестве штанги приемного устройства мной приспособлена лыжная палка нижняя часть которой обрезана по росту для удобства пользования. В верхней части ниже ручки крепится коробка с усилителем. В нижней части перпендикулярно штанге крепится пластиковая трубка с ферритовой антенной. Ферритовая антенна состоит из ферритового сердечника Ф-600 размером 140х8 мм. Антенная катушка разбита на 9 секций по 200 витков в каждой провода ПЭШО 0.17 индуктивность ее 165 мГн
Налаживание генератора удобно производить с помощью осциллографа. Перед включением нагрузить выходную обмотку Тр3 на лампочку 220 В х 40 Вт. Проверить осциллографом или головными телефонами через конденсатор 0.5 прохождение звукового сигнала от первого до выходного каскада. Резистором Р5 установить по частотомеру частоту 1000 Гц. Вращая резистор Р10 проверить по свечению лампочки регулировку уровня выходного сигнала. Настройку приемника следует начинать с настройки контура L1C1 на заданную резонансную частоту. Проще всего это сделать с помощью звукового генератора и указателя уровня. Подстройку контура можно производить изменением емкости конденсатора С1 или перемещением секций обмоток Катушки L1.

Исходным пунктом для начала поиска трассы должно быть место, где возможно соединение генератора с трубопроводом или кабелем. Провод, соединяющий генератор с трубопроводом должен быть как можно короче и имел сечение не менее 1,5-2 мм. Заземляющий штырь вбивается в землю в непосредственной близости от генератора на глубину не менее 30-50 см. Место, где вбит штырь, должно быть в стороне от пролегающей трассы на 5-10 м. С помощью приемника, обнаружив зону наибольшей слышимости сигнала, уточняют зону направления трассы, поворачивая магнитную антенну в горизонтальной плоскости. При этом следует сохранять постоянную высоту антенны над уровнем почвы. Наибольшая громкость сигнала получается, когда ось антенны направлена перпендикулярно направлению трассы. Четкий максимум сигнала получается, если антенна направлена точно над линией трассы. Если трасса имеет обрыв, то в этом месте и далее сигнал будет отсутствовать. Подземные силовые кабели, находящиеся под напряжением, могут быть обнаружены с помощью одного только приемного устройства, так как вокруг них имеется значительное электромагнитное переменное поле. При поиске трасс обесточенных подземных кабелей, генератор трассоискателя подключается к одной из жил кабеля. В этом случае обмотка выходного трансформатора подключается полностью, чтобы получить максимальный уровень сигнала. Место заземления или обрыва кабеля обнаруживается по пропаданию сигнала в телефонах приемного устройства, когда оператор будет находиться над точкой повреждения кабеля. Мной было изготовлено 6 подобных устройств. Все они показали отличные результаты при эксплуатации, в некоторых случаях, даже не производилась настройка трассоискателя.

Читайте также  Электросхема генератора для камаза

Форум по обсуждению материала ТРАССОИСКАТЕЛЬ

Генератор кабелеискателя ч.1 Схемотехника

Сегодня я хочу поделиться опытом как сделать генератор кабелеискателя в домашних условиях. Я не буду вдаваться в подробности для чего он нужен и где применяется, кому надо- те поймут и, возможно, попытаются сделать данный прибор избегая моих ошибок и может быть прислушаются к моим рекомендациям. Тема, сразу предупрежу, будет длинная и будет описывать практически все шаги и этапы изготовления. Кто нетерпеливый- качаем архив с последней страницы и делаем генератор. Ну что же, начинаем!

Какие детали нужны для изготовления генератора кабелеискателя? Мне потребовалось для этого 2 компьютерных БП (один неисправный, на запчасти и корпус, и один хороший, собственно для питания генератора), негодная материнская плата от компьютера (с неё вам нужно сдуть феном пару мосфетов, их обязательно проверьте так или этим прибором + почитайте даташиты). Вот в принципе и все что нужно, ну естественно еще нужно время и терпение.

Генератор было решено собрать вот по этой распространенной схеме.

Генератор кабелеискателя. Первая схема.

Что в ней понравилось- минимум деталей, использование на выходе мощных мосфетов, простота схемы. Схема была собрана на коленках «паутинкой» и протестирована. Первый вариант сборки я, к сожалению, не стал фотографировать но от финального он немногим отличался. Какие возникли ошибки и замечания при включении. Где то я прочитал, пока собирал тестовую версию, что выходные мосфеты дьявольски греются. Это оказалось правдой и причина была в том что на при отсутствии сигнала мосфеты оставались открытыми и, таким образом, пропускали весь ток через обмотку трансформатора на себя. Это решилось установкой транзисторного ключа после задающего генератора вот так.

Инвертор входного сигнала на транзисторе

Транзистор можно поставить любой кремниевый n-p-n. Я поставил кт315. Принцип работы прост- когда на входе транзистора логический ноль- транзистор закрыт и на выход подается напряжение с плюсового проводника через резистор R2. Если на входе логическая единица- транзистор открывается и на коллекторе транзистора получается 0В. Следующий момент- в данной схеме можно было только менять частоту импульса и высоту звука. Объясню проще- в данной схеме используется симметричный генератор, т.е. скважность (длительность импульса) равна 50. Это значит что мы имеем сигнал длительностью, например, 1 сек, и 1 сек пауза. Во первых- нужно сменить скважность на более приемлемые значения, т.е. оптимальный вариант- 30 на включение и 70 на паузу, при этом сложится такая картина- будет короткий звук с длинной паузой. Частоту следования импульсов следует задавать отдельно. Это решение имеет кроме удобства использования (короткий звук не так сильно действует на нервы при поиске кабеля нежели чем длинный, сверлящий мозг насквозь) так же частично решает проблему с питанием при работе от АКБ. Т.е. если емкость АКБ 6 А*ч, то данный генератор проработает на АКБ 2 часа при скважности 50. Посчитаем- имеем импульс, скважность 50/50 и при 6А*ч мы потратим половину заряда АКБ, т.е. 3 А*ч при токе генератора в 6А. Снижение скважности позволяет повысить время работы от АКБ, например при скважности 40 время работы будет уже 2,5 часа, при 30- 3,3 часа и т.д. Но слишком малые значения тоже отрицательно действуют на слух и оптимальное значение скважности 30/70 или 20/80. Это уж сами подберете какое вам более комфортно. Было решено использовать микросхему NE555 (аналог советской К1006ВИ1) с вот такой схемой включения.

Генератор с изменяемой частотой и скважностью на 555

Да, она имеет небольшой недостаток, при регулировании скважности уплывает частота следования импульсов, но после скважности можно отрегулировать и частоту! Этот вариант был собран тоже паутинкой и подключен через стабилизатор вместо задающего генератора. Кстати транзистор после задающего генератора был убран и вместо него поставил 2 транзистора КТ315 перед затворами полевых транзисторов. Можно конечно использовать пару оставшихся логических элементов от микросхемы для инвертирования сигнала но я таким образом понизил вероятность пробоя выходных транзисторов логики из за их малой мощности и выходного тока. При первом же включении потребляемый ток был слишком большим (порядка 5,5А) и генератор просто срывал генерацию, даже если добавить фильтрующих электролитических конденсаторов. Поэтому был использован диод, не дающий разряжаться следующему за ним конденсатору в ключи, стабилизатор на LM317 с делителем на 7,5В, опять же фильтрующие конденсаторы. Данные резисторов:R1- 4,7кОм, R2- 1кОм. Диод любой на ток до 300мА.

Стабилизатор напряжения на 7,5 В на lm317

Такая схема показала устойчивость при работе. При нормальной работе просадка напряжения на конденсаторе 10000 мкф следующим за диодом составила около 0,5В, что для LM317 не явилось критичным и он продолжал устойчиво работать. Кроме того в цепь вторичного питания ввел уже в процессе рисования платы еще пару электролитических конденсаторов, дабы снизить еще больше пульсации напряжения. Кроме электролитов добавил также 5 постоянных конденсаторов малой емкости по 0,01-0,05 мкф. Т.к. NE555 и К561ЛН2 работают в режиме генераторов то возможны высокочастотные всплески по шине питания, что тоже может привести к срыву генерации, данные емкости убирают шумы с шины питания микросхем. Следующая доработка появилась в процессе разводки печатной платы. Знакомый коллега сказал что при мощном генераторе на кабельной линии могут происходить обрывы связи в работе телемеханики т.к. импульсы генератора кабелеискателя имеют более высокий уровень и мощность сигнала. Я много думал о регулировке питания трансформатора как было в первоначальной схеме но ток в 6А не давал спокойно поставить указанный транзистор. Думал о делении выходного сигнала на резистивном делителе, но получалось что мне надо будет еще ставить галетный переключатель с набором мощных сопротивлений, т.к. мощность генератора в сборе составила около 60 Вт по сравнению с генератором ГКИ, мощность которого 3-4 Вт! Т.е. этот генератор мощнее ГКИ в 15-20раз! Соответственно и резисторы надо ставить мощные на те же 60 Вт. А это не только удорожает конструкцию но и увеличивает переносимый вес. Что тоже не есть хорошо. Было решено использовать транзистор IRFP3206 в качестве регулятора напряжения по этой схеме.

Регулятор напряжения на полевом транзисторе

Это поможет снизить мощность устройства и сэкономить емкость АКБ. Ну и в конце появилась такая мысль- радиатор все таки будет греться, значит его нужно будет охлаждать. Можно было включить вентилятор напрямую от АКБ или БП и пускай он шпарит на полную мощность но кулер опять же потребляет электроэнергию, что при работе от АКБ может оказаться критичным. Т.е. если кулер потребляет, например, 150мА в час, то за 3 часа работы он съест 3*150=450мА. Что при малой емкости АКБ (ну не будете же вы таскать с собой АКБ от автомобиля на 70 А*ч) довольно критично. Поэтому была собрана эта схема в самом краю платы и она должна обеспечивать автоматическое охлаждение радиатора и полупроводников. Теперь при самом небольшом нагреве датчика кулер начнет вращаться и охлаждать элементы, чем больше нагрев- тем интенсивнее охлаждение. Вот такие первые схематические решения были использованы при разработке данного генератора кабелеискателя. Теперь перейдем непосредственно к деталям и процессу изготовления.

Спаянный паутинкой генератор кабелеискателя

Ну а это фото, спаянный паутинкой из того что было генератор. Выше- уже разведенная плата с установленными перемычками. На фото отсутствует регулятор напряжения на полевом транзисторе но он будет разведен уже в плате. Все буквально на соплях но… работает!

PS* . Забыл дописать что при первой сборке схемы генератор не запустился. После анализа с помощью осциллографа выяснилось что необходимо перевернуть диоды- они не пропускают напряжение в указанном на схеме направлении. Учтите это при сборке схемы.

При использовании материалов сайта ссылка на сайт обязательна!

Добавить комментарий Отменить ответ

Для отправки комментария вам необходимо авторизоваться.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: