Что это трансмиссии маслогидравлические

Гидравлическая трансмиссия. Гидростатическая, гидродинамическая трансмиссия. Автоматическая коробка передач. Гидротрансмиссия.

Что это трансмиссии маслогидравлические

Что такое гидравлическая трансмиссия

Гидравлическая трансмиссия — совокупность гидравлических устройств, позволяющих соединить источник механической энергии (двигатель) с исполнительными механизмами машины (колесами автомобиля, шпинделем станка и т.д.)

Гидротранмиссию также называют гидравлической передачей. Как правило в гидравлической трансмиссии происходит передача энергии посредством жидкости от насоса к гидромотору (турбине).

В зависимости от типа насоса и мотора (турбины) различают гидростатическую и гидродинамическую трансмиссии.

Гидростатическая трансмиссия

Гидростатическая трансмиссия представляет собой объемный гидропривод.

В представленном ролике в качестве выходного звена использован гидродвигатель поступательного движения. В гидростатической трансмиссии используется гидродвигатель вращательного движения, но принцип работы, по-прежнему остается основанным на законе гидравлического рычага. В гидростатическом приводе вращательного действия рабочая жидкость подается от насоса к мотору.

В зависимости от рабочих объемов гидромашин могут изменяться момент и частота вращения валов. Гидравлическая трансмиссия обладает всеми достоинствами гидравлического привода: высокой передаваемой мощностью, возможностью реализации больших передаточных чисел, осуществления бесступенчатого регулирования, возможностью передачи мощности на подвижные, перемещающиеся элементы машины.

Способы регулирования в гидростатической трансмиссии

Регулирование скорости выходного вала в гидравлической трансмиссии может осуществлять путем изменения объема рабочего насоса (объемное регулирование), или с помощью установки дросселя либо регулятора расхода (параллельное и последовательное дроссельное регулирование). На рисунке показана гидротрансмиссия с объемным регулированием с замкнутым контуром.

Гидротрансмиссия с замкнутым контуром

Гидравлическая трансмиссия может быть реализована по замкнутому типу (закрытый контур), в этом случае в гидросистеме отсутствует гидравлический бак, соединенный с атмосферой.

В гидравлических системах замкнутого типа регулирование скорости вращения вала гидромотора может осуществляться путем изменения рабочего объема насоса. В качестве насос-моторов в гидростатической трансмиссии чаще всего используют аксиально-поршневые машины.

Гидротрансмиссия с открытым контуром

Открытой называют гидравлическую систему соединенную с баком, который сообщается с атмосферой, т.е. давление над свободной поверхностью рабочей жидкости в баке равно атмосферному. В гидротрасмиссиях отрытого типа возможно реализовать объемное, параллельное и последовательное дроссельное регулирование. На следующем рисунке показана гидростатическая трансмиссия с отрытым контуром.

Где используют гидростатические трансмиссии?

Гидростатические трансмиссии используют в машинах и механизмах где необходимо реализовать передачу больших мощностей, создать высокий момент на выходном валу, осуществлять бесступенчатое регулирование скорости.

Гидростатические трансмиссии широко применяются в мобильной, дорожно-строительной технике, экскаваторах бульдозерах, на железнодорожном транспорте — в тепловозах и путевых машинах.

Гидродинамическая трансмиссия

В гидродинамических трансмиссиях для передачи мощности используются динамические насосы и турбины. Рабочая жидкость в гидравлических трансмиссиях подается от динамического насоса к турбине. Чаще всего в гидродинамической трансмиссии используются лопастные насосное и турбинное колесо, расположенные непосредственно друг напротив друга, таким образом, что жидкость поступает от насосного колеса сразу к турбинному минуя трубопроводы. Такие устройства объединяющие насосное и турбинное колесо называются гидромуфтами и гидротрансформаторами, которые не смотря на некоторые похожие элементы в конструкции имеют ряд отличий.

Гидромуфта

Гидродинамическую передачу, состоящую из насосного и турбинного колеса, установленных в общем картере называют гидромуфтой. Момент на выходном валу гидравлической муфты равен моменту на входном валу, то есть гидромуфта не позволяет изменить вращающий момент. В гидравлической трансмиссии передача мощности может осуществляться через гидравлическую муфту, которая обеспечит плавность хода, плавное нарастание крутящего момента, снижение ударных нагрузок.

Гидротрансформатор

Гидродинамическая передача, в состав которой входят насосное, турбинное и реакторное колеса, размещенные в едином корпусе называется гидротрансформатором. Благодаря реактору, гидротрасформатор позволяет изменить вращающий момент на выходном валу.

Гидродинамическая передача в автоматической коробке передач

Самым известным примером применения гидравлической передачи является автоматическая коробка передач автомобиля, в которой может быть установлены гидромуфта или гидротрансформатор. По причине более высоко КПД гидротрансформатора (по сравнению с гидромуфтой), он устанавливается на большинство современных автомобилей с автоматической коробкой передач.

Гидравлическая трансмиссия

Трансмиссия предназначена для использования в машиностроении. Содержит масляный нагнетатель, реверсивный распределитель масляного давления, два гидродвигателя со своими кинематиками. Гидродвигатели включают блоки цилиндров с установленными в них встречно движущимися поршнями, распределитель и вал с закрепленными на нем фланцево-эксцентриковыми преобразователями. Блоки цилиндров состоят из двух дисковых стоек, соединенных между собой с внутренней стороны трубой. Имеют цилиндрические направляющие, на которых непосредственно установлены цилиндры. Распределитель выполнен автоматическим и установлен в центре вала. На валу с одной стороны стоек установлены подшипниковые стаканы с фланцами, на которых закреплены полумуфты. С другой стороны стоек закреплены кожухи, в которых установлены фланцево-эксцентриковые преобразователи. Дополнительные кожухи с обеих сторон имеют вторые полумуфты. Кожухи снабжены страховочными упорами, на которых также закреплены полумуфты для взаимодействия с полумуфтами фланцево-эксцентрикового преобразователя. Муфты не дают кожуху вращаться, но и не мешают совершать возвратно-поступательное движение. Увеличивается моторесурс, снижается стоимость механизма. 7 ил.

Изобретение относится к области машиностроения, а именно к гидродвигателям, работающим совместно с кинематикой.

Известна гидравлическая трансмиссия, включающая масляный нагнетатель, реверсивный распределитель масляного давления, два гидродвигателя, каждый гидродвигатель имеет свою кинематику с внутренней или наружной зубчатой передачей на обычное колесное устройство, тормозной привод, работающий от пружин с растормаживателем, гидродвигатели включают цилиндры, встречно движущиеся беспальцевые поршни, шаровой шатун, в центре гидродвигателя установлен вал и на нем закреплены под углом два фланцево-эксцентриковые преобразователи движения на вращение, кожух имеет накладки и подшипники, установлен на вращающихся эксцентриках фланца (SU 1375895 A1, 23.02.1988).

Недостатком известного устройства является низкий моторесурс, а также высокая стоимость.

Технической задачей, поставленной в настоящем изобретении, является увеличение моторесурса, а также снижение стоимости механизма.

Эта задача достигается тем, что в гидротрансмиссии цилиндры имеют кругло-секторное устройство их крепления, состоящее из двух дисковых стоек, с внутренней стороны соединенных между собой трубой или обоймой, имеющими цилиндровые постели, в которых уложены цилиндры, закрепленные крышками, в центре гидродвигателя на середине длины вала установлен автоматический роторный распределитель давления для отвода и подвода масла, с внешней стороны к стойкам прикреплены страховочные упоры, к стойкам и упорам прикреплены съемные подшипниковые стаканы, на подшипниковый стакан крепится половина муфты, а на кожух фланца крепится ее вторая половина, муфты не дают кожуху вращаться, но и не мешают кожуху совершать возвратно-поступательное движение.

На фиг. 1 показана схема гидравлической трансмиссии; на фиг. 2 — реверсивный регулятор давления и отвода масла; на фиг. 3 — то же, вид сбоку; на фиг. 4 — гидродвигатель, продольный разрез; на фиг. 5 — поршневое шарово-шатунное устройство гидродвигателя; на фиг. 6 — разрез А-А фиг. 4; на фиг. 7 — ротор гидродвигателя.

Гидравлическая трансмиссия содержит масляный нагнетатель 1, реверсивный распределитель масляного давления 2, два гидродвигателя 3 и 4 с соответствующей кинематикой 5 и 6 с внутренней или наружной зубчатой передачей на обычное колесное устройство 7 и 8 соответственно. Тормозной привод 9, работающий от пружин с растормаживателем 10. Гидродвигатели 3 и 4 включают цилиндры 11, встречно движущиеся беспальцевые поршни 12, шаровой шатун 13. В центре гидродвигателей установлен вал 14 и на нем закреплены под углом 45 o два фланцево-эксцентриковые преобразователи движения на вращение 15 и 16. На вращающихся эксцентриках 17, 18 фланцев 18 установлены кожухи 19, 20. Кожухи имеют накладки и подшипники. Цилиндры 11 имеют кругло-секторное устройство их крепления, состоящее из двух дисковых стоек 21, с внутренней стороны соединенных между собой трубой или обоймой 22, имеющими цилиндровые постели 23, в которые укладываются эти цилиндры 11 и закрепляются крышками 24. С внешней стороны к стойкам 21 крепятся съемные подшипниковые стаканы 25. Фланец 26 подшипникового стакана является зубчатой шестерней. На другой фланец 27 крепятся пальцы с шаровыми втулками 28. На кожух 20 крепится зубчатая 29. На другой кожух 19 крепится шайба 30 с вертикальными окнами. С внешней стороны к стойкам крепятся съемные страховочные упоры 31 кожуха. На подшипниковые стаканы крепятся половинки муфты, которыми являются зубчатые шайбы 29, 30. На кожухах 19, 20 фланцев укреплены вторые половинки муфты, которыми являются шайбы 30. Муфты не дают кожуху вращаться, но дают возможность совершать возвратно-поступательное движение. В центре гидродвигателя на середине длины вала 14 установлен автоматический роторный распределитель 32 давления для отвода и подвода масла. Распределитель давления 2 имеет канал 33 и окна 34. Ротор 35 распределителя 2 имеет две емкости 36 и 37. Распределитель давления 2 также содержит корпус 38, в котором выполнены окна 39 и 40, соединенные трубопроводами 41, 42 и штуцерами 43, 44 с роторным распределителем 32 гидродвигателей 3 и 4. Корпус 38 содержит также окна 45 и 46. Роторный распределитель 32 имеет срез 47 и окна 48. Для исключения потерь давления масла роторная заслонка 49 должна иметь размер перепускного окна — 48 (чем меньше размер эксцентриков — 17, тем больше потери мощности).

Гидротрансмиссия работает следующим образом.

При подаче давления масляным нагнетателем 1 на реверсивный гидрораспределитель 2 масляного давления по каналу 33 через одно из окон 34 масло попадает в емкость 37 ротора 35. Далее через другое окно 34 ротора и окно 39 корпуса 38 по трубопроводу 41 и штуцер 43 попадает в роторный распределитель 32 двигателей и по срезу 47 ротора окна 48 — в цилиндры 11. Одновременный выпуск отработанного масла из цилиндров 11 другим срезом ротора происходит через штуцер 44, трубопровод 42, окно в корпусе 40, одно из окон ротора 35, емкость 36, другое окно ротора, окно в корпусе 46 слива масла в картер нагнетателя.

Читайте также  Удары в трансмиссии при переключении передач рено дастер

Гидравлическая трансмиссия, включающая масляный нагнетатель, реверсивный распределитель масляного давления, два гидродвигателя, каждый гидродвигатель имеет свою кинематику с внутренней или наружной зубчатой передачей на обычное колесное устройство, тормозной привод, работающий от пружин с растормаживателем, гидродвигатели включают цилиндры, встречно движущиеся беспальцевые поршни, шаровой шатун, в центре гидродвигателя установлен вал и на нем закреплены под углом два фланцево-эксцентриковых преобразователя движения на вращение, кожух имеет накладки и подшипники, установлен на вращающихся эксцентриках фланца, отличающаяся тем, что цилиндры имеют кругло-секторное устройство их крепления, состоящее из двух дисковых стоек, с внутренней стороны соединенных между собой трубой или обоймой, имеющими цилиндровые постели, в которых уложены цилиндры, закрепленные крышками, в центре гидродвигателя на середине длины вала установлен автоматический роторный распределитель давления для отвода и подвода масла, с внешней стороны к стойкам прикреплены страховочные упоры, к стойкам и упорам прикреплены съемные подшипниковые стаканы, на подшипниковый стакан крепится половина муфты, а на кожух фланца крепится ее вторая половина, муфты не дают кожуху вращаться, но и не мешают кожуху совершать возвратно-поступательное движение.

Трансмиссионное масло: в чем особенности

Для нормальной работы каждого узла в автомобиле необходимо качественное смазывание всех деталей. Поскольку разные системы и агрегаты работают в разных режимах, то им требуется разная по свойствам и составу смазка. Двигателю нужно моторное масло, а в коробку передач — трансмиссионное масло. Что это за вид смазочного материала, должен знать каждый автовладелец.

Для чего нужна смазка в коробке передач

Трансмиссия любого автомобиля состоит из множества деталей, которые взаимодействуют между собой. Вращаясь на высоких скоростях, поверхности деталей изнашиваются от трения и высоких температур, на них образуются задиры.

Группа трансмиссионных масел

Отвечая на вопрос о том, что такое трансмиссионное масло, можно сказать, что это специальный смазывающий состав (жидкость) для защиты деталей коробки передач от избыточного трения, коррозии, перегрева и прочих негативных воздействий. Кроме того, масло снижает уровень шума, возникающего во время работы КПП.

При этом масло для трансмиссии отличается от моторного. Изготавливается такая смазка из минеральных или полусинтетических основ с добавлением в них присадок, содержащих хлор, серу, фосфор, дисульфид. Все это нужно для придания жидкости необходимых свойств, таких как:

  • стабильность химического состава на протяжении всего срока хранения или работы;
  • минимальный ущерб резиновым деталям КПП;
  • низкий уровень пенообразования;
  • необходимый уровень антизадирного и антикоррозийного действия;
  • высокий порог значений вязкости и рабочих температур.

Классификация трансмиссионных масел

Трансмиссионное масло классифицируется, в первую очередь, по степени вязкости. Здесь можно выделить три основные группы, которые маркируются буквами SAE (международный стандарт):

  • SAE-85W Это густое масло, больше предназначенное для использования в теплое время года.
  • SAE-80W Это смазка, имеющая среднюю вязкость и предназначена для круглогодичного использования.
  • SAE-75W В эту группу входят полусинтетические и синтетические масла. Используются зимой или круглогодично.

Что же касается коробок-автомат, то в них используются особые жидкости (типа DEXRON и т.п.). Они также имеют разные эксплуатационные характеристики. В обоих случаях (как применительно к МКПП, так и АКПП) смешивание трансмиссионных масел категорически запрещено, чтобы избежать поломки АКПП.

Что в итоге

Учитывая особые условия работы, в коробках передач используются особые смазки – трансмиссионные жидкости. Тем не менее, в коробках передач старых машин советского производства, а также в некоторых новых отечественных моделях допускается в качестве смазки КПП применять обычное моторное масло.

Во многих случаях можно найти более дешевую замену «родной» смазке с такими же эксплуатационными характеристиками. Однако, учитывая то, что полная или частичная замена масла в КПП делается не так часто, как в двигателе, лучше использовать рекомендованные заводом-производителем оригинальные продукты.

Как выбрать наиболее подходящее масло в коробку передач: синтетика, полусинтетика или минеральное масло в КПП, вязкость, GL-4 или GL-5. Полезные советы.

Выбор масла для механической коробки передач: виды трансмиссионных масел, особенности и отличия. Какое масло лучше заливать в МКПП, что нужно учитывать.

Нужна ли замена трансмиссионного масла в механической коробке переключения передач, почему масло МКПП лучше менять и когда выполнять такую замену.

Моторное масло вместо трансмиссионного: можно или нельзя залить масло для двигателя в коробку передач. Отличие масел для ДВС от масла для КПП, рекомендации.

Можно ли смешать масла в коробке передач: что нужно знать, возможные последствия смешивания трансмиссионных масел для КПП. Полезные советы.

Как поменять масло в роботизированной коробке: когда нужна замена, какое масло выбрать, сколько масла нужно в коробку робот. Процесс замены масла в РКПП.

Объёмные гидропередачи или гидростатические трансмиссии

Трансмиссия это совокупность передаточных устройств от вала приводного двигателя до рабочих органов машины. Если одним из передающих звеньев является рабочая жидкость, то мы имеем дело с гидромеханической передачей.

Трансмиссии, в состав которых входят гидродинамический преобразователь момента (гидротрансформатор) и механический редуктор, принято называть гидромеханическими. В них энергия от насоса к турбине (в гидротрансформаторе) передаётся гидродинамическим взаимодействием потока жидкости и рабочих колёс машины, т.е. используется кинетическая энергия жидкости (скоростной напор).

Ранее широко применялся термин гидродинамический привод (или передача).
Если в состав трансмиссии входят объёмные гидромашины и используется энергия давления рабочей жидкости (гидростатический напор), то это гидрообъёмная трансмиссия (ГОТ) или гидростатическая(ГСТ).
Гидронасос с изменяемым рабочим объёмом, приводимый двигателем внутреннего сгорания (ДВС) создаёт гидростатический напор в системе, включающей не менее одного гидромотора. Проще говоря, гидронасос посредством рабочей жидкости управляет гидромотором, соединённым с полезной нагрузкой. Если рабочие объёмы насоса и гидромотора неизменны, то трансмиссия действует как редуктор для передачи мощности от ДВС к нагрузке. Но в этом случае использование объёмных гидроаппаратов бессмысленно, т.к. главные преимущества таких трансмиссий это:

* бесступенчатое регулирование скорости и крутящего момента;
* легкость реверсирования передачи;
* передача высокой мощности в компактном размере;
* обеспечивает более быстрый отклик, чем механические или электромеханические передач подобного типа;
* обладает низкой инерцией;
* точно поддерживает заданную скорость независимо от нагрузки;
* независимое расположение агрегатов трансмиссии, позволяющее наиболее целесообразно скомпоновать их на машине;
* может обеспечить активное торможение;
* высокие защитные свойства трансмиссии, т. е. надежное предохранение от перегрузок основного двигателя и системы привода рабочих органов благодаря установке предохранительных и переливах клапанов.

Это далеко не все преимущества, которыми обладают объёмные гидропередачи (ОГП) или гидрообъёмные трансмиссии (ГОТ). Как видите, термины гидрообъёмная трансмиссия и объёмная гидропередача выражают одно и то же понятие.


Механическое переключение передач приводит к разрыву потока мощности и опасности срыва грунта колесами в момент включения передачи при движении по поверхностям с низкой несущей способностью. Поэтому на тех транспортных средствах, где механические передачи уже не способны эффективно и рационально решать задачи подвода и трансформации по заданным законам мощности от двигателя к рабочим органам или движителям транспортных средств нашли применение ГОТ. Это транспортно-технологические, лесотехнические и практически все строительно-дорожные машины. Кроме того, гидрообъёмные трансмиссии применяются на сельскохозяйственных машинах: зерноуборочных и кормоуборочных комбайнах, сельскохозяйственных и промышленных колесных и гусеничных тракторах. При работе на полях за счет плавного, без разрывов потока мощности, приложения крутящего момента к колесам достигается лучшее сохранение почвы.

Гидрообъёмные трансмиссии могут быть полнопоточными, когда вся мощность двигателя передается гидравлическим путем, и двухпоточными, где меньшая часть потока мощности (20…50%) передается гидравлическим путем, а остальная часть – механическим путем.
Одним из главных преимуществ полнопоточной ГОТ является возможность подведения раздельно регулируемого потока мощности индивидуально к каждому колесу или элементу движителя, независимо от его расстояния от насоса и положения в пространстве.

Первые попытки применения (ОГП) в трансмиссии автомобилей относятся к концу XIX века. В США Ч.Мэнли установил такую трансмиссию на грузовой автомобиль грузоподъёмностью 5т с бензиновым двигателем 17,6 кВт. С 1914 по 1918 гг. Объёмная гидропередача “Дженни-Вильямс” устанавливалась на английских танках и позже на грузовиках и маневровые тепловозах.
Однако низкий КПД, высокая стоимость, связанная со сложностью конструкции и необходимостью высокой точности изготовления, большие габариты и вес, отсутствие надёжных уплотнений не способствовали широкому применению ОГП.

Во второй половине 20-ого века бурное развитие науки и промышленности приводит к созданию конструкционных материалов, способных выдерживать большое давление. Появляется гидроаппаратура с рабочим давлением 45МПа (450атм). А, как известно, произведение давления на расход — это мощность ОГП. Поэтому выступает на передний план такой параметр преимуществ ОГП как энергоёмкость — строительный объём, приходящийся на единицу передаваемой мощности.
И вот уже благодаря простоте осуществления бесступенчатого регулирования выходной скорости и весовым характеристикам (отношение веса машины к её мощности) ОГП приобретают популярность и широко внедряются.

ГОТ получили применение в таких областях, где механическая трансмиссия и даже ГМП (гидромеханическая передача) не дают требуемого результата: самоходные многоколёсные тяжеловозы (грузоподъёмностью – 150…200 т.); тяжёлые самосвалы (свыше 50 т.); сочленённые колёсные и гусеничные машины; самоходные универсальные погрузчики; строительно-дорожные машины; механизмы поворота гусеничных машин; многоколёсные малотоннажные плавающие автомобили высокой проходимости (АВП); аэродромные тягачи; АВП с активными полуприцепами.

Читайте также  Что такое рычаг трансмиссии

Специалисты ОАО «НАМИ-Сервис» совместно с объединениями «АМО-ЗИЛ» и НПО им. Лавочкина разработали и изготовили опытный образец 3-хосного автомобиля с полнопоточной гидрообъемной трансмиссией с использованием шасси ЗИЛ-49061 полной массой 12 тонн, оборудованной автоматической системой управления.

1 — колесный редуктор, 2 – бортовой редуктор, 3 – согласующий редуктор гидромотора, 4 – гидромотор, 5 – насос, 6 – редуктор насосной станции, 7 – ДВС, 8 – микропроцессор управления двигателя, 9 – микропроцессоры управления гидронасосами и гидромоторами

Гидрообъемная трансмиссия автомобиля 6х6 (см. рис.) — полнопоточная, регулируемая, с индивидуальным приводом каждого из колес движителя. Состоит из 3-х аксиально-плунжерных регулируемых, реверсивных и обратимых насосов A4VG125EP2 (поз. 5) с максимальным рабочим объемом ±125 см3 и 6-ти аксиально-поршневых регулируемых и обратимых гидромоторов A6VM160EP2 (поз. 4), имеющих максимальный рабочий объем 160 см3, минимальный — 36.16 см3 (силовой диапазон регулирования — 4.425), фирмы «BOSCH Rexroth» (Германия).
Каждый насос связан с 2-мя параллельно включенными гидромоторами, приводящими в движение колеса одной условной оси.
ГОТ выполнена по закрытой схеме. При движении по дорогам с твердым покрытием все 6 гидромоторов соединяются параллельно, а насосы вместе объединяются в общие магистрали с помощью клапанов кольцевания.
При проектировании «Гидрохода» были заложены: возможность движения накатом, нейтрали, торможения двигателем, стопорения на подъёме, «ползучей» скорости, буксировки, «раскачки», длительного упора в препятствие, преодоления рвов с вывешиванием колёс, движения по твёрдой дороге в дифференциальном режиме.

Использование ГОТ на городских автомобилях является перспективным с точки зрения экономии энергетических ресурсов. В результате применения гидроаккумулятора ГОТ позволяет осуществить рекуперацию энергии при торможении автомобиля и благодаря этому уменьшить расход топлива вплоть до 30 %. Одновременное снижение расхода топлива в результате использования двигателя на оптимальных режимах и рекуперации энергии, может составить до 40 %. Управление работой двигателя и ГОТ при этом осуществляется с помощью микропроцессора.

Устройство и принцип работы гидромеханической коробки передач

Гидромеханическая коробка передач (ГМП) — это трансмиссия высокой проходимости с автоматическим управлением. ГМП поддерживает необходимую скорость автомобиля в разных режимах движения, упрощая процесс вождения. Подобные коробки используют в легковых автомобилях, грузовиках, автобусах, в тяжёлой технике мощностью до 1000 л. с. Гидромеханические коробки передач производят компании ZF, Borg Warner, Aisin, Mercedes-Benz, Voith, Honda, Allison, Caterpillar, Komatsu, БелАЗ и др.

  1. Роль АКПП с гидромеханическим управлением
  2. Функции гидротрансформатора
  3. Конструкция гидромеханики
  4. Как работает вальная кпп
  5. Как работает планетарная кпп
  6. Электронная часть гидромеханической акпп
  7. Сильные и слабые стороны гидромеханики
  8. Перспективы использования гидромеханической коробки передач
  9. Заключение

Роль АКПП с гидромеханическим управлением

Что будет, если двигатель соединить напрямую с колёсами: машина лениво начнёт движение и поедет с максимальной скоростью 20 км/ч. По законам физики сила, которую должны преодолеть колёса равна F=ma+Fтр , где m — масса автомобиля, Fтр — сила трения с поверхностью земли. Двигатель достигнет максимальной мощности при оборотах 5000 — 6000 об/мин, но в таком режиме работы ресурс агрегата быстро иссякнет.

Чтобы мгновенно стартовать после нажатия педали газа, и защитить двигатель от перегрузки, в машине установлена трансмиссия. Она также способна изменять крутящий момент, ускоряя или замедляя автомобиль. Этот узел трансмиссии называется коробка переключения передач — КПП.

По типу переключения скоростей различают механические и автоматические КПП:

  • механикой полностью управляет водитель, выжимая педаль сцепления и переводя рычаг для изменения скорости;
  • в автоматах работает гидромеханическая передача с минимальным участием водителя.

Гидромеханическое управление облегчает и упрощает работу водителя, снимая часть «обязанностей». Плавность и бесшумность АКПП повышает комфорт вождения при трогании и разгоне. Также ГМП защищает двигатель и коробку от динамических нагрузок, которые может создать водитель, постоянно «выжимая» газ.

Основные элементы гидромеханической коробки передач:

  • гидротрансформатор;
  • масляный насос;
  • коробка передач;
  • система управления.

Функции гидротрансформатора

Гидромеханическая коробка передач работает за счёт движения жидкости, которую качает масляный насос. Главный «потребитель» масла — гидротрансформатор (ГДТ). ГДТ преобразует и передаёт крутящий момент от коленчатого вала в трансмиссию через работу жидкости.

Конструктивно ГДТ представляет собой набор лопастных колёс, «запертых» в герметичной камере в форме бублика:

  • насосное колесо приварено к чаше корпуса и соединено с коленвалом;
  • турбина через ступицу насажена на вал трансмиссии, и механически не связана с насосным колесом;
  • реакторное колесо установлено между турбиной и насосом. Предназначено для усиления крутящего момента.

Гидромеханическая коробка передач начинает работать с запуском двигателя: включается масляный насос и насосное колесо. На лопасти колеса попадает жидкость и раскручивается вокруг оси ГДТ. Под действием центробежной силы масло отбрасывается на лопасти турбины, проходит через реактор и возвращается к насосному колесу. Под давлением потока лопатки турбины начинают вращаться, передавая крутящий момент по валу в коробку передач.

Чем выше обороты двигателя, тем быстрее вращаются колёса ГДТ, а крутящий момент снижается. Без реактора «бублик» работал бы только в режиме гидромуфты, передавая вращение без трансформирования. В момент, когда скорости насоса и турбины выравниваются, реактор начинает свободно вращаться, усиливая давление жидкости, попадающей на лопасти насоса.

Большая часть энергии двигателя уходит на перемещение и нагрев масла в ГДТ. В результате снижается общий КПД, и растёт расход топлива. Для устранения этого недостатка в «бублик» устанавливают муфту блокировки с фрикционной накладкой. При включении муфты двигатель и трансмиссия жёстко сцепляются, и передача момента происходит без потерь.

Передаточное число гидротрансформатора достигает максимально 2,5 — 3, что не достаточно для устойчивой работы двигателя в разных режимах движения машины. Нет возможности включить задний ход, поскольку колёса ГДТ вращаются только в одном направлении. Для компенсации этих недостатков гидромеханическая коробка передач оснащена дополнительным узлом.

Конструкция гидромеханики

В ГМП применяют простые ступенчатые или планетарные механизмы с электронным управлением. Принцип работы гидромеханической коробки передач в обоих вариантах заключается в изменении скорости вращения выходного вала за счёт различных передаточных чисел зубчатых передач.

Как работает вальная кпп

Устройство гидромеханической коробки передач вального типа похоже на механическую КПП. Преобразование крутящего момента происходит ступенчато через включение и отключение зубчатых передач, расположенных на параллельных валах. Количество и размер шестерённых пар соответствует определённому передаточному числу.

Первичный, входной вал, получает крутящий момент от гидротрансформатора. Через пару постоянно сцепленных шестерней мощность передаётся на вторичный вал, а затем на колёса. Для получения прямой передачи, в конструкцию добавляют промежуточный вал, а первичный и вторичный валы располагают на одной оси.

Для расширения диапазона скоростей применяются многовальные конструкции с 4 и более валами. Работа коробки при этом усложняется, увеличиваются габариты и масса. Подобные ГМП встречаются на грузовиках-тягачах.

Зубчатыми передачами управляют фрикционные многодисковые муфты. Муфта становится тормозом, когда соединяется с корпусом ГМП. Для включения блокировки масляный насос подает гидравлическое давление на фрикционы. Благодаря фрикционам скорость переключается плавно, а использование гидропривода ускоряет торможение.

Гидромеханические коробки передач вального типа плохо справляются с растущей тягой от повышения грузоподъёмности транспорта, с ужесточением требований по топливной экономичности. Рост параметров значительно увеличивает массу и габариты конструкции. По этим причинам вальные КПП заменяют на планетарные передачи.

Как работает планетарная кпп

Инженеры предпочитают устанавливать в гидромеханическую КПП планетарный механизм вместо ступенчатой конструкции по следующим причинам:

  • компактные размеры;
  • плавная и быстра работа;
  • нет разрыва в передаче мощности при переключении передач;
  • большое количество передаточных чисел за счёт использования многорядных конструкций.

Простая планетарная передача состоит из центральных шестерней: с внутренними зубьями — короны, с внешними зубьями — солнца. Между ними обкатываются зубчатые колёса сателлиты, оси которых закреплены на раме-водиле. В зависимости от конструкции водило соединено с выходным валом или коронной шестерней.

Устройство планетарной коробки определяет её принцип действия. Чтобы изменить крутящий момент гидротрансформатора, один из элементов планетарной передачи вращают, а другой элемент затормаживают. Третий элемент становится ведомым, а его скорость определяется числом зубьев всех шестерней.

Для получения прямой передачи водило и солнечную шестерню жёстко соединяют. Корона не может проворачиваться относительно закреплённой системы, поэтому механизм вращается как единый узел. Передаточное число в этом случае равно 1.

Чтобы получить задний ход, центральные шестерни вращают в одну сторону. Для этого останавливают сателлиты, блокируя водило.

В качестве тормозов планетарной коробки передач используют тормозные ленты или фрикционные диски. Блокировочные элементы работают в автоматическом режиме по сигналу электроники.

Электронная часть гидромеханической акпп

В гидромеханическом автомате отсутствует сцепление, поэтому каждая ступень коробки снабжена элементом переключения. Работу элементов контролирует электронный блок ЭБУ, связанный с блоком управления двигателем. Во время переключения передач автоматически регулируется частота вращения мотора, что помогает достичь оптимальных рабочих характеристик агрегата.

Система электронного управления гидромеханической коробки передач разбита на подсистемы:

  • измерительную — для сбора параметров с датчиков давления, температуры и т.д.;
  • функциональную — для управления маслонасосом, регуляторами давления и т.д.;
  • управляющую — для выдачи сигнальных импульсов.

Для автоматизации управления помимо ЭБУ в систему входят электроклапаны, датчики, усилители, регуляторы, корректирующие элементы и т.д. Электроклапаны — соленоиды, расположены в гидроблоке, и по сигналу ЭБУ открывают канал гидроплиты для прохода жидкости к фрикционам, гидротрансформатору и другим узлам.

В зависимости от положения селектора ЭБУ действует по программному алгоритму, заложенному в память:

  • при плавном разгоне дроссельная заслонка двигателя открывается медленно. Компьютер отслеживает степень открытия заслонки и посылает импульсы узлам гидромеханической коробки передач для увеличения скорости. При достижении первой передачи (20 км/ч), коробка переходит на вторую скорость. Такой режим движения называется «экономичным»;
  • при агрессивном разгоне ЭБУ работает в «спортивном» режиме. Каждая последующая передача включаются после того, как двигатель максимально раскрутится. Если водитель отпустит педаль газа, обороты упадут не сразу. В этом режиме мотор развивает максимальную мощность, увеличивается расход топлива и снижается ресурс АКПП.
Читайте также  Трансмиссия шевроле круз акпп

Гидромеханическая коробка передач

Автомобильная трансмиссия пережила уже больше века эволюционного развития. В последние десятилетия гидромеханическая коробка передач, не требующая от шофера ручного переключения ступеней трансмиссии, стала весьма популярным вариантом компоновки автомобиля и все чаще устанавливается на транспортные средства различных ценовых сегментов.

Гидромеханическая коробка передач: принцип работы и устройство

Классическая конструкция автомобиля подразумевает наличие в нем двух обязательных блоков:

  • коробка переключения передач;
  • сцепление.

Такое описание подходит для знакомой автомобилистам уже много десятилетий механической коробки. Но со временем, по мере развития технологий, стали появляться другие вариации узла КПП, обеспечивающие человеку за рулем больший комфорт передвижения.

Трансмиссия – один из базовых узлов автомобиля. Благодаря ей обеспечивается передача крутящего момента с двигателя машины на колеса. В автомобильном деле много лет безраздельно господствовала механическая КПП, предусматривающая в своем конструктиве описанные выше блоки. Водитель должен был выполнить три последовательных операции:

  • отключить мотор авто от трансмиссии на момент переключения (выжать сцепление);
  • дать команду на смену крутящего момента путем перемещения рычага КПП в нужное
  • положение;
  • отжать сцепление, вернув двигателю связь с колесами.

Но ситуация изменилась, инженеры создали КПП, где педали сцепления нет. Процесс управления автомобилем для человека в таком случае значительно упрощается: ЭБУ осуществляет переход на нужную передачу сам. Управление производится селектором коробки, педалями тормоза и газа.

Трогаясь с места, водитель выжимает тормоз, перемещает селектор в положение D (Drive), отпускает тормоз, и начинает движение. На 1 передачу, 2 и далее АКПП переходит сама, в зависимости от скорости авто, положения педали газа, оборотов двигателя и других факторов, контроль которых осуществляется множеством датчиков.

Этот процесс обеспечивается применением нескольких технологий, гидромеханическая КПП среди которых – самая известная, «обкатанная» в производстве и надежная. В ней смена передач на фрикционах производится посредством циркуляции под давлением трансмиссионного масла по коробке.

Современная гидромеханическая трансмиссия – это сложное устройство, состоящее из следующих основных компонентов:

  • гидротрансформатор;
  • ЭБУ – электронный «мозг» коробки, и управляющие механизмы;
  • фрикционные элементы;
  • создающий давление масла насос;
  • пружины и каналы гидромеханической системы;
  • механическая коробка.

Последнее – не опечатка, в основе АКПП действительно лежит «механика», конструктивно дополненная блоками автоматического переключения с гидротрансформатором – отсюда и название узла. Типичная гидромеханическая КПП в разрезе:

История коробки-автомата началась в первой четверти 20 века: тогда концерн Ford начал внедрять первые образцы «гидромеханики» в свою продукцию. В СССР АКПП массового распространения среди конечного потребителя не получила, хотя, например, в конце 50-х годов завод ЛАЗ в сотрудничестве с НАМИ разработал и внедрил гидромеханическую трансмиссию в автобусы серии ЛАЗ-695Ж. Позднее ее использовали и в модели ЛиАЗ-677, было выпущено около 200 тыс. автобусов на АКПП.

Гидромеханика ЛАЗ в разрезе:

В современном же автомобилестроении «автомат» встречается очень часто, даже в бюджетных моделях машин.

Про гидротрансформатор

Сердце рассматриваемого типа коробки – узел, называемый гидротрансформатором. Его устройство можно увидеть на схеме:

Узел расположен между механической частью КПП и двигателем, и выполняет функции сцепления. Применение гидротрансформатора позволяет, помимо удобства водителя, дать транспортному средству плавность трогания с места и остановки, и обеспечить движение без рывков. Это прямым образом влияет на долговечность двигателя, поскольку значительно снижаются неизбежные при эксплуатации авто на «механике» динамические нагрузки.

Конструктивно данный узел составлен из дисков с лопастями, соединенных друг с другом:

  • турбинное лопастное колесо, связанное жестко с валом коробки;
  • колесо реактора (статор), усиливающее момент кручения;
  • насосное лопастное колесо, связывающее мотор и узел гидротрансформатора.

Интересно: весь дисковый блок объединен одним кожухом, на три четверти погруженным в трансмиссионное масло, представляющее собой основную рабочую среду АКПП.

Насосное колесо вращается синхронно с маховиком, на аналогичной скорости. Когда происходит вращение, трансмиссионное масло поступает на турбинное колесо, передавая последнему усилие вращения. Далее масло идет на колесо реактора, перемещающее жидкость обратно к исходному насосному колесу. Благодаря процессу циркуляции рабочего тела под напором происходит передача момента вращения на колеса.

Интересно: блок автоматически определяет требуемое передаточное число и передает на АКПП усилие, а коробка уже включает фрикционами нужную передачу.

Помимо легкового транспорта, гидротрансформаторы используются в тяжелой технике: некоторых моделях маневровых тепловозов и локомотивов, дизельных тракторов, тягачей, подъемных кранов. Подобным устройством приводились в движение гребные винты буксира «Маршал Блюхер». Оснащенные гидродинамической трансмиссией автомобили «Чайка», «Волга», «ЗИЛ» также снабжались гидротрансформаторами.

Существуют разновидности гидромеханической автоматической трансмиссии:

  • вальная;
  • планетарная.

Как работает вальная КПП

Вальные «автоматы» довольно широко применяются в производстве автобусов, большегрузных ТС. Слово «вальная» относится к механической коробке в составе АКПП. «Механический» узел бывает в данном случае:

  • многовальным;
  • двухвальным;
  • трехвальным.

Для смены передач задействуются погруженные в специальное масло многодисковые муфты, а задний ход, первая ступень трансмиссии в некоторых случаях включаются зубчатой муфтой. Устройство таких АКПП позволяет переключать скорости фрикционами за счет работы коленвала, при этом не происходит потерь мощности и просадки момента вращения.

Классическая схема – двухвальная, с первичным (ведущим), вторичным (ведомым) валами, несущими шестеренки. В трехвальной схеме имеется также вал промежуточный, где расположена соединенная с главной передачей шестерня.

Вальные модели нашли ограниченное применение в легковых авто: в частности, ими оснащены многие автомобили Honda и ряд моделей концерна Mercedes. Использование подобных КПП связано с определенными техническими затруднениями: на задне приводных машинах к коробке передач применяется требование соосности, и вальная АКПП должна иметь на шестернях не менее двух зацеплений на передачу. А это снижает КПД.

Еще один недостаток – высокие дисковые потери, если число передач у транспортного средства больше трех. В вальной коробке в таком случае много выключенных сцеплений, что ведет к указанным потерям. Кроме того, валы достаточно велики по длине, что делает коробку габаритной и уменьшает свободное пространство в салоне, а также увеличивает шумность и снижает надежность. Частично это решено внедрением трехвальных коробок, с более короткими, жесткими и надежными валами.

Как работает планетарная КПП

Для гидромеханических трансмиссий производители стараются применять планетарный механизм:

В общем случае устройство и принцип работы гидромеханической коробки передач, созданной на базе планетарной системы можно описать так:

  • усилие передается на главную, или солнечную, шестерню (центральную, под номером 6);
  • вспомогательные сателлиты (обозначены цифрой 3) беспрепятственно вращаются по оси и
  • постоянно сцеплены зубчиками с центральной;
  • на этих сателлитах смонтировано водило (номер 4), сообщающееся с валом (номер 5);
  • вспомогательные элементы также сцеплены с коронной шестерней, обозначенной на рисунке цифрой 2.

Водило, когда коронная шестеренка неподвижна, передает усилие на вал ведомый, когда она расторможена, то через сателлиты усилие идет на шестеренку номер 2. Сам вал остается недвижим. Непосредственно переключение происходит посредством ленточных механизмов и пакетов фрикционных муфт.

Плюсы и минусы гидромеханики

Резюмируя сказанное, можно сделать вывод: гидромеханическая АКПП – это узел, состоящий из гидротрансформатора, модуля механической коробки передач (в большинстве случаев планетарной), оснащенной пакетом фрикционов, системы гидравлического управления и контролирующего электронного блока.

Из плюсов такой связки:

  • удобство водителя: не нужно менять скорости вручную;
  • передача мощности от двигателя идет без «просадок» и рывков, что особенно важно при трогании.

Но есть и очевидные недостатки. Один из них – относительно малый, по сравнению с механикой, КПД, что обусловлено наличием гидротрансформатора.

Важно: в процессе циркуляции рабочего тела часть эффективности теряется: по данным исследований, КПД механической коробки около 98%, аналогичный показатель у «автомата» находится в пределах 86-90%.

Кроме того, есть и другие минусы:

  • высокая сложность узла, обилие компонентов, как следствие – относительно меньшая надежность (хотя гидромеханические КПП могут при должном уходе «ходить» десятилетиями, что успешно показывают японские, корейские и немецкие авто);
  • более высокая стоимость коробки, удорожающая и оснащенный ею автомобиль;
  • расход топлива в автомобиле с такой коробкой несколько выше;
  • малая ремонтопригодность, в сравнении с «механикой»; для успешного ремонта необходимо иметь сложное оборудование и обладать специальными знаниями.

Но плюсы гидромеханического переключения передачи все же перевешивают его недостатки, особенно для начинающих водителей, не обладающих достаточным опытом. Кроме того, в городском ритме движения, с постоянными пробками, гидромеханическая АКПП экономит и силы, и нервы водителя, которому не приходится производить бесконечные манипуляции «сцепление-передача» и двигаться на 1 скорости с полувыжатым сцеплением.

Яков Кузнецов/ автор статьи

Приветствую! Я являюсь руководителем данного проекта и занимаюсь его наполнением. Здесь я стараюсь собирать и публиковать максимально полный и интересный контент на темы связанные ремонтом автомобилей и подбором для них запасных частей. Уверен вы найдете для себя немало полезной информации. С уважением, Яков Кузнецов.

Понравилась статья? Поделиться с друзьями:
NEVINKA-INFO.RU
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: