Что такое электрический генератор что такое электродвигатель
Генератор и двигатель — чем они отличаются
Все электрические машины функционируют в соответствии с законом электромагнитной индукции, а также с законом взаимодействия проводника с током и магнитного поля.
Электрические машины по типу питания подразделяются на машины постоянного и переменного тока. Постоянный ток создается за счет источников бесперебойного питания. Для машин постоянного тока характерно свойство обратимости. Это означает, что они способны работать как в двигательном, так и в генераторном режиме. Данное обстоятельство можно объяснить с точки зрения аналогичных явлений в работе обеих машин. Более детально конструктивные особенности двигателя и генератора рассмотрим далее.
Двигатель
Двигатель предназначен для преобразования электрической энергии в механическую. В промышленном производстве двигатели применяются в качестве приводов на станках и прочих механизмах, являющихся частью технологических процессов. Также двигатели используются в бытовых приборах, к примеру, в стиральной машине.
Электродвигатель постоянного тока
При нахождении в магнитном поле проводника в виде замкнутой рамки, силы, которые приложены к рамке, приведут данный проводник к вращению. В таком случае, речь будет идти о простейшем двигателе.
Как было указано ранее, работа двигателя постоянного тока осуществляется от источников бесперебойного питания, к примеру, от аккумуляторной батареи, блока питания. У двигателя имеется обмотка возбуждения. В зависимости от ее подключения, различают двигатели с независимым и самовозбуждением, которое, в свою очередь, может быть последовательным, параллельным и смешанным.
Подключение двигателя переменного тока производится от электрической сети. Исходя из принципа работы, двигатели подразделяются на синхронные и асинхронные.
Главным отличием синхронного двигателя является наличие обмотки на вращающемся роторе, а также имеющийся щеточный механизм, служащий для подведения тока на обмотки. Вращение ротора осуществляется синхронно вращению магнитного поля статора. Отсюда двигатель имеет такое название.
В асинхронном двигателе важным условием является то, что вращение ротора должно быть медленнее вращения магнитного поля. При несоблюдении данного требования наведение электродвижущей силы и возникновение электротока в роторе оказывается невозможным.
Асинхронные двигатели применяются чаще, однако у них имеется один значительный недостаток – без изменения частоты тока невозможно регулирование скорости вращения вала. Данное условие не позволяет достичь вращения с постоянной частотой. Также значительным недостатком является ограничение по максимальной скорости вращения (3000 об./мин.).
Генератор
Проводник, перемещаясь между двумя магнитными полюсами, способствует возникновению электродвижущей силы. Когда проводник замыкают, то при воздействии электродвижущей силы в нем возникает ток. На данном явлении основывается действие электрического генератора.
Генератор переменного тока
Генератор способен вырабатывать электрическую энергию из тепловой или химической энергии. Однако наиболее широкое распространение получили генераторы, преобразующие механическую энергию в электрическую.
Основные составные элементы генератора постоянного тока:
- Якорь, выступающий в качестве ротора.
- Статор, на котором располагается катушка возбуждения.
- Корпус.
- Магнитные полюса.
- Коллекторный узел и щетки.
Генераторы постоянного тока используются не так часто. Основные сферы их применения: электрический транспорт, сварочные инверторы, а также ветроустановки.
Генератор постоянного тока
Генератор переменного тока имеет схожую конструкцию с генератором постоянного тока, но отличается строением коллекторного узла и обмотками на роторе.
Схема генератора переменного тока
Так же как и в случае с двигателями, генераторы могут быть синхронными и асинхронными. Разница между данными генераторами заключается в строении ротора. У синхронного генератора катушки индуктивности расположены на роторе, а у асинхронного генератора для расположения обмотки на валу имеются специальные пазы.
Чем отличается генератор от двигателя?
Подводя итог, важно отметить, что функционирование двигателей и генераторов основано на общем принципе электромагнитной индукции. Конструкция данных электрических машин аналогична, однако имеется различие в конфигурации ротора.
Главным же отличием является функциональное назначение генератора и двигателя: двигатель вырабатывает механическую энергию, потребляя электрическую, а генератор наоборот вырабатывает электрическую энергию, потребляя механическую, либо другой вид энергии.
Естествознание. 11 класс
Конспект урока
Естествознание, 11 класс
Урок 10. Принцип работы электрогенераторов и электродвигателей
Перечень вопросов, рассматриваемых в теме:
- Действие какой силы лежит в основе работы электрогенератора и электродвигателя.
- Каковы основные узлы электрогенератора и электродвигателя.
- Где используют электродвигатели.
- В чём преимущества и недостатки электродвигателей по сравнению с тепловыми.
Глоссарий по теме:
Генераторы – это электрические машины, которые преобразуют механическую энергию в электрическую.
Электродвигатели – это электрические машины, которые, наоборот, электрическую энергию преобразуют в механическую (в виде вращения вала).
Коллектор – это полый цилиндр, набранный из отдельных медных пластин, изолированных друг от друга и от вала.
Щётки – деталь щёточно-коллекторного узла в электродвигателях.
Сила Лоренца – сила, действующая на движущийся со скоростью заряд q со стороны магнитного поля.
Индукция — векторная величина, являющаяся силовой характеристикой магнитного поля (его действия на заряженные частицы) в данной точке пространства.
Основная и дополнительная литература по теме урока (точные библиографические данные с указанием страниц):
- Естествознание. 11 класс [Текст]: учебник для общеобразоват. организаций: базовый уровень / И.Ю. Алексашина, К.В. Галактионов, А.В. Ляпцев и др. / под ред. И.Ю. Алексашиной. – 3-е изд., – М.: Просвещение, 2017.: с 53 -58.
- Элементарный учебник физики под редакцией академика Г.С. Ландсберга. Том 2. Электричество и магнетизм.–12-е изд. – М.:ФИЗМАТЛИТ, 2001. – 480 с.
- Р.Фейнман, Р.Лейтон, М. Сэндс Фейнмановские лекции по физике. Том 5. Электричество и магнетизм.–М.: Либроком, 2016.– 304 с. Электронный ресурс: http://ftfsite.ru/wp-content/files/fiz_feynman_5_elmag_2.1.pdf
Теоретический материал для самостоятельного изучения
Английский учёный Фарадей Майкл (1791-1867) сформулировал Закон электромагнитной индукции (открыт 29.08.1831г.): если на замкнутый проводник будет действовать изменяющееся магнитное поле, то по нему будут протекать токи называемые индукционными.
Русский физик Ленц Эмилий Христианович в 1834 году сформулировал принцип (правило), который назван именем учёного: индукционные токи всегда имеют такое направление, что созданное ими магнитное поле всегда стремится устранить причину, их вызвавшую.
Голландский учёный Хендрик Лоренц показал, что эти процессы связаны с силой, действующей на заряженные частицы, движущиеся в магнитном поле. Сила Лоренца – это такая сила, которая действует на движущийся со скоростью заряд q со стороны магнитного поля и равна произведению вектора магнитной индукции, заряда частицы, скорости движения этой частицы и угла (альфа) между вектором магнитной индукции и скоростью частицы.
Направление силы Лоренца определяют по правилу левой руки: для положительного заряда: если левую руку расположить так, чтобы магнитные силовые линии входили в ладонь, а четыре пальца, сложенные вместе, показывали направление скорости движения положительного заряда, то отогнутый на 90 градусов большой палец покажет направление силы; если заряд отрицательный, то сила будет направлена в противоположную сторону.
При движении заряженной частицы в магнитном поле сила Лоренца работы не совершает.
Роль выпрямителя в электрических машинах выполняет коллектор.
Щетки в электрических машинах располагаются таким образом, чтобы одна из них была всегда соединена с проводником, который будет двигаться у северного полюса, а другая — с проводником, который будет двигаться у южного полюса. Щётки электродвигателя постоянного тока изготавливают из углеродных или графитных структур, создавая над вращающимся коллектором скользящий контакт. Используют их для передачи тока от внешнего контура на вращающуюся форму коллектора.
Направление индуктированного тока во внешней цепи с коллектором будет оставаться постоянным.
К электрическим машинам относятся:
Генераторы – это электрические машины, которые преобразуют механическую энергию в электрическую.
Электродвигатели – это электрические машины, которые, наоборот, электрическую энергию преобразуют в механическую.
В генераторе коллектор используется для выпрямления переменного тока в постоянный, а в электродвигателе коллектор применяется для распределения тока в проводниках.
Применение электрических двигателей:
— для привода электрифицированных транспортных средств (троллейбусов, трамваев, электровозов).
Преимущества электродвигателей по сравнению с тепловыми:
— не загрязняют атмосферу,
— не нужен запас топлива,
— КПД достигает до 98 %.
Примеры и разбор решения заданий тренировочного модуля:
Задание 1. Как изменится сила Ампера, действующая на прямолинейный проводник с током в однородном магнитном поле, при увеличении индукции магнитного поля в 3 раза и увеличении силы тока в 3 раза?
Варианты ответа:
а) увеличится в 9 раз;
б) уменьшится в 9 раз;
Задание 2. Установите правильную последовательность появления основных законов и правил:
1. процессы связаны с силой, действующей на заряженные частицы, движущиеся в магнитном поле.
2. если на замкнутый проводник будет действовать изменяющееся магнитное поле, то по нему будут протекать токи называемые индукционными.
3. индукционные токи всегда имеют такое направление, что созданное ими магнитное поле всегда стремится устранить причину, их вызвавшую.
Как работают электрические двигатели и генераторы?
Большинство людей понимают, что электродвигатель работает от электричества, мы каждый день наблюдаем это на примерах нашей бытовой техники- стиральные машины, пылесосы, кухонные комбайны. Но идея о том, что двигатель может «бежать назад», фактически вырабатывая электричество, а не потребляя его, кажется похожей на магию. Однако именно эта «магия», называемая генерацией тока, лежит в основе работы всех автомобилей, причем не только бензиновых, но и электрических.
Электромагнетизм
Выработка электроэнергии начинается с работы электромагнетизма — физической связи между магнитом и электричеством. Электромагнит — это устройство, которое действует как магнит, но его магнитная сила проявляется и контролируется электричеством. Когда провод из проводящего материала (например, меди) перемещается в магнитном поле, в проводнике (рудиментарный генератор) создается ток. И наоборот, когда электричество проходит через провод, намотанный вокруг железного сердечника, и это ядро находится в присутствии магнитного поля, проводник приходит в движение и начинает вращаться.
Моторы и генераторы
Мотор / генератор — это действительно одно и то же устройство, которое способно работать в двух противоположных режимах. Вопреки тому, что иногда думают некоторые люди, понятие «противоположный режим» никак не связано с направлениями вращения вала. Вал всегда вращается одинаково. Изменение направления происходит в потоке электричества. В качестве двигателя он потребляет электроэнергию (ток втекает в его контакты), чтобы производить механическую мощность, а в качестве генератора потребляет механическую энергию для производства электроэнергии (вытекает из его контактов).
Электромеханичекое вращение
Электродвигатели/генераторы могут быть двух типов:
- Переменного тока;
- Постоянного тока.
В случае с переменным током могут быть также двухфазные моторы и трехфазные. Не вдаваясь в подробности, поясним это различие на пальцах: переменный ток меняет направление (чередуется), когда он протекает через цепь. Постоянные токи протекают однонаправленно (остаются неизменными) когда они проходят через цепь. Тип используемого тока в основном связан со стоимостью устройства и его эффективностью (двигатель переменного тока/генератор, как правило, дороже, но также намного эффективнее). Достаточно сказать, что большинство машин гибридного типа, а также электромобили используют двигатели/генераторы переменного тока.
Ротор автомобильного генератора
Электродвигатель переменного тока / генератор состоит из 4 основных частей:
- Арматура с проволочной намоткой (ротор).
- Магниты, которое индуцируют электрическую энергию, уложенную бок о бок в корпус (статор).
- Скользящие кольца, которые переносят переменный ток в/из арматуры.
- Щетки, которые контактируют с кольцами скольжения и передают ток в / из электрической цепи.
Арматура (якорь) управляется механическим источником мощности (например, при коммерческом производстве электроэнергии это будет паровая турбина, в случае с автомобилем – коленвал, приводимый в движение шатунами). Когда этот ротор вращается, его проводная катушка проходит через постоянные магниты в статоре, и электрический ток создается в проводах якоря. Но поскольку каждая отдельная петля в катушке проходит сначала северный полюс, а затем южный полюс каждого магнита последовательно (когда он вращается на своей оси), индуцированный ток непрерывно и быстро меняет направление. Каждое изменение направления называется циклом, и оно измеряется в циклах в секунду или герцах (Гц). В Соединенных Штатах скорость цикла составляет 60 Гц (60 раз в секунду), тогда как в России и других развитых странах мира она составляет 50 Гц. На каждом из двух концов ротора установлены отдельные кольца скольжения, чтобы обеспечить путь для выхода тока из якоря. Щетки (которые на самом деле являются углеродными контактами) движутся по кольцам скольжения и завершают путь тока в цепь, к которой подключен генератор.
Полезное видео, наглядно показывающее принцип раоты автомобильного генератора:
Процесс вращения электродвигателя, генерация механической мощности, который по сути является, обратным действию генератора, работает наоборот – при попадании тока в катушки, начинается вращение якоря. Ток подается через цепь, через щеточки и кольца скольжения непосредственно в якорь. Этот ток, протекающий через катушечный ротор (якорь), превращает его в электромагнит. Постоянные магниты в статоре «отталкиваются» от электромагнитов и заставляют якорь вращаться. И вновь-таки смена полюсов: именно постоянная, частая смена полюсов и заставляют систему вращаться. Пока электричество проходит через цепь, двигатель будет работать. И наоборот – пока вал генератора/мотора вращается – на клеммах будет электрический ток.
Разница между электродвигателем и генератором
Электродвигатель против генератора Электричество стало неотъемлемой частью нашей жизни; более или менее весь наш образ жизни основан на электрическом оборудовании. Энергия преобразуется из многих фор
Содержание:
Электродвигатель против генератора
Электричество стало неотъемлемой частью нашей жизни; более или менее весь наш образ жизни основан на электрическом оборудовании. Энергия преобразуется из многих форм в форму электрической энергии для питания всех этих устройств. Электродвигатель — это устройство, преобразующее механическую энергию в электрическую. С другой стороны, устройства используются для преобразования электрической энергии в механическую по мере необходимости. Мотор — это устройство, которое выполняет эту функцию.
Подробнее об электрическом генераторе
Фундаментальный принцип работы любого электрического генератора — закон электромагнитной индукции Фарадея. Идея, сформулированная в этом принципе, состоит в том, что при изменении магнитного поля в проводнике (например, проволоке) электроны вынуждены двигаться в направлении, перпендикулярном направлению магнитного поля. Это приводит к созданию давления электронов в проводнике (электродвижущей силы), что приводит к потоку электронов в одном направлении. Говоря более технически, скорость изменения магнитного потока через проводник во времени вызывает в проводнике электродвижущую силу, и ее направление задается правилом правой руки Флеминга. Это явление в основном используется для производства электроэнергии.
Чтобы добиться этого изменения магнитного потока через проводящий провод, магниты и проводящие провода перемещаются относительно друг друга, так что магнитный поток изменяется в зависимости от положения. Увеличивая количество проводов, можно увеличить результирующую электродвижущую силу; поэтому провода скручены в катушку, содержащую большое количество витков. Установка либо магнитного поля, либо катушки во вращательное движение, в то время как другое неподвижное, позволяет непрерывно изменять поток.
Вращающаяся часть генератора называется ротором, а неподвижная часть — статором. Часть генератора, генерирующая ЭДС, называется якорем, а магнитное поле — просто полем. Якорь может использоваться как статор или как ротор, а компонент поля — второй. Увеличение напряженности поля также позволяет увеличить наведенную ЭДС.
Поскольку постоянные магниты не могут обеспечить интенсивность, необходимую для оптимизации выработки энергии от генератора, используются электромагниты. Через эту цепь возбуждения протекает намного меньший ток, чем через цепь якоря, и меньший ток проходит через контактные кольца, которые поддерживают электрическую связь в ротаторе. В результате, большинство генераторов переменного тока имеют обмотку возбуждения на роторе, а статор — в качестве обмотки якоря.
Подробнее об электродвигателе
Принцип, используемый в двигателях, является еще одним аспектом принципа индукции. Закон гласит, что если заряд движется в магнитном поле, сила действует на заряд в направлении, перпендикулярном как скорости заряда, так и магнитному полю. Тот же принцип применяется к потоку заряда, это ток и проводник, по которому проходит ток. Направление этой силы задается правилом правой руки Флеминга. Простой результат этого явления состоит в том, что если ток течет по проводнику в магнитном поле, проводник перемещается. Все асинхронные двигатели работают по этому принципу.
Как и генератор, двигатель также имеет ротор и статор, где вал, прикрепленный к ротору, передает механическую энергию. Таким же образом на систему влияет количество оборотов катушек и сила магнитного поля.
В чем разница между электродвигателем и электрическим генератором?
• Генератор преобразует механическую энергию в электрическую, а двигатель преобразует механическую энергию в электрическую.
• В генераторе вал, прикрепленный к ротору, приводится в движение механической силой, и в обмотках якоря создается электрический ток, в то время как вал двигателя приводится в движение магнитными силами, возникающими между якорем и полем; на обмотку якоря должен подаваться ток.
• Двигатели (обычно движущийся заряд в магнитном поле) подчиняются правилу левой руки Флеминга, в то время как генератор подчиняется правилу левой руки Флеминга.
Как устроен генератор переменного тока — назначение и принцип действия
Люди пользуются энергией электрического тока практически во всех сферах своей деятельности. Сейчас нелегко представить жизнь без электричества, которое с помощью специального оборудования преобразуется из механической энергии. Рассмотрим подробнее, как происходит этот процесс, и как устроены современные генераторы.
Превращение механической энергии в электрическую
Любой генератор работает по принципу магнитной индукции. Самый простой генератор переменного тока можно представить, как катушку, которая вращается в магнитном поле. Также есть вариант, при котором катушка остается неподвижной, но магнитное поле только её пересекает. Именно во время этого движения и вырабатывается переменный ток. По такому принципу функционирует огромное количество генераторов во всем мире, объединенных в систему электроснабжения.
Устройство и конструкция генератора переменного тока
Стандартный электрогенератор имеет следующие компоненты:
- Раму, к которой закреплен статор с электромагнитными полюсами. Изготовлена она из металла и должна выполнять защитную функцию всех элементов механизма.
- Статор, к которому крепится обмотка. Изготавливается он из ферромагнитной стали.
- Ротор – подвижный элемент, на сердечнике которого располагается обмотка, образующая электрический ток.
- Узел коммутации, который отводит электричество с ротора. Представляет собой систему подвижных токопроводящих колец.
В зависимости от назначения, генератор имеет определенные особенности конструкции, но существуют два компонента, которыми обладает любое устройство, конвертирующее механическую энергию в электричество:
- Ротор – подвижная цельная деталь из железа;
- Статор – неподвижный элемент, который изготовлен из железных листов. Внутри него есть пазы, внутри которых располагается проволочная обмотка.
Для получения большей магнитной индукции, между этими элементами должно быть небольшое расстояние. По своей конструкции генераторы бывают:
- С подвижным якорем и статическим магнитным полем.
- С неподвижным якорем и вращающимся магнитным полем.
В настоящее время более распространено оборудование с вращающимися магнитными полями, т.к. значительно удобнее снимать электрический ток со статора, чем с ротора. Устройство генератора имеет немало сходств с конструкцией электродвигателя.
Схема генератора переменного тока
Принцип работы электрогенератора: в тот момент, когда половина обмотки находится на одном из полюсов, а другая на противоположном, ток движется по цепи от минимального до максимального значения и обратно.
Классификация и виды агрегатов
Все электрогенераторы можно распределить по критерию работы и по типу топлива, из которого и образуется электроэнергия. Все генераторы делятся на однофазные (выход напряжения 220 Вольт, частота 50 Гц) и трехфазные (380 Вольт с частотой 50 Гц), а также по принципу работы и типу топлива, которое конвертируется в электричество. Ещё генераторы могут использоваться в разных сферах, что определяет их технические характеристики.
По принципу работы
Разделяют асинхронные и синхронные генераторы переменного тока.
Асинхронный
У асинхронных электрогенераторов нет точной зависимости ЭДС от частоты вращения ротора, но здесь работает такой термин, как «скольжение S». Оно определяет эту разницу. Величина скольжения вычисляется, поэтому некоторое влияние элементов генератора в электромеханическом процессе асинхронного двигателя все же есть.
Синхронный
Такой генератор обладает физической зависимостью от вращательного движения ротора к генерируемой частоте электроэнергии. В таком устройстве ротор является электромагнитом, состоящим из сердечников, обмоток и полюсов. Статором являются катушки, которые соединены по принципу звезды, и имеющими общую точку – ноль. Именно в них вырабатывается электрический ток.
Ротор приводит в движение посторонняя сила подвижных элементов (турбин), которые двигаются синхронно. Возбуждение такого генератора переменного тока может быть, как контактным, так и бесконтактным.
По типу топлива двигателя
Удаленность от электросети с появлением генераторов больше не становится препятствием для пользования электроприборами.
Газовый генератор
В качестве топлива здесь используется газ, во время сгорания которого и вырабатывается механическая энергия, которая затем заменяется электрическим током. Преимущества использования газогенератора:
- Безопасность для окружающей среды, ведь газ при сгорании не выделяет вредных элементов, копоти и токсичных продуктов распада;
- Экономически это очень выгодно – сжигать дешевый газ. В сравнении с бензином, это обойдется значительно дешевле;
- Подача топлива осуществляется автоматически. Бензин и дизельное топливо требуется по мере необходимости подливать, а газовый генератор обычно подключают к системе газоснабжения;
- Благодаря автоматике, аппарат приходит в действие самостоятельно, но для этого он должен располагаться в теплом помещении.
Дизельный генератор
Эту категорию составляют преимущественно однофазные агрегаты мощностью 5 кВт. 220 Вольт и частота 50 Гц являются стандартными для бытовой техники, поэтому дизельный аппарат неплохо справляется со стандартной нагрузкой. Как можно догадаться, для его работы требуется дизельное топливо. Почему стоит выбрать именно дизельный электрогенератор:
- Относительная дешевизна топлива;
- Автоматика, позволяющая автоматически запускать генератор при прекращении подачи электрического тока;
- Высокий уровень противопожарной безопасности;
- В течении длительного периода времени агрегат на дизеле способен проработать без сбоев;
- Внушительная долговечность – некоторые модели способны работать в общей сумме 4 года непрерывной эксплуатации.
Бензогенератор
Такие аппараты довольно востребованы как бытовое оборудование. Несмотря на то, что бензин дороже газа и дизеля, такие генераторы имеют немало сильных сторон:
- Малые габариты при высокой мощности;
- Просты в эксплуатации: большинство моделей можно запустить вручную, а более мощные генераторы оснащены стартером. Регулируется напряжение под определенную нагрузку при помощи специального винта;
- В случае перегрузки генератора автоматически срабатывает защита;
- Просты в обслуживании и ремонте;
- Во время работы не издают много шума;
- Можно применять и в помещении, и на улице, но следует защищать от попадания влаги.
БЛОГ ЭЛЕКТРОМЕХАНИКА
Студенческий блог для электромеханика. Обучение и практика, новости науки и техники. В помощь студентам и специалистам
- главная
- инфо
- блог
- словарь электромеханика
- электроника
- крюинговые компании
- Одесса/Odessa
- Николаев/Nikolaev
- Обучение
- Предметы по специальности
- АГЭУ
- АСЭЭС
- Диагностика и обслуживание судовых технических средств
- Мехатронные системы
- Микропроцессоры
- Моделирование электромеханических систем
- МПСУ
- САЭП
- САЭЭС
- СДВС
- СИВС
- Силовая электроника
- Судовые компьютерные ceти
- СУЭ и ОСУ
- ТАУ
- Технология судоремонта
- ТЭП
- ТЭЭО и АС
- Общие предметы
- Безопасность жизнедеятельности
- Высшая математика
- Ділова українська мова
- Интеллектуальная собственность
- Культурология
- Материаловедение
- Охрана труда
- Политология
- Системы технологий
- Судовые вспомогательные механизмы
- Судовые холодильные установки
- I курс
- конспекты
- ргр
- контрольные
- лабораторные
- курсовые
- зачёты
- экзамены
- II курс
- конспекты
- ргр
- контрольные
- лабораторные
- курсовые
- зачёты
- экзамены
- III курс
- конспекты
- ргр
- контрольные
- лабораторные
- курсовые
- зачёты
- экзамены
- IV курс
- конспекты
- ргр
- контрольные
- лабораторные
- курсовые
- зачёты
- экзамены
- V курс
- конспекты
- ргр
- контрольные
- лабораторные
- курсовые
- зачёты
- экзамены
- Предметы по специальности
- Теория
- английский
- интернет-ресурсы
- литература
- тематические статьи
- Практика
- типы судов
- пиратство
- видеоуроки
- мануалы
- морской словарь
- технический словарь
- история
- новости науки и техники
- авиация
- автомобили
- военная техника
- робототехника
26.07.2013
Система генератор — двигатель
Для широкого и плавного регулирования частоты вращения электродвигателя постоянного тока применяется система генератор — двигатель (Г — Д). Основной принцип этой системы заключается в изменении приложенного к якорю двигателя напряжения при неизменном напряжении цепи возбуждения.
Система Г—Д (рис. 1) состоит из двигателя постоянного тока с независимым возбуждением М2, непосредственно связанного с рабочим механизмом (исполнительный двигатель). Он питается электрической энергией от генератора G, приводимого во вращение двигателем M1. Обмотки возбуждения генератора LG и двигателя LM2 получают питание от независимого источника постоянного тока с неизменным напряжением.
Первичный двигатель M1, вращающий якорь генератора G, представляет собой механический или электрический двигатель, причем приводимый им генератор не требует ни реверсирования, ни регулирования частоты вращения.
Основным требованием, предъявляемым к первичному двигателю, является жесткость его механической характеристики, поэтому механические двигатели снабжают всережимными регуляторами частоты вращения, а электрические выбирают с жесткой характеристикой. Итак, первичный двигатель вращается с n = const и не реверсируется
Исполнительный двигатель управляется изменением значения и направления тока в обмотках возбуждения LG и LM2.
Механическая характеристика исполнительного двигателя в си-стеме Г—Д подобна механическим характеристикам двигателя с независимым возбуждением.
Естественная механическая характеристика 0 (см. рис. 2.3) возможна при номинальной частоте вращения генератора и отсутствии добавочных резисторов в цепях возбуждения генератора и исполнительного двигателя.
Ее наклон несколько больше, чем характеристики двигателя, работающего от сети, так как к сопротивлению якоря двигателя добавляется сопротивление якоря генератора.
При увеличении сопротивления реостата R1 уменьшаются ток возбуждения генератора и его э.д.с. Частота вращения двигателя М2 при этом уменьшится (характеристика 3).
Увеличение сопротивления реостата R2 вызывает уменьшение магнитного потока двигателя М2, частота вращения его увеличится (характеристика 2).
Двигатель реверсируется изменением направления тока в обмотке возбуждения генератора, при этом меняется направление его э. д. с. и тока в цепи якоря двигателя (магнитный поток двигателя остается неизменным).
Механические характеристики системы Г—Д жесткие. Для предотвращения поломок механизма необходимо ограничивать максимальный момент двигателя М2, что достигается смягчением характеристик.
Существуют следующие способы смягчения механических характеристик исполнительного двигателя: применение исполнительного электродвигателя со смешанным возбуждением; применение генератора со смешанным возбуждением и встречно включенной последовательной обмоткой.
Использование последовательной обмотки у исполнительного двигателя (рис. 2, а) позволяет получить более мягкие характеристики (рис. 2, б) по сравнению с характеристиками двигателя только с независимым возбуждением. Однако этот способ имеет недостаток, заключающийся в том, что при реверсировании двигателя изменяется направление тока в обмотке LM2.2 и она начинает противодействовать обмотке LM2.1, размагничивая двигатель. Во избежание этого последовательную обмотку включают не непосредственно в цепь якоря, а через мостовой полупроводниковый выпрямитель U, обеспечивающий постоянное направление тока в ней.
Применение размагничивающей обмотки генератора лишено указанного недостатка, поэтому используется наиболее часто.
Принцип смягчающего действия размагничивающей обмотки LG2 (рис. 3, а) заключается в следующем: с увеличением нагрузки исполнительного двигателя ток якоря увеличивается, размагничивающее действие обмотки возрастает, э.д.с. генератора и частота вращения двигателя уменьшаются.
Механические характеристики показаны на рис. 3, б. Искривленная форма характеристик 0,1,3 объясняется насыщением генератора. При насыщенном генераторе размагничивающее влияние обмотки меньше, чем при ненасыщенном, в начале участка характеристики более жесткие, а затем при больших нагрузках насыщение исчезает и характеристики становятся круче. Если же ток независимой обмотки возбуждения генератора невелик и насыщение отсутствует, характеристика становится прямой (характеристика 2).
При изменении направления тока в независимой обмотке возбуждения генератора меняется направление тока в якоре и последовательной обмотке возбуждения; таким образом, размагничивающее действие последовательной обмотки сохраняется.
Торможение исполнительного двигателя в системе Г — Д выполняют всеми методами, рассмотренными в статье «Регулирование частоты вращения, пуск, реверсирование и торможение электродвигателей постоянного тока».
Преимущества системы Г — Д:
- возможность плавного регулирования частоты вращения в широком диапазоне до 16:1;
- быстрый разгон исполнительного двигателя без помощи пускового реостата, т. е. с минимальными потерями энергии;
- легкий пуск первичного двигателя, вращающего невозбужденный генератор;
- быстрое и четкое торможение исполнительного электродвигателя.
Недостатки системы Г — Д:
- низкий к.п.д. всей системы, вызванный многократным преобразованием энергии;
- большие массы, стоимость и габаритные размеры, инерционность.
Следует отметить, что снижение к. п. д. в значительной мере компенсируется возможностью экономичного управления исполнительным электродвигателем при его пуске и регулировании частоты вращения. Эта экономия энергии особенно заметна в электроприводах, требующих частых пусков и реверсов двигателя.
Вместо системы Г — Д целесообразно использовать систему управляемый выпрямитель — двигатель постоянного тока (УВ—Д), силовая цепь которой приведена на рис. 4.
К якорю двигателя М приложено выпрямленное напряжение, регулируемое с помощью полупроводникового выпрямителя VI — V6, собранного по мостовой схеме. Силовая цепь выпрямителя состоит из трех тиристоров VI — V3 и трех неуправляемых диодов V4 — V6. Управление осуществляют изменением фазы открытия тиристоров.
Система УВ — Д имеет по сравнению с системой Г—Д следующие преимущества: отсутствует вращающийся преобразователь; высокий к.п.д. (к.п.д. выпрямителя 0,96 — 0,99); малая инерционность.