Что называется статором генератора

Уважительное «геннадий» или панибратское «гена» неспроста написаны с маленькой буквы! Это не имя автослесаря, а шутливо-жаргонное прозвище электрогенератора – одного из важнейших узлов автомобиля, практически не изменившего свою конструкцию за несколько десятилетий. Давайте познакомимся с «геннадием» поближе, изучив его сильные и слабые стороны и поняв, с каких фронтов можно ждать сюрпризов по электрической части автомобиля.

Что называется статором генератора

Генераторы: как они устроены, и как их ремонтируют

Уважительное «геннадий» или панибратское «гена» неспроста написаны с маленькой буквы! Это не имя автослесаря, а шутливо-жаргонное прозвище электрогенератора – одного из важнейших узлов автомобиля, практически не изменившего свою конструкцию за несколько десятилетий. Давайте познакомимся с «геннадием» поближе, изучив его сильные и слабые стороны и поняв, с каких фронтов можно ждать сюрпризов по электрической части автомобиля.

«Дитя света»

А втомобильный генератор в современном понимании порожден любовью человечества к электрическому свету. Машины эпохи зари автомобилизма имели лишь простейший узел под названием «магнето» – миниатюрный генератор, совмещенный с прерывателем зажигания, интегрированный в корпус двигателя и выдающий исключительно высоковольтные импульсы для работы свечей. Ни лампу, ни какой-то иной потребитель электроэнергии к магнето подключить было нельзя, поэтому машины XIX века освещали дорогу карбидными лампами, в которых горел ацетилен – от двигателя внутреннего сгорания помощи ждать не приходилось.

Однако достаточно скоро стало очевидно, что двигатель автомобиля должен порождать больше электричества: не только для собственной работы, но и для работы внешних потребителей – фар, клаксона, измерительных приборов передней панели, зарядки батареи и тому подобного. Поэтому рядом с высоковольтной «искровой» обмоткой магнето появилась дополнительная обмотка – низковольтная, дающая бортовое напряжение. МАГнето + ДИНамО-машина = магдино. Так стали называться первые генераторы.

Но поскольку магнето и магдино традиционно встраиваются непосредственно в двигатель, мощность их ограничена небольшими габаритами. И как только стало ясно, что рост мощности генераторов неизбежен, «гена» стал внешним – он переехал на кронштейн на блоке цилиндров и вращение стал получать от внешней передачи – ременной, а иногда цепной или шестеренчатой.

Первые генераторы вырабатывали постоянный ток, однако после развития в середине ХХ века полупроводниковой промышленности и появления мощных выпрямительных диодов генераторы стали производить переменный ток, который затем выпрямлялся до постоянного диодными мостами. Смена типа тока позволила скачкообразно в несколько раз и понизить габариты и массу генераторов, и поднять их мощность.

Собственно, современный генератор практически идентичен тому, что стоял на машинах, разработанных и 10, и 20, и 30, и более лет тому назад. Двигатели и КПП год за годом усложняются, а едва ли не главный внешний электроагрегат остается практически неизменным. Его конструкция неидеальна, но являет собой золотой баланс свойств и стоимости. Появляются, правда, дополнительные узлы и усовершенствования – например, вместо элементарного шкива для ремня на генератор может устанавливаться обгонная муфта, как в стартерном бендиксе, или в обмотке статора увеличивается количество катушек и усложняется диодный мост, но большинство генераторов все же по-прежнему обходятся классической конструкцией.

Как устроен генератор

Две половинки корпуса, отлитые из алюминия, образуют «бочонок» и стянуты друг с другом болтами. Внутри «бочонка» расположена кольцевая обмотка – катушка статора, с которой мы снимаем переменное напряжение. Снаружи к этой обмотке подключен диодный мост, прикрытый пластиковой защитной полукрышкой и делающий из переменного напряжения постоянное. Через корпус генератора проходит ось – вал, вращающийся на двух подшипниках и приводимый в движение за шкив ремнем от коленвала двигателя.

На валу генератора установлен и вращается вместе с ним ротор с катушкой внутри – электромагнит. Через пару скользящих контактов и угольные щетки на него подает управляющий ток регулятор напряжения, следящий за тем, чтобы генератор выдавал на выходе 14 вольт – без регулятора величина напряжения будет зависеть от оборотов и способна достичь нескольких десятков вольт, опасных для 12-вольтового автомобильного электрооборудования.

Неисправности генератора

Генератор на большинстве машин достаточно прост по конструкции, и благодаря этому количество разновидностей его неисправностей невелико, а диагностика несложна. «Плавающих» проблем, которые затруднительно выловить и локализовать, в нем практически никогда не бывает.

Самые слабые узлы генератора – не механические, а электронные: это диодный мост, состоящий из шести мощных диодов, объединенных в три группы на алюминиевой пластине-радиаторе, и регулятор напряжения. Выходят из строя они из-за перегрузки (из-за систематической работы с перегрузкой от нештатных потребителей тока, если прикуривать чужую машину, не заглушив свой двигатель, или из-за короткого замыкания в банках аккумулятора), из-за появления микротрещин от постоянной смены подкапотной температуры в широких пределах и проникновения в трещины влаги, а также иногда и вовсе без видимых причин – с электроникой это случается… В регуляторе напряжения еще вдобавок со временем стачиваются графитовые щетки. При этом и диодный мост, и регулятор напряжения в сборе со щетками могут быть заменены на новые.

На втором месте по выходу из строя – подшипники. Их в генераторе два — более мощный и массивный передний, а также задний – меньших габаритов. Страдает чаще всего передний, поскольку на него приходятся и нагрузка от туго натянутого ремня, и проникновение пыли и влаги извне. Подшипники проявляют себя гулом и визгом, который исчезает, если завести мотор при снятом ремне генератора. Они также могут быть заменены новыми.

На третьем месте – более неприятные неисправности, хотя и, к счастью, более редкие. Могут сточиться до основания два медных колечка на валу – контакты для питания обмотки ротора, по которым скользят графитовые щетки регулятора напряжения. Колечки эти достаточно долговечны, поскольку пружины щеток слабенькие, но, отработав несколько комплектов щеток, кольца с годами могут прийти в негодность. В качестве запчастей встречаются не всегда, и для конкретной модели генератора их можно не найти… Если же купить удалось, то снимаются с вала они единым блоком (залиты в пластик), и одним блоком же ставятся новые.

Еще от старости может произойти разрушение изоляции проводов обмотки статора и возникнуть короткое замыкание между витками. Как правило, такое ремонтировать невыгодно, хотя в принципе перемотка возможна. Неисправности типа разрушения корпуса рассматривать, наверное, не стоит, хотя и они, безусловно, случаются, и, как ни странно, некоторые отечественные производители генераторов поставляют в розничную продажу половинки «бочонка».

Ремонт генератора

Теперь рассмотрим ремонт генератора на живом примере. Автомобиль ВАЗ-2115 приехал на сервис с проблемой отсутствия зарядки аккумулятора. Электрик, к его чести, не приговорил, не глядя (как это часто делается), диодный мост и регулятор скопом, а сперва проверил проводку к генератору, затем (не снимая генератор с машины) извлек из него регулятор напряжения и проверил его при помощи внешнего источника напряжения 15-16 вольт и нагрузочной лампы, сымитировав штатную работу – регулятор оказался исправен. Целыми оказались и щетки регулятора, контактные кольца на валу и обмотка ротора. После этого мастер посветил фонариком на диодный мост, увидел обугленный диод, сделал вывод о неисправности моста… и предложил полную замену генератора!

Почему? Все просто: на наш генератор, рожденный Ржевским заводом автотракторного электрооборудования ЭЛТРА, модели 5102.3771, устанавливается 80-амперный диодный мост МП13-80-3-2, который стоит в магазине… 909 рублей, и меняется он не так, как, скажем на старой-доброй «девятке», где это делалось при помощи отвертки и без снятия генератора с машины. В нашем случае мост меняется с использованием мощного паяльника, и генератор для этого, по-хорошему, должен лечь на верстак. Это изрядная возня, требующая к тому же определенной аккуратности. Мастер не захотел связываться с этим менее, чем за 2 000 рублей, и намекнул владельцу, что стоимость запчасти и ремонта почти в 3 000 рублей на генератор 2006 года выпуска выглядят бледно на фоне цены нового генератора в сборе в 4 450 рублей. Иначе говоря, можно за 3 000 починить, а можно за дополнительные 1 500 рублей к цене ремонта получить нового «гену» на гарантии, с новыми подшипниками, обмотками, гарантированно лишенными усталостных трещин лака, и так далее. Владелец согласился с такими доводами, и генератор был заменен на новый.

Вот такой неожиданный исход… Мы хотели понаблюдать за недорогим восстановительным ремонтом, а столкнулись с крупноузловой дорогостоящей заменой. Впрочем, ремонт уже завершен, машина восстановила подвижность и уехала, и у нас появилась возможность в спокойной обстановке внимательно взглянуть на генератор изнутри, изучить конструкцию и разобраться, прав ли был мастер. Более того, нам никто не запрещает починить его самостоятельно.

Генератор изнутри

Разборку генератора начинаем со снятия шкива с вала: 6-ручьевой шкив под поликлиновый ремень аккуратно зажимаем в тисках через алюминиевые прокладки и откручиваем гайку пневмогайковертом. Легкие следы замятия на шкиве не страшны, если они контролируемы и прогнозируемы – ни канавки, ни кромки не деформированы.

На валу виден паз под шпонку, однако шпонки самой нет, как нет и паза для нее в шкиве. На данном генераторе шкив крепится трением – затяжкой гайки с гровером с упором во внутреннее кольцо подшипника, а через него – в ротор.

Снимаем пластиковую «полукрышку», под которой прячутся диодный мост и регулятор напряжения. Видим, что мост неисправен – пробит как минимум один диод из шести. Это заметно даже без проверки тестером – видно, что диод обуглен.

Регулятор напряжения снимается легко – откручиванием двух гаек М8. Электрически его уже проверяли, визуально тоже видно, что щетки изношены незначительно. Продуваем, вытираем и откладываем в сторону.

Статор генератора: возможные неисправности, методы диагностики и ремонта

Современный автомобиль буквально набит различными электрическими системами. Питание этих систем напрямую зависит от генератора, который состоит из нескольких компонентов. Важнейшей частью генератора является статор генератора. От его состояния напрямую зависит работа генератора и питание бортовой системы автомобиля. При поломках генератора многие спешат поменять его на новый, хотя генератор легко перебрать и восстановить практически любую его часть. Например, перемотать статор генератора вполне можно своими руками.

Из каких элементов состоит статор синхронного генератора и принцип работы

  • Пакет обмоток статора;
  • Сердечник или пакет статора;
  • Провода для вывода подключения.

Сам статор выполнен из трёх обмоток, в них формируются три различных значения тока, данная схема – это трехфазный вывод. От корпуса генератора отходят концы каждой обмотки ( они подключены к нему), второй конец подключён к выпрямителю. Для концентрации и усиления магнитного поля в генераторе служит сердечник, сделанный из металлических пластинок.

Обмотка статора синхронного генератора располагается в специальных пазах, обычно таких пазов 36. В каждом пазу обмотка держится за счёт клина. Данный клин сделан из изоляционных материалов.

Причины нарушения стабильной работы статора генератора

Перед тем как проводить проверку нужно точно узнать, какой именно генератор установлен на вашем автомобиле. Это можно узнать из мануала, но лучший способ узнать модель и параметры генератора – это заглянув под капот найти заводскую бирку. На ней вы найдёте все нужные значения. Если не учитывать различия в моделях генераторов, то результат проверки будет неточен. Зная основы электрики, несложно самому выявить различные проблемы в работе генератора, да и других систем электрической системы.

Читайте также  Уин генератор что это

Все поломки статора можно условно разделить на две группы:

  • Обрыв проводов обмотки;
  • Замыкание провода на массу.

Если эксплуатация автомобиля проходит в условиях повышенной влажности или при резких сменах температурного режима, изоляция может потрескаться и расслоиться. Это может спровоцировать межвитковое замыкание и даже выход из строя всего генератора, что станет причиной внезапного разряжения аккумулятора, так как генератор не сможет полноценно его заряжать.

Проверка статора генератора при помощи мультиметра, как проверить контрольной лампочкой

Статор генератора проверяется или на обрыв, или на короткое замыкание. Чтобы проверить сопротивление, используется мультиметр, в крайнем случае, можно воспользоваться контрольной лампочкой.

Мультиметр следует перевести в режим омметра, после чего его щупы подключаются к выводам обмоток. При отсутствии обрыва тестер покажет сопротивление 10 ом. При наличии обрыва сопротивление покажет значение, стремящееся к бесконечности. При таком результате производится проверка трёх выводов. Для получения более точных результатов проверки лучше сверить полученные данные с паспортными. Следует знать, что недорогие китайские мультиметры не в состоянии точно показать снимаемое сопротивление (точность иногда требуется до десятых долях ома), поэтому следует обзавестись хорошим фирменным прибором.

Если достать любой мультиметр не представляется возможным, а проверить нужно, можно использовать контрольную лампочку (контрольку). Точное сопротивление она не покажет, но разрыв найти поможет. С помощью изолированного провода подаётся отрицательный заряд от аккумулятора на контакт обмотки. Положительный заряд следует подать через лампочку на другой контакт. Если лампочка горит, значит разрыв не найден, и устройство функционирует исправно. Данная процедура дублируется для всех выводов.

Диагностика на замыкание также проводится с помощью мультиметра или контрольной лампочки. Положительный щуп нужно соединить с любым контактом обмотки, а отрицательный – к статору. Это следует повторить с каждым выводом. Контрольной лампой межвитковое замыкание определяется аналогичным способом. Прозвоните все выводы.

Ремонт генератора своими руками

Под ремонтом статора обычно понимается перемотка статора генератора. Для этой процедуры вам понадобится внушительный набор инструментов:

  • Намоточный станок;
  • Медный провод (может потребоваться около 8 катушек);
  • Трамбовка;
  • Сверлильный станок;
  • Устройство для сушки покрытого лаком статора;
  • Молоток, набор отвёрток и ключей.

Намотка статора автомобильного генератора — это и есть ремонт статора. Для начала следует извлечь сам статор из генератора. Старая обмотка опаливается, но перед этим должна быть составлена схема обмотки статора генератора, идентичная старой трёхфазной или однофазной обмотке. При опаливании магнитные свойства металлического пакета статора не ухудшаются, поэтому можно не переживать. Когда обмотка полностью обгорит, следует провести полную очистку посадочного места. Нарезаются изоляционные прокладки из синтофлекса и устанавливаются в пазы.

Перематывать обмотку следует по заранее нарисованной схеме. Линейный принцип используется в однофазном генераторе, а трехфазная обмотка статора предполагает соединение «звездой» или «треугольником». При перемотке провод из первого паза должен идти сразу в четвёртый. Сначала наматывается половина витков в одну сторону, потом вторая половина в противоположную сторону. Пазы заделываются выступающими частями прокладок, после чего катушки нужно простучать молотком. Чтобы не повредить обмотку, нужно использовать проставку.

Перед тем, как проверить токами работоспособность статора, следует убедится в отсутствии короткого замыкания. Если найдётся замыкание, значит изоляция была уложена некачественно. Следует отыскать проблемное место и, используя прокладку, устранить пробой.

Перед пропиткой лаком нужно проверить размеры перемотанного узла, он не должен при сборке генератора выступать за края. Контакты связываются нитью, которая не расплавится при сушке и помещается в ёмкость с лаком. После пропитки статора его помещают в печь для сушки, предварительно дав элементу обтечь. Если нет подходящей печи, статор можно просто подвесить, установив снизу нагревательный элемент. Когда лак перестанет липнуть, сушка будет закончена. При использовании подогрева сушка обычно занимает около 2-3 часов.

При нестабильной работе генератора для многих решением проблемы становится замена всего узла. Но если знать, как проверить все элементы генератора, то даже процедура обмотки статора будет вам по плечу.

Что такое статор и ротор и чем они отличаются

Существует несколько классов электрических преобразователей, среди которых практическое применение нашли так называемые индуктивные аналоги. В них преобразование энергии происходит за счет преобразования индукции обмоток, являющиеся неотъемлемой частью самого агрегата. Обмотки располагаются на двух элементах – на статоре и роторе. Итак, чем отличаются статор и ротор (что это такое и каковы их функции?).

Самое простое определение двух частей преобразователя – это их функциональность. Здесь все просто: статор (электродвигателя или генератора) является неподвижной частью, ротор подвижной. В большинстве случаев последний располагается внутри первого, и между ними есть небольшой зазор. Есть так называемые агрегаты с внешним ротором, который представляет собой вращающееся кольцо, внутри которого располагается неподвижный статор.

Виды преобразователей

Почему так важно рассмотреть виды, чтобы понять, чем отличается статор электродвигателя от подвижной его части. Все дело в том, что конструктивных особенностей у электродвижков немало, то же самое касается и генераторов (это преобразователи механической энергии в электрическую, электродвигатели имеют обратную функциональность).

Итак, электрические двигатели делятся на аппараты переменного и постоянного тока. Первые в свою очередь разделяются на синхронные, асинхронные и коллекторные. У первых угловая скорость вращения статора и ротора равны. У вторых два эти показателя неравны. У коллекторных видов в конструкции присутствует так называемый преобразователь частоты и количества фаз механического типа, который носит название коллектор. Отсюда и название агрегата. Именно он напрямую связан с обмотками ротора двигателя и его статора.

Машины постоянного тока на роторе имеют тот же коллектор. Но в случае с генераторами он выполняет функции преобразователя, а в случае с электродвигателями функции инвертора.

Если электрический агрегат – это машина, в которой вращается только ротор, то его название – одномерный. Если в нем вращаются в противоположные стороны сразу два элемента, то этот аппарат носит название двухмерный или биротативный.

Асинхронные электродвигатели

Чтобы разобраться в понятиях ротора двигателя и его статора, необходимо рассмотреть один из видов электрических преобразовательных машин. Так как асинхронные электродвижки используются чаще всего в производственном оборудовании и бытовой техники, то стоит рассмотреть именно их.

Итак, что собой представляет асинхронный электродвигатель? Это обычно чугунный корпус, в который запрессован магнитопровод. В нем сделаны специальные пазы, куда укладывается обмотка статора, собранная из медной проволоки. Пазы сдвинуты относительно друг друга на 120º, поэтому их всего три. Они же образуют три фазы.

Ротор в свою очередь – это цилиндр, собранный из стальных листов (сталь штампованная электротехническая), и насажанный на стальной вал, который в свою очередь при сборке электрического движка устанавливается в подшипники. В зависимости от того, как собраны фазные обмотки агрегата, роторы двигателя могут быть фазными или короткозамкнутыми.

  • Фазный ротор – это цилиндр, на котором собраны катушки, сдвинутые относительно друг друга на 120º. При этом в его конструкцию установлены три контактных кольца, которые не соприкасаются ни с валом, ни между собой. К кольцам присоединены с одной стороны концы трех обмоток, а с другой графитовые щетки, которые относительно колец располагаются в скользящем контакте. Пример такой машины – это крановые электродвигатели с фазным ротором.
  • Короткозамкнутый ротор собирается из медных стержней, которые укладываются в пазы. При этом их соединяют специальным кольцом, изготовленном из меди.

Асинхронный электрический двигатель с фазным ротором является обладателем больших размеров и веса. Но у него отличные свойства, касающиеся пусковых и регулировочных моментов. Двигатели, у которых установлен короткозамкнутый ротор, считаются самыми надежными на сегодняшний день. Они просты в конструкции, поэтому и являются дешевыми. Их единственный недостаток – это большой пусковой ток, с которым сегодня борются соединением обмоток статора со звезды на треугольник. То есть, пуск производится при соединении звездой, после набора оборотов производится переключение на треугольник.

Статор генератора: рождающий ток

Каждое современное транспортное средство оснащается электрическим генератором, который вырабатывает ток для работы бортовой электросистемы и всех ее приборов. Одна из основных частей генератора — неподвижный статор. О том, что такое статор генератора, как он устроен и работает — читайте в этой статье.

Назначение статора генератора

В современных автомобилях и других транспортных средствах применяются синхронные трехфазные генераторы переменного тока с самовозбуждением. Типичный генератор состоит из неподвижного статора, закрепленного в корпусе, ротора с обмоткой возбуждения, щеточного узла (подводящего ток к обмотке возбуждения) и выпрямительного блока. Все детали собраны в относительно компактную конструкцию, которая монтируется на двигателе и имеет ременной привод от коленчатого вала.

Статор — неподвижная часть автомобильного генератора, несущая на себе рабочую обмотку. В процессе работы генератора именно в обмотках статора возникает электрический ток, который преобразуется (выпрямляется) и подается в бортовую сеть.

Статор генератора имеет несколько функций:

• Несет на себе рабочую обмотку, в которой генерируется электрический ток;
• Выполняет функцию корпусной детали для размещения рабочей обмотки;
• Играет роль магнитопровода для повышения индуктивности рабочей обмотки и правильного распределения силовых линий магнитного поля;
• Выступает в роли теплоотвода — отводит чрезмерное тепло от нагревающихся обмоток.

Все статоры имеют принципиально одинаковую конструкцию и не отличаются разнообразием типов.

Конструкция статора генератора

Конструктивно статор состоит из трех основных частей:

• Кольцевой сердечник;
• Рабочая обмотка (обмотки);
• Изоляция обмоток.

Сердечник собирается из железных кольцевых пластин с пазами с внутренней стороны. Из пластин формируется пакет, жесткость и монолитность конструкции придается сваркой или клепкой. В сердечнике выполняются пазы для укладки обмоток, а каждый выступ — это ярмо (сердечник) для витков обмотки. Сердечник собирается из пластин толщиной 0,8-1 мм, изготовленных из специальных марок железа или ферросплавов с определенной магнитной проницаемостью. На внешней стороне статора могут присутствовать ребра для улучшения отвода тепла, а также выполняться различные пазы или углубления для стыковки с корпусом генератора.

Читайте также  У нового генератора не идет зарядка ваз 2105

В трехфазных генераторах используется три обмотки — по одной на фазу. Каждая обмотка изготавливается из медного изолированного провода большого сечения (диаметром от 0,9 до 2 мм и более), которая в определенном порядке укладывается в пазах сердечника. Обмотки имеют выводы, с которых снимается переменный ток, обычно число выводов составляет три или четыре, но бывают статоры с шестью выводами (каждая из трех обмоток имеет свои выводы для выполнения соединений того или иного типа).

В пазах сердечника располагается изоляционный материал, защищающий изоляцию провода от повреждения. Также в некоторых типах статоров в пазы могут вкладываться изоляционные клинья, которые дополнительно выполняют роль фиксатора витков обмоток. Статор в сборе дополнительно может подвергаться пропитке эпоксидными смолами или лаками, что обеспечивает целостность конструкции (предотвращает сдвиг витков) и улучшает ее электроизоляционные свойства.

Статор жестко монтируется в корпусе генератора, причем сегодня чаще всего используется конструкция, в которой сердечник статора выполняет роль корпусной детали. Реализуется это просто: статор зажимается между двумя крышками корпуса генератора, которые стягиваются шпильками — такой «сэндвич» позволяет создавать компактные конструкции с эффективным охлаждением и простотой обслуживания. Популярностью пользуется и конструкция, при которой статор объединен с передней крышкой генератора, а задняя крышка выполнена съемной и обеспечивает доступ к ротору, статору и другим деталям.

Типы и характеристики статоров

Статоры генераторов отличаются числом и формой пазов, схемой укладки обмоток в пазах, схемой подключения обмоток и электрическими характеристиками.

По числу пазов под витки обмоток статоры бывают двух типов:

• С 18 пазами;
• С 36 пазами.

Сегодня наиболее часто используется конструкция с 36 пазами, так как она обеспечивает лучшие электрические характеристики. Генераторы со статорами с 18 пазами сегодня можно встретить на некоторых отечественных автомобилях ранних выпусков.

По форме пазов статоры бывают трех типов:

• С открытыми пазами — пазы прямоугольного сечения, в них требуется дополнительная фиксация витков обмоток;
• С полузакрытыми (клиновидными) пазами — пазы суживаются кверху, поэтому витки обмоток фиксируются вставкой изоляционных клиньев или кембриков (трубок из ПВХ);
• С полузакрытыми пазами для обмоток с одновитковыми катушками — пазы имеют сложное сечение под укладку одного или двух витков провода большого диаметра или провода в виде широкой ленты.

По схеме укладки обмоток статоры бывают трех типов:

• С петлевой (петлевой распределенной) схемой — провод каждой обмотки укладывается в пазы сердечника петлями (обычно один виток укладывается с шагом в два паза, в эти пазы укладываются витки второй и третьей обмоток — так обмотки приобретают сдвиг, необходимый для генерации трехфазного переменного тока);
• С волновой сосредоточенной схемой — провод каждой обмотки укладываются в пазы волнами, обходя их то с одной, то с другой стороны, причем в каждом пазу лежит по два витка одной обмотки, направленных в одну сторону;
• С волновой распределенной схемой — провод также укладывается волнами, однако витки одной обмотки в пазах направлены в разные стороны.

При любом типе укладки каждая обмотка имеет шесть витков, распределенных по сердечнику.

Независимо от способа укладки провода, существует две схемы соединения обмоток:

• «Звезда» — в этом случае обмотки соединены параллельно (концы всех трех обмоток соединены в одной (нулевой) точке, а их начальные выводы свободны);
• «Треугольник» — в этом случае обмотки соединены последовательно (начало одной обмотки с концом другой).

При соединении обмоток «звездой» наблюдается более высокий ток, данная схема применяется на генераторах мощностью не более 1000 Вт, которые эффективно работаю на малых оборотах. При соединении обмоток «треугольником» ток снижается (в 1,7 раз относительно «звезды»), однако генераторы с такой схемой подключения лучше работают на высоких мощностях, а для их обмоток можно использовать проводник меньшего сечения.

Часто вместо «треугольника» используется схема «двойная звезда», в этом случае статор должен иметь уже не три, а шесть обмоток — по три обмотки соединяются «звездой», и две «звезды» подключаются к нагрузке параллельно.

Что касается характеристик, то для статоров наибольшее значение имеет номинальное напряжение, мощность и номинальный ток в обмотках. По номинальному напряжению статоры (и генераторы) делятся на две группы:

• С напряжением в обмотках 14 В — для транспортных средств с напряжением бортовой сети 12 В;
• С напряжением в обмотках 28 В — для техники с напряжением бортовой сети 24 В.

Генератор вырабатывает более высокое напряжение, так как в выпрямителе и стабилизаторе неизбежно происходит падение напряжения, а на входе в бортовую электросеть наблюдается уже нормальное напряжение в 12 или 24 В.

Большинство генераторов для автомобилей, тракторов, автобусов и прочей техники имеет номинальный ток от 20 до 60 А, для легковых автомобилей достаточно 30-35 А, для грузовиков — 50-60 А, для тяжелой техники выпускаются генераторы с током до 150 и более А. При этом мощность генераторов колеблется от 400 до 2500 Вт.

Принцип работы статора генератора

Работа статора и всего генератора основана на явлении электромагнитной индукции — возникновении тока в проводнике, который движется в магнитном поле или покоится в переменном магнитном поле. В автомобильных генераторах используется второй принцип — проводник, в котором возникает ток, покоится, а магнитное поле постоянно изменяется (вращается).

При запуске двигателя ротор генератора начинает вращаться, одновременно на его возбуждающую обмотку подается напряжение от аккумуляторной батареи. Ротор имеет многополюсный стальной сердечник, который при подаче тока на обмотку становится электромагнитом, соответственно, вращающийся ротор создает переменное магнитное поле. Силовые линии этого поля пересекают статор, расположенный вокруг ротора. Сердечник статора определенным образом распределяет магнитное поле, его силовые линии пересекают витки рабочих обмоток — в них за счет электромагнитной индукции генерируется ток, который снимается с выводов обмотки, поступает на выпрямитель, стабилизатор и в бортовую сеть.

При увеличении оборотов двигателя часть тока от рабочей обмотки статора подается на обмотку возбуждения ротора — так генератор переходит в режим самовозбуждения и уже не нуждается в стороннем источнике тока.

В процессе работы статор генератора испытывает нагрев и электрические нагрузки, также он подвергается негативным воздействиям окружающей среды. Это с течением времени может привести к ухудшению изоляции между обмотками и электрическому пробою. В данном случае статор нуждается в ремонте или полной замене. При регулярном техническом обслуживании и своевременной замене статора генератор будет служить надежно, стабильно обеспечивая автомобиль электрической энергией.

Другие статьи

Винты, болты и гайки, разложенные по столу или в пластиковой емкости, легко теряются и повреждаются. Эту проблему при временном хранении метизов решают магнитные поддоны. Все о данных приспособлениях, их типах, конструкции и устройстве, а также о выборе и применении поддонов — читайте в этой статье.

В подвесках грузовых автомобилей, автобусов и другой техники предусмотрены элементы, компенсирующие реактивный момент — реактивные штанги. Соединение штанг с балками мостов и рамой осуществляется с помощью пальцев — об этих деталях, их типах и конструкции, а также о замене пальцев читайте в статье.

Многие модели автомобилей МАЗ оснащаются приводом выключения сцепления с пневматическим усилителем, важную роль в работе которого играет клапан включения привода. Все о клапанах включения привода сцепления МАЗ, их типах и конструкции, а также о подборе, замене и ТО данной детали — узнайте из статьи.

При ремонте поршневой группы двигателя возникают сложности с установкой поршней — выступающие из канавок кольца не позволяют поршню свободно войти в блок. Для решения этой проблемы используются оправки поршневых колец — о данных приспособлениях, их типах, конструкции и применении узнайте из статьи.

Статор — понятие и принцип действия

Электрический двигатель – это машина, превращающая электрическую энергию в механическую. Работа любого электрического двигателя или генератора основана на условии взаимодействия магнитных полей статора и ротора.

Cтатор в разных типах электродвигателей

Статор – это неотъемлемый узел электрической машины, сохраняющий неподвижное состояние во время работы двигателя. Ротор – вращающаяся часть электрического мотора, передающая механическую энергию на выходной вал. Другое название ротора – якорь.

Синхронный или коллекторный двигатель

Электрический ток на ламели коллектора передается графитовыми щетками. Такой электродвигатель будет работать, как в сети постоянного, так и переменного тока. Пульсирующее магнитное поле, создаваемое обмотками статора, будет взаимодействовать с пульсирующим магнитным полем, генерируемым обмотками якоря. Ротор станет вращаться. Подобные электродвигатели широко применяются в различных бытовых и промышленных приборах: электродрелях, пылесосах, силовых приводах станков, электротранспорте.

Интересно. Двигатели такого типа имеют еще одно название – синхронные. Это означает, что скорость вращения ротора равна скорости вращения электромагнитного поля, возникающего в двигателе.

Асинхронные двигатели

Подавляющее количество электромоторов, применяющихся и в промышленности, и в быту, – это асинхронные электродвигатели с короткозамкнутыми роторами. Такие двигатели применяются в трехфазных и однофазных сетях переменного тока.

Статорная конструкция собирается из большого количества стальных пластин и расположена в корпусе основания, отлитом из немагнитных металлов: чугуна или алюминия.

Материал пластин – электротехническая сталь. Пластины изолированы друг от друга специальным диэлектрическим лаком. В статоре имеются продольные пазы, где размещаются три обмотки, сдвинутые относительно оси вращения электромотора на 120 градусов друг от друга. Ротор также набирается из изолированных пластин электротехнической стали. В пазы ротора уложены стержни из алюминия, реже меди, соединенные по торцам контактными кольцами. Отсюда и название – короткозамкнутый ротор. Такая конструкция, называемая «беличьим колесом», играет роль обмотки ротора.

Ниже представлен вид асинхронного электродвигателя в разрезе. Хорошо видно, что такое наборный статор.

Обмотки двигателя могут подключаться к трехфазной электрической сети по схеме «треугольник» или «звезда».

Коммутация схемы производится в клеммной коробке двигателя, называемой борн или брно.

При подаче трехфазного напряжения в обмотках статора возникают пульсирующие токи, которые вызывают появление в статоре вращающегося магнитного поля. Это поле пересекает токопроводящие стержни ротора, в которых индуцируются вторичные пульсирующие токи. Результатом становится появление магнитного поля в роторе. Магнитные поля статора и ротора взаимодействуют и заставляют вращаться стержни «беличьего колеса», вместе с тем и сам ротор. Якорь вращается со скоростью несколько меньшей, чем магнитное поле статора.

Читайте также  Хендай портер защита генератора

Величина этой разности называется скольжением и может составлять от 2 до 8 %. Из-за наличия скольжения двигатели подобной конструкции получили название асинхронные. Эффект скольжения физически необходим для работы асинхронного двигателя не будет отставания вращения ротора от магнитного поля статора, не будет индуцироваться ток в стержнях ротора, исчезнет магнитное поле в якоре, приводящее во вращение ротор.

Материал для статоров

Статорные и роторные узлы набираются из изолированных пластин электротехнической стали толщиной от 0,2 до 0,5 мм. В такой стали присутствует повышенное количество кремния (3-4,5 %). В результате сплав получает повышенное электрическое сопротивление и улучшенные магнитные характеристики. Малая толщина пластин и высокое удельное сопротивление существенно снижают паразитные вихревые токи Фуко в статоре и роторе. Это позволяет уменьшить нагрев узлов и деталей электродвигателя, повысить его электрический КПД.

Технология перемотки статора

Индикаторами нештатной работы электромотора являются:

  • Снижение мощности;
  • Повышенный нагрев корпуса;
  • «Пробивание» напряжения на массу.

В таком случае следует провести диагностику неисправности статора. Необходимо определить, как проверить статор на межвитковое замыкание мультиметром. Величина сопротивления обмоток указана в справочной литературе на конкретный двигатель. Проверив мультиметром сопротивление каждой из обмоток, можно определить дефектную. После чего необходимо перемотать одну или все обмотки статора.

Основные операции:

  • Удаление из пазов статора старых обмоток;
  • Очищение пазов от остатков старой электро,- и термоизоляции;
  • Установка новой изоляции в пазах статора;
  • Укладка новых обмоток;
  • Пропитка обмоток диэлектрическим лаком и его сушка;
  • Проверка электрических параметров новых обмоток статора.

При правильно проведенном ремонте электромотор восстановит свои первоначальные характеристики.

Проверка якоря коллекторного двигателя

У якоря коллекторного электродвигателя надо проверять два основных типа неисправностей:

  1. Механические;
  2. Электрические.

На заметку. К механическим неисправностям, как правило, относится выработка ресурса подшипников. Появляются сильный шум при работе двигателя, нагрев подшипников, продольный и радиальный люфт якоря.

Электрические неисправности включают в себя:

  • Обрыв провода в обмотке;
  • Межвитковое замыкание;
  • Пробой обмотки на корпус якоря и самого мотора;
  • Износ контактных ламелей коллектора.

Следует рассмотреть, как проверить якорь на межвитковое замыкание. Сделать это удобно с помощью цифрового мультиметра либо, при его отсутствии, стрелочным тестером.

Как прозвонить якорь? Следует поочередно измерять сопротивление обмоток якоря, касаясь щупами мультиметра противоположных ламелей коллектора. Значительное отклонение величины сопротивления позволит узнать неисправную обмотку. Пробой на корпус проверяется мультиметром в диапазоне сопротивления 20 кОм. Один щуп присоединяется к валу ротора, другим поочередно касаются ламелей коллектора. Прибор должен показывать состояние «разрыв». По показанию мультиметра менее 20 кОм можно узнавать о неисправности обмотки, и, следовательно, необходимости ремонта якоря.

Ремонт электродвигателей

Проведение ремонта электродвигателей, такого, как перемотка статора или ротора, операция ответственная и кропотливая. Необходимы определенные знания и навыки работы, опыт. Проще всего производится устранение механических неисправностей, обычно это замена подшипников и восстановление геометрии коллектора либо его полная замена. Также бывает необходимо поменять стесанные графитовые щетки, подающие ток на обмотки якоря.

При ремонте электрической части двигателя потребуются специальные материалы, обмоточный провод нужной марки, специальные инструменты и оснастка. Если речь идет о ремонте ограниченного количества электродвигателей, то лучше обратиться в специализированное ремонтное предприятие. Это целесообразно, как с точки зрения качества ремонта, так и экономики.

Для проведения ремонтных работ в больших количествах необходимо создать профильный участок ремонта, подобрать персонал, содержать определенное количество оборудования, материалов и комплектующих, иметь справочную литературу.

Теплоизоляция статора

Электродвигатель при работе подвержен достаточно сильному нагреву до 100-145 0С. Для сохранения работоспособности, защиты деталей и узлов от перегрева на валу двигателя имеется крыльчатка вентилятора, производящая обдув ротора и статора. Кроме того, для защиты обмоток статора применяются различные термоизолирующие материалы, такие как:

  • Прокладки на базе компонентов из слюды и специальных картонов;
  • Термоизолирующие материалы из стеклоткани;
  • Термостойкие пропиточные лаки.

Правильное технологическое применение таких теплоизоляционных компонентов обеспечивает долгую надежную и бесперебойную работу электродвигателей.

Защита статора тепловым реле

В процессе эксплуатации электродвигатель может потреблять повышенный ток из сети и испытывать сильный нагрев. Причины могут быть разные, например, слишком большая нагрузка на валу, частые включения и выключения мотора, повышенная температура окружающей среды. Такие нештатные режимы работы могут привести к перегреву статорных обмоток и выходу их из строя. Для предотвращения повреждения электродвигателя в статорной системе устанавливается один или два биметаллических тепловых реле это термовыключатели, называемые кликсонами.

При повышении температуры статора выше положенного значения происходит размыкание биметаллического контакта кликсона. Термовыключатель размыкает цепь питания катушки управления силовым контактором, который подает напряжение на электромотор. Контактор отключает электромотор от силовой электросети. Дальнейшее включение контактора и, следовательно, электродвигателя возможно лишь после охлаждения обмоток статора и замыкания биметаллической пары термовыключателя.

Двигатели, применяемые в промышленности

В промышленности успешно применяются оба типа двигателей: и асинхронные с короткозамкнутым ротором, и синхронные коллекторные.

Первый тип устройств имеет важные достоинства:

  • Низкая цена;
  • Надежность и долговечность;
  • Простота эксплуатации.

Имеются и минусы:

  • Невозможность плавного регулирования оборотов якоря;
  • Невысокая скорость вращения – предел 3000 об./мин. в сетях с частотой 50Гц;
  • Большие пусковые токи.

Однако достоинства этих изделий многократно превосходят их недостатки.

К сведению. Асинхронные двигатели применяются в тех устройствах, где требуются постоянные режимы работы промышленного или транспортного оборудования. Например, в приводах всевозможных насосов, ленточных транспортеров, в системах вентиляции, в подъемных механизмах. Ниша асинхронных электрических машин занимает 65-75 % от общего объема применяемых электромоторов.

Синхронные, коллекторные двигатели имеют свои достоинства:

  • Возможность плавного бесступенчатого изменения скорости вращения;
  • Большая мощность;
  • Большая скорость вращения.

Недостатки, присущие коллекторным электромоторам:

  • Относительно высокая стоимость;
  • Скользящие контакты коллектора якоря, снижающие надежность эксплуатации и уменьшающие ресурс машины;
  • Необходимость частого обслуживания.

Они применяются там, где необходимо плавное изменение угловых скоростей: это приводы станков, тяговые моторы электротранспорта, точные системы монтажа.

Оба типа двигателей находят массовое применение в промышленности и быту. Для их длительной и безотказной работы необходимо проведение регламентных работ, при необходимости и восстановительного ремонта, включающего перемотку обмоток статора и ротора.

Видео

Генератор переменного тока

В 1832-м году неизвестным изобретателем был создан первый однофазный синхронный многополюсный генератор переменного тока. Но в самых первых электронных устройствах применялся только постоянный ток, в то время как переменный ток долгое время не мог найти своего практического применения. Тем не менее, вскоре выяснили, что намного практичнее использовать не постоянный, а переменный ток, то есть тот ток, который периодически меняет свое значение и направление. Преимущества переменного тока, состоят в том, что его удобнее вырабатывать при помощи электростанций, генераторы переменного тока экономичнее и проще в обслуживании, чем аналоги, работающие на постоянном токе. Поэтому были собраны надежные электрические двигатели переменного тока, которые сразу нашли свое широкое применение в промышленных и бытовых сферах. Надо отметить, что благодаря существованию переменного тока, его особенным физическим явлениям, смогли появиться такие изобретения, как радио, магнитофон и прочая автоматика и электротехника, без которой сложно представить современную жизнь.

Устройство генератора переменного тока

Генератор переменного тока – это устройство, которые преобразует механическую энергию, в электрическую.

Состоит он из неподвижной части, которая называется статор или якорь (см. рисунок) и вращающейся части — ротор или индуктор. В генераторе переменного тока ротор — это электромагнит, который обеспечивает магнитное поле, которое передается на статор. На внутренней поверхности статора есть осевые впадины, так называемые пазы, в которых расположена обмотка переменного тока (проводник). Статор генератора изготавливается из 0.35 мм спрессованных стальных листов, которые изолированы покрытой лаком пленкой. Эти листы устанавливаются в станине устройства. Ротор крепится внутри статора и вращается посредством двигателя. Вал – одна из деталей, для передачи крутящего момента под действием расположенных на нём опор. На общем валу с генератором, располагается так называемый возбудитель постоянного тока, который питает постоянным током обмотки ротора. Аккумулятор в генераторе переменного тока выполняет функции стартерной батареи, которая имеет свойство накапливать и хранить электроэнергию при нехватке в отсутствии работы двигателя и при нехватке мощности, которую развивает генератор.

Применение генераторов переменного тока в жизни

В течении последних лет, популярность использования электростанций и генераторов переменного тока значительно возросла. Используются они как в промышленных, так и в бытовых сферах. Промышленные генераторы являются наилучшим вариантом для использования на производстве, в больницах, школах, магазинах, офисах, бизнес центрах, а так же на строительных площадках, значительно упрощая строительство в тех зонах, где электрификация полностью отсутствует. Бытовые генераторы, более практичные, компактные и идеально подходят для использования в коттедже и загородном доме. Генераторы переменного тока широко применяются в различных областях и сферах благодаря тому, что могут решить множество важных проблем, которые связаны с нестабильной работой электричества или полным его отсутствием.

Обслуживание

Практически любая дизельная электростанция в независимости от ее мощности (500 кВт) и производителя имеет 2 главные составляющие. Это генератор переменного тока и двигатель внутреннего сгорания. Так как поддерживать данные узлы необходимо в рабочем исправном состоянии, в ходе их эксплуатации нужен определенный перечень обязательных работ по их техническому обслуживанию. К сожалению, подавляющее большинство владельцев считает, что можно ограничиться лишь своевременной заменой масла и фильтра, при этом «техническое обслуживание» можно провести и самостоятельно. Но результатом этого зачастую становится полный отказ работы устройства. В результате чего, не сложно сделать вывод, что проще и дешевле, доверить оборудование профессионалам, которые благодаря знаниям и огромному опыту, смогут увеличить срок службы ДГУ и сократить расходы при аварийных ситуациях.

Вам нужна дешевая дизельная электростанция? Посмотрите наш каталог ДГУ по специальной цене.
Возможно, будет выгоднее купить дизельную электростанцию, чем брать ее в аренду.

Яков Кузнецов/ автор статьи

Приветствую! Я являюсь руководителем данного проекта и занимаюсь его наполнением. Здесь я стараюсь собирать и публиковать максимально полный и интересный контент на темы связанные ремонтом автомобилей и подбором для них запасных частей. Уверен вы найдете для себя немало полезной информации. С уважением, Яков Кузнецов.

Понравилась статья? Поделиться с друзьями:
NEVINKA-INFO.RU
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: