Что такое генератор синусоидальных колебаний
Генераторы синусоидальных и несинусоидальных колебаний.
Генераторы синусоидальных колебаний.
T ремя основными типами электронных генераторов сигналов синусоидальной формы являются LC генераторы, кварцевые генераторы и RC генераторы.
LC генераторы используют колебательный контур из конденсатора и катушки индуктивности, соедененных либо параллельно, либо последовательно, параметры которых определяют частоту колебаний. LC генераторы используют в основном, в диапазоне радиочастот. На низких(звуковых) частотах удобнее применять RC генераторы, в которых для задания частоты колебаний используются резистивно — емкостная цепь.
LC генераторы синусоидальных колебаний.
Основными типами LC генераторов являются генератор Хартли и генератор Колпитца.
Генератор Хартли.
В генераторе Хартли, или как еще называют эту схему — индуктивной трехточке положительная обратная связь, необходимая для возникновения колебаний берется с отвода катушки индуктивности(L1 — L2) колебательного контура.
Генератор Колпитца.
В генераторе Колпитца (емкостной трехточке) положительная обратная связь снимается с средней точки составной емкости(C1 — C2) колебательного контура. Генератор Колпитца более стабилен, чем генератор Хартли и более часто используется. Когда требуется высокая стабильность, используют кварцевые генераторы.
Кварц — это материал, способный преобразовывать механическую энергию в электрическую и наоборот. Если к кристаллу кварца приложить переменное напряжение, он начнет колебаться, в такт с его частотой. Каждый кристалл обладает собственной резонансной частотой, зависящей от его размеров и структуры. Чем ближе частота приложенного напряжения, к резонансной частоте, тем выше интенсивность колебаний. Для изготовления кварцевого резонатора на кристаллическую пластинку кварца наносят металлические электроды.
Схема кварцевого генератора Хартли с параллельной обратной связью.
Кварц включен последовательно в цепь обратной связи. Если частота колебательного контура отклоняется от частоты кварца, волновое сопротивлние(импенданс) кварца увеличивается, уменьшая величину обратной связи с колебательным контуром. Колебательный контур возвращается на частоту кварца.
Генератор Пирса.
Очень популярная схема, поскольку в ней не используются катушки индуктивности.
Верхний предел резонанса кварца составляет 25 МГц. Если необходим стабильный генератор на более высокой частоте используют схему Батлера. Колебательный контур настраивается на частоту кварца или на частоту одной из его нечетных гармоник (третьей или пятой).
RC генераторы синусоидальных колебаний.
RC генераторы используют для задания частоты резисивно — емкостную связь. Основные два вида генераторов синусоидальных колебаний это: генератор с фазосдвигающей цепью и генератор на основе моста Вина. Генератор с фазосдвигающей цепью — это обычный усилитель с фазосдвигающей цепью обратной связи. На комбинации цепочек имеют место потери мощности, поэтому транзистор должен иметь достаточно высокий коэффициент усиления.
Частота генератора рассчитывается по формуле.
R в этой формуле — значения сопротивлений R1,R2, (они одинаковые). C — это соответственно, любое из значений емкости С1 или С2 (также одинаковые)
Генератор на основе моста Вина – двухкаскадный усилитель с цепью опережения-запаздывания и делителем напряжения.
Резисторы R1 и R2 одинакового номинала(по сопротивлению), сопротивление резистора R3 примерно вполовину меньше. Емкость конденсаторов C1 и C2 равна, а конденсатора C3 — примерно в два раза больше.
Частота генерируемых колебаний определяется соотношением.
Где C — номинал конденсатора C1(C2), R номинал сопротивления — R1(R2).
При R1,R2 = 10KOm, R3=4,7KOm, C1,C2 =16нФ, C3=33нФ частота равняется, примерно — 1000гц.
Используя сдвоенный переменный резистор (в качестве R1 и R2) можно плавно изменять частоту колебаний в больших пределах.
Генератор синосуидальных колебаний имеющий несколько поддиапазонов, можно получить с помощью несложной коммутационной схемы, с помощью которой можно попеременно подключать конденсаторы различной емкости, в качестве С1, С2 и С3. Подобное устройство может быть очень полезным для радиолюбителя, в частности — для настройки различных усилительных каскадов.
Генераторы несинусоидальных колебаний.
Генераторы несинусоидальных колебаний применятся для создания периодических электрических сигналов произвольной формы – прямоугольной, пилообразной или треугольной формы.
Блокинг – генератор.
Пока конденсатор заряжен — транзистор закрыт. Но конденсатор постепенно разряжается через резистор и запирающее напряжение исчезает. Транзистор начинает приоткрываться — появляется ток в цепи обмотки трансформатора, соответственно на вторичной обмотке возникает напряжение способствуещее лавинообразному открыванию транзистора.
Транзистор переходит в режим насыщения — конденсатор заряжается через переход эмиттер – база, напряжение в вторичной обмотке падает до нуля. Транзистор запирается, после чего процесс повторяется снова и снова.
Очень часто, схему блокинг — генератора используют в различных устройствах, преобразующих постоянный ток в переменный. Это — различные импульсные блоки питания, вариации которых встречаются в современной аппаратуре очень широко. Преобразователи постоянного тока в переменный, с повышением выходного напряжения — являются основой целого ряда устройств, разной степени полезности — от портативного мегаомметра, до карманного электрошокера.
Мультивибратор.
Мультивибратор — генератор импульсов формы близкой к прямоугольной. Его основу составляют два усилительных каскада связанных между собой так, что на вход каждого каскада подается сигнал с выхода другого. Получается, что они по очереди запирают друг друга. Частота зависит от емкости конденсаторов, и величины сопротивления резисторов, через которые осуществляется их разряд.
Мультивибратор можно легко собрать, используя широко распостраненные детали, на абсолютно любых биполярных транзисторах. Кроме основной частоты рассчитываемой по формуле:
мультивибратор вырабатывает большое количество дополнительных гармоник. Если применив высокочастотные транзисторы собрать мультивибратор с основной частотой в звуковой области(лучше около 1000 гц), то частоты высших гармоник оказываются в какой то степени, промодулированными на этой, основной частоте. Получается, что подобный генератор может использоваться как универсальный пробник, для проверки как радиочастотных усилительных трактов, так и каскадов усиления низкой(звуковой) частоты.
Использование каких — либо материалов этой страницы, допускается при наличии ссылки на сайт «Электрика это просто».
ГЕНЕРАТОРЫ СИНУСОИДАЛЬНЫХ КОЛЕБАНИЙ
1. Общие положения
Форма электрических колебаний может быть различной. Генераторы, формирующие синусоидальные колебания, называются генераторами синусоидальных, или гармонических колебаний . Если форма колебаний отличается от синусоидальной (прямоугольные, треугольные, пилообразные и т.д.), то такие генераторы называются импульсными, или релаксационными.
По принципу управления генераторы разделяются на две группы – генераторы с самовозбуждением (автогенераторы) и генераторы с внешним (независимым) возбуждением. Последние, по существу, являются усилителями мощности высокой частоты, работающими на резонансную нагрузку и здесь рассматриваться не будут.
Схема автогенератора обычно содержат усилитель, охваченный обратной связью. Для построения автогенератора синусоидальных колебаний элементы схем либо усилителя, либо ОС должны обладать явно выраженными частотными свойствами. Наиболее часто используются два типа усилительных схем – с резонансными (колебательными) контурами и с резистивно-емкостными цепями. Автогенераторы, выполненные на основе схемы резонансного усилителя, часто называют автогенераторами типа LC , а автогенераторы, построенные на основе схемы усилителя на RC цепях,– автогенераторами типа RC или RC генераторы. Генерирование колебаний с частотами меньше 15 – 20 кГц на резонансных LC контурах затруднено и неудобно из-за их громоздкости. В низкочастотном диапазоне широко используются генераторы типа RC . Они могут генерировать весьма стабильные синусоидальные колебания в сравнительно широком диапазоне частот от долей герца до сотен килогерц. Кроме того, они имеют малые габариты и массу. Конечно, наиболее полно преимущества генераторов типа RC проявляются в области низких частот.
Здесь мы будем рассматривать автогенераторы синусоидальных колебаний, построенные на основе RC цепей, которые нашли широкое применение в устройствах электронной автоматики и вычислительной техники.
2. Условия самовозбуждения
Возбуждение колебаний в RC генераторах обусловлено наличием в них обратной связи. При анализе ОС , проведенном в разделе 7, рассматривались “крайние точки”, в которых обратную связь можно было охарактеризовать либо как отрицательную, либо как положительную. Не учитывалось, что коэффициент усиления усилителя и коэффициент передачи цепи обратной связи в общем случае являются величинами комплексными, т.е.
, (1)
где K ус и g – модули коэффициента усиления используемого усилителя и коэффициента передачи цепи ОС ,
j к и j g – фазовый сдвиг сигнала при прохождении через усилитель цепь ОС .
Поэтому коэффициент усиления схемы с ОС (генератора) должен быть представлен в виде:
. (2)
Самовозбуждение схемы произойдет, когда коэффициент усиления K г будет стремиться к бесконечности, т.е. когда знаменатель последнего выражения стремится к нулю:
(3)
Последнее равенство будет иметь место только при выполнении двух условий: нулю должны быть равны как мнимая, так и действительная его части. Так как ни K ус ни g не равны нулю, то выполнение условий может быть реализовано только за счет элементов выражения, содержащих фазовые сдвиги.
Первое условие можно получить, приравняв нулю мнимую часть. Мнимая часть равенства (3) может быть равна нулю, когда sin(j K + j g ) = 0 , что возможно при условии:
j K + j b = n p . (4)
где n – любое целое число.
Приравняв нулю действительную часть равенства (3), получаем:
(5)
При значениях суммарного фазового сдвига, соответствующего ( 4), соs( j K + j g ) может принимать значения либо минус, либо плюс 1 . В первом случае нарушается выполнение равенства (5), во втором – может быть выполнено, если
Как показано выше, для его выполнения необходимо получить такие фазовые сдвиги, при которых их синус был равен нулю, а косинус – плюс 1. Это возможно при четном числе n , т.е.
j K + j b = 2π n , (7)
Условие, соответствующее (7), носит название
Для возбуждения гармонических колебаний, необходимо, чтобы условие баланса фаз и условие баланса амплитуд выполнялись только на одной (заданной) частоте. Поэтому в генераторе синусоидальных колебаний необходимо обеспечить частотно-избирательный характер или коэффициента усиления усилителя, или коэффициента передачи цепи обратной связи.
Процесс развития и установления колебательного процесса в схеме генератора можно пояснить с помощью графических построений, выполняемых на амплитудных характеристиках усилителя и цепи обратной связи. На рисунке 1 представлены зависимости выходного напряжения от входного U вых = f ( U вх ) этих элементов, которая получила наименование колебательной характеристики автогенератора.
На этом рисунке изображены амплитудная характеристика ( К ) используемого в генераторе усилителя и прямая линия, выражающая зависимость коэффициента передачи ( g ) цепи обратной связи. Первая – нелинейна, вторая – линейна, т.к. цепь ОС обычно не содержит нелинейных элементов.
Рисунок 1. Колебательная характеристика автогенератора
Если в начальный момент K g > 1 , то появившееся по какой-либо причине (например, при включении источника питания схемы) на входе усилителя малое напряжение U вх1 усиливается в K раз усилителем, ослабляется в g раз цепью обратной связи и поступает на вход усилителя в той же фазе, но с большей амплитудой U вх2 . Амплитуда сигнала на выходе растет. По мере роста амплитуды выходного напряжения генератора коэффициент усиления усилителя K начинает уменьшаться, так как, (см. раздел 5) при больших входных напряжениях амплитудная характеристика усилителя насыщается. Как только произведение K g установится равным единице, амплитуда выходного напряжения фиксируется на постоянном уровне (точка А ).
В соответствии со сказанным, в процессе функционирования генератора можно выделить два этапа: этап возбуждения генератора и этап стационарного режима, что изображено на рисунке 2.
Рисунок 2. Процесс установления колебаний в генераторе
3. Автогенераторы типа RC
Наибольшее распространение получили два типа фазосдвигающих цепей: так называемые лестничные (рисунок 3,а,б) и мост Вина (рисунок 3,в).
Рис . 3. Трехзвенные RС цепи (а,б) и схема моста Вина (в)
Лестничные цепочки представляют последовательное соединение обычно трех RC звеньев, каждое из которых при одинаковых элементах ( R 1 = R 2 =R 3 =R и С 1 =С 2 =С 3 = С ) обеспечивает сдвиг сигнала по фазе на 60°. В результате выходное напряжение будет сдвинуто по отношения к входному на 180°. В зависимости от того, какой из элементов цепи является конечным они носят наименование либо С -параллель (рисунок 3,а), либо R -параллель (рисунок 3,б). Для возбуждения колебаний усилитель также должен иметь сдвиг по фазе, равный 180°, т.е. он должен быть инвертирующим. Лестничная цепь должна быть подключена к инвертирующему входу усилителя.
Частота генератора определяется постоянной времени RC цепей. Частота генерируемых синусоидальных колебаний для этих схем при условии R 1 = R 2 =R 3 =R и С 1 =С 2 =С 3 = С рассчитывается по следующим формулам:
для схемы С -параллель
для схемы R -параллель
. (9)
Для обеспечения баланса амплитуд коэффициент усиления усилителя должен быть равен затуханию, вносимому фазовращающей цепочкой, через которую напряжение с выхода поступает на вход усилителя, или превышать его. Расчеты показывают, что для приведенных схем затухание равно 210. Следовательно, схемы с использованием трехзвенных фазовращающих цепочек, имеющих одинаковые звенья, могут генерировать синусоидальные колебания с частотой лишь в том случае, сели коэффициент усиления усилителя превышает 210. Мост (цепочка) Вина (рисунок 3,в) состоит из двух RС звеньев. Первое звено состоит из последовательного соединения R и С и имеет сопротивление
. (10)
Второе звено состоит из параллельного соединения таких же R и С и имеет сопротивление
. (11)
Коэффициент передачи звена положительной обратной связи определяется выражением
откуда после подстановки Z1 и Z2 , найдем
. (12)
Если выполнить условие
, (13)
то фазовый сдвиг будет равен нулю, а .
В этом случае частоту генератора можно будет определить по формуле
. (14)
Таким образом, мост Вина на частоте “квазирезонанса” не создает фазовый сдвиг и носит затухание, равное 1/3. Поэтому мост Вина должен быть включен в цепь положительной обратной связи в усилитель, коэффициент усиления которого при разомкнутой цепи ОС должен быть не менее 3. Применение однокаскадных схем усилителей в этом случае невозможно. В каскадах с общим эмиттером или с общим истоком сдвиг по фазе между входным и выходным сигналами равен 180° , что исключает их применение, т.к. в этом случае нарушается условие баланса фаз. Схемы с общим коллектором или общим истоком хотя и не переворачивают фазы сигнала, но имеют коэффициент усиления напряжения меньше единицы, в результате чего невозможно выполнить условие баланса амплитуд. Усилительные каскады с общей базой или общим затвором имеют очень малое входное сопротивление, которое при введении обратной связи шунтирует ее выход, уменьшая его коэффициент передачи. Поэтому выполнение условия баланса оказывается весьма затруднительным. Поэтому при построении генератора на дискретных элементах используют двухкаскадный усилитель.
Наиболее просто строится генератор на мосте Вина при использовании операционного усилителя. В нем цепь ПОС , формируемую мостом Вина, можно подсоединить к прямому, неинвертирующему входу, а нужный коэффициент усиления задать резистивным делителем в цепи ООС , подсоединенной к инвертирующему входу (рисунок 4).
Рис . 4. Генератор на основе ОУ
Отношение резисторов в цепи ООС, обеспечивающее выполнение условия баланса амплитуд, должно отвечать соотношению т.к. коэффициент усиления для сигнала, подаваемого на неинвертирующий вход на единицу больше отношение указанных резисторов .
Генераторы синусоидальных колебаний
Генератор электрических колебаний, — это нелинейное устройство, преобразующее энергию источника постоянного тока в энергию колебаний. Генераторы широко используются в электронике: в радиоприемниках и телевизорах, в системах связи, компьютерах, промышленных системах управления и устройствах точного измерения времени.
Генератор — это электрическая цепь, которая генерирует периодический сигнал переменного тока. Частота сигнала может изменяться от нескольких герц до многих миллионов герц. Выходное напряжение генератора может быть синусоидальным, прямоугольным или пилообразным в зависимости от типа генератора.
Когда колебательный контур возбуждается внешним источником постоянного тока, в нем возникают колебания. Эти колебания являются затухающими, поскольку активное сопротивление колебательного контура поглощает энергию тока. Для поддержания колебаний в колебательном контуре поглощенную энергию необходимо восполнить. Это осуществляется с помощью положительной обратной связи. Положительная обратная связь — это подача в колебательный контур части выходного сигнала для поддержки колебаний. Сигнал обратной связи должен совпадать по фазе с сигналом в колебательном контуре.
На (рис. 12.34) изображена блок-схема генератора. Генератор можно разбить на три части. Частотозадающей цепью генератора обычно является LC колебательный контур. Усилитель увеличивает амплитуду выходного сигнала колебательного контура. Цепь обратной связи подает необходимое количество энергии в колебательный контур для поддержки колебаний. Таким образом, генератор — это схема с обратной связью, которая использует постоянный ток для получения колебаний переменного тока
Генераторы, синусоидальных колебаний — это генераторы, которые генерируют напряжение синусоидальной формы. Они классифицируются согласно их частотозадающим компонентам. Тремя основными типами генераторов синусоидальных колебаний являются LC генераторы, кварцевые генераторы и RC генераторы.
LC генераторы используют колебательный контур из конденсатора и катушки индуктивности, соединенных либо параллельно, либо последовательно, параметры которых определяют частоту колебаний. Кварцевые генераторы подобны LC генераторам, но обеспечивают более высокую стабильность колебаний. LC генераторы и кварцевые генераторы используются в диапазоне радиочастот. Они не подходят для применения на низких частотах. На низких частотах используются RC генераторы, в которых для задания частоты колебаний используется резистивно-емкостная цепь.
LC генераторы
Основными типами LC генераторов являются генератор Хартли и генератор Колпица. На (рис. 12.35) изображен генератор Хартли. Величина обратной связи в этой схеме зависит от положения отвода катушки L1. Выходной сигнал снимается с катушки связи L3.
На (рис. 12.36) изображен генератор Колпитца. Величина обратной связи в схеме Колпитца определяется отношением емкостей конденсаторов С1 и С2. Генератор Колпитца более стабилен, чем генератор Хартли, и более часто используется.
Кварцевые генераторы
Основное требование, предъявляемое к генератору, — это стабильность частоты и амплитуды его колебаний. Причинами нестабильной работы генераторов являются зависимости емкости и индуктивности от температуры, старение компонентов и изменение требований к нагрузке. Когда требуется высокая стабильность, используются кварцевые генераторы.
Кварц — это материал, который может преобразовывать механическую энергию в электрическую, когда к нему прикладывают давление, и электрическую энергию в механическую, когда к нему прикладывают напряжение. Когда к кристаллу кварца приложено переменное напряжение, кристалл начинает растягиваться и сжиматься, создавая механические колебания, частота которых соответствует частоте переменного напряжения.
Каждый кристалл кварца обладает собственной частотой колебаний, обусловленной его структурой и размерами. Если частота приложенного переменного напряжения совпадает с собственной частотой, колебания кристалла ярко выражены. Если частота приложенного переменного напряжения отличается от собственной частоты кварца, кристалл колеблется слабо. Собственная частота механических колебаний кристалла кварца практически не зависит от температуры, что делает его идеальным для использования в генераторах. В тех случаях, когда необходимо обеспечить очень высокую стабильность частоты колебаний, применяют термостатирование генератора (кварцевый резонатор помещают в термостат).
Для изготовления кварцевого резонатора на кристаллическую пластинку кварца наносятся металлические электроды, к которым прижимаются пружины для обеспечения электрического контакта. После этого кристалл помещается в металлический корпус. На (рис. 12.37) показано схематическое обозначение кварца.
На (рис. 12.38) изображена схема кварцевого генератора Хартли с параллельной обратной связью. Кварц включен последовательно в цепь обратной связи. Если частота колебательного контура отклоняется от частоты кварца, импеданс кварца увеличивается, уменьшая величину обратной связи с колебательным контуром. Это позволяет колебательному контуру вернуться на частоту кварца.
На (рис. 12.39) изображен генератор Колпица с кварцем, включенным так же, как и в генераторе Хартли. Кварц управляет обратной связью с колебательным контуром.
На (рис. 12.40) изображен генератор Пирса. Эта схема подобна генератору Колпитца, за исключением того, что катушка индуктивности в колебательном контуре заменена кварцем. Эта схема очень популярна, поскольку в ней не используются катушки индуктивности. Кварц управляет импедансом колебательного контура, что определяет величину обратной связи и стабилизирует генератор.
Верхний предел частоты основного резонанса кристалла кварца составляет около 25 МГц. Однако в аппаратуре связи необходимы стабильные генераторы более высоких частот. Для этого требуется обеспечить работу кварцевых резонаторов на их гармонических частотах. Обычно используются нечетные гармоники (третья и пятая).
В таких случаях используют генератор Батлера, изображенный на (рис. 12.41). Схема собрана на двух транзисторах и использует колебательный контур и кварц для задания и стабилизации частоты колебаний. Колебательный контур должен быть настроен на частоту основного резонанса кварца или на частоту одной из его гармоник. Преимущество генератора Батлера в том, что к кварцу приложено небольшое напряжение, что уменьшает его механические деформации.
RC генераторы
RC генераторы используют для задания частоты резистивно-емкостную цепь. Простейшим RC генератором синусоидальных колебаний является генератор с фазосдвигающей цепью.
Генератор с фазосдвигающей цепью — это обычный усилитель с фазосдвигающей RC цепью обратной связи (рис. 12.42).
Обратная связь должна сдвигать фазу сигнала на 180 0 . Так как емкостное сопротивление изменяется при изменении частоты, то эта компонента чувствительна к частоте. Стабильность улучшается при уменьшении величины фазового сдвига на каждой RC цепочке. Однако на комбинации RC цепочек имеют место потери мощности. Для компенсации этих потерь транзистор должен иметь достаточно высокий коэффициент усиления.
ElectronicsBlog
Обучающие статьи по электронике
Генераторы синусоидальных колебаний на ОУ
Всем доброго времени суток! В предыдущих двух статьях я рассказал о построении генераторов на основе ОУ (статья про мультивибраторы здесь, про генераторы треугольного напряжения здесь). Ещё одним видом сигнала, который используются в радиотехнике и электронике является синусоидальный сигнал.
Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.
Для формирования синусоидального сигнала применяются различные схемы генераторов и формирователей, рассмотрение которых в данной статье не представляется возможным.
Как происходит формирование синусоидальных колебаний?
Любой генератор (не только синусоидальных колебаний) представляет собой замкнутую цепь, состоящую из усилителя и селективной цепи (частотно-избирательная цепь). Причем селективная цепь включена в цепь ПОС (положительная обратная связь) усилителя, где могут быть включены дополнительные усилители.
Допустим, на вход селективной цепи поступает сигнал, состоящий из большого количества синусоидальных колебаний (гармоник). Проходя через селективную цепь, колебания ослабляются (происходит уменьшение амплитуды) в различной степени, а также происходит изменение фазы данных колебаний. В результате на вход усилителя с выхода селективной цепи поступают синусоидальные сигналы с различными уровнями амплитуды и фазовыми сдвигами, где происходит их усиление для компенсации ослабления селективной цепью.
Так как селективная цепь пропускает без изменения фазы только гармонику определённой частоты, то после усилителя на вход селективной цепи поступит та же гармоника с такой же амплитудой и фазой, которую пропускает селективная цепь, а остальные гармоники будут с изменёнными амплитудами и фазами сигнала. В результате сложения исходного сигнала и сигнала поступающего с выхода усилителя только у гармоники, на частоту которой настроена частотно-избирательная цепь, будет происходить значительное увеличение амплитуды.
Из всего выше сказанного можно сделать вывод, что петлевое усиление схемы должно быть не меньше единицы (в идеальном случае равно 1), а полный фазовый сдвиг схемы равен нулю.
Схем генераторов синусоидальных или как их ещё называют гармонических колебаний, существует большое количество, рассмотреть которые в одной статье не представляется возможным. Поэтому ограничимся лишь некоторыми из них, которые построены на ОУ и RC-цепочках.
Генератор синусоидальных колебаний на основе моста Вина
Генератор синусоидальных колебаний на основе моста Вина или просто генератор Вина является одним из самых распространённых RC-генераторов синусоидальных колебаний. Схема данного генератора показана на рисунке ниже
Схема генератора Вина на основе ОУ.
Генератор Вина состоит из ОУ DA1, который охвачен ООС (отрицательная обратная связь) посредством резисторов R1 и R2, а также ПОС (положительная обратная связь) с помощью частотно-избирательной цепи R3C1R4C2.
Частотно-избирательная цепь R3C1R4C2 называется мостом Вина, от названия которого и получил наименование генератор данного типа. Данный мост состоит из последовательно включённых дифференцирующей цепи R4C2 и интегрирующей цепи R3C1. Как известно для генерирования сигнала мост Вина должен обеспечить нулевой фазовый сдвиг сигнала. Это обеспечивается равенством постоянной времени интегрирующей цепи R3C1 и дифференцирующей цепи R4C2
Тогда частота, при которой будет сдвиг фаз равный нулю, определяется следующим выражением
При данном условии коэффициент передачи цепи ПОС будет равен 1/3. Поэтому для того чтобы компенсировать данное условие коэффициент передачи цепи ООС должен быть равен 3, то есть
Генератор с мостом Вина обеспечивает выходной синусоидальный сигнал с небольшими искажениями – порядка 0,05 %. Однако у данного типа генератора существует серьёзная проблема в том, что для получения качественного синусоидального сигнала необходимо обеспечить точные соотношения резисторов в цепи ООС R1 и R2, то есть обеспечить коэффициент передачи цепи равный трём (β = 1/3). Так если β 1/3 даже если и возникнут колебания их амплитуда будет постепенно уменьшаться и со временем станет равной нулю. Поэтому для стабилизации работы генератора Вина применяют различные автоматические системы стабилизации амплитуды.
Улучшение параметров генератора Вина
Как указывалось выше оптимальное значение коэффициента передачи ООС (β = 1/3) обеспечить практически невозможно, поэтому применяют системы автоматической стабилизации амплитуды. Данная система работает так чтобы воздействовать на коэффициент передачи схемы и при заданной частоте стабилизировать колебания при небольших искажениях.
В основе систем стабилизации амплитуды лежат свойство нелинейных элементов под действием напряжения изменять своё внутренне сопротивление. Одна из простейших схем стабилизации содержит два полупроводниковых диода включённых в цепь ООС
Схема генератора Вина на ОУ с простейшей системой автоматической стабилизации амплитуды.
В данной схеме последовательно с резистором обратной связи R2 включены два диода VD1VD2 по встречно-параллельной схеме, чем обеспечивается стабилизация амплитуды положительной и отрицательной полуволн синусоидального сигнала.
Как известно p-n-переход диода имеет динамическое сопротивление, имеющее обратную зависимость от протекающего через диод тока
где 26 (мВ) – температурный потенциал p-n-перехода,
IД (А) – мгновенное значение тока протекающего через диод.
Таким образом, коэффициент передачи цепи ООС будет определяться следующим выражением
При возрастании амплитуды выходного напряжения, ток, протекающий через диод, увеличивается, как следствие уменьшается динамическое сопротивление диода, и возрастает коэффициент передачи цепи ООС, тем самым уменьшая амплитуду выходного напряжения.
При реализации данной схемы величину резистора R2 следует брать несколько меньшей, чем в схеме без стабилизации амплитуды, чтобы β « Предыдущая статья
Электронные генераторы. Генераторы гармонических колебаний.
Общие сведения о генераторах.
Генератор сигналов — это устройство, позволяющее производить сигнал определённой природы (электрический, акустический и т. д.), имеющий заданные характеристики (форму, энергетические или статистические характеристики и т. д.).
Электронные генераторы применяются в радиовещании, медицине, радиолокации, входят в состав аналого-цифровых преобразователей, микропроцессорных систем и т. д.
Ни одна электронная система не обходится без внутренних или внешних генераторов, задающих темп ее работы. Основные требования к генераторам – стабильность частоты колебаний и возможность снятия с них сигналов для дальнейшего использования.
Классификация электронных генераторов:
1) по форме выходных сигналов:
— сигналов прямоугольной формы (мультивибраторы);
— сигналов линейно изменяющегося напряжения (ГЛИН) или их еще называют генераторами пилообразного напряжения;
— сигналов специальной формы.
2) по частоте генерируемых колебаний (условно):
— низкой частоты (до 100 кГц);
— высокой частоты (свыше 100 кГц).
3) по способу возбуждения:
— с независимым (внешним) возбуждением;
— с самовозбуждением (автогенераторы).
Генераторы гармонических колебаний.
Генератором гармонических колебаний называют устройство, создающее переменное синусоидальное напряжение при отсутствии входных сигналов. В схемах генераторов всегда используется положительная обратная связь.
Колебания называются свободными (или собственными), если они совершаются за счет первоначально совершенной энергии при последующем отсутствии внешних воздействий на колебательную систему (систему, совершающую колебания). Простейшим типом колебаний являются гармонические колебания — колебания, при которых колеблющаяся величина изменятся со временем по закону синуса (косинуса).
Генераторы являются составной частью многих измерительных приборов и важнейшими блоками автоматических систем.
Различают аналоговые и цифровые генераторы. Для аналоговых генераторов гармонических колебаний важной проблемой является автоматическая стабилизация амплитуды выходного напряжения. Если в схеме не предусмотрены устройства автоматической стабилизации, устойчивая работа генератора окажется невозможной. В этом случае после возникновения колебаний амплитуда выходного напряжения начнет постоянно увеличиваться, и это приведет к тому, что активный элемент генератора (например, операционный усилитель) войдет в режим насыщения. В результате напряжение на выходе будет отличаться от гармонического. Схемы автоматической стабилизации амплитуды достаточно сложны.
Структурная схема генератора приведена на рисунке ниже:
ИЭ —источник энергии,
ПОС — цепь положительной обратной связи,
ООС — цепь отрицатель-ной обратной свяаи,
ФК — формирователь колебаний (LC-контур или фазирующая RС-цепь).
По способу получения колебаний генераторы подразделяют на две группы: генераторы с внешним возбуждением и генераторы с самовозбуждением. Генератором с внешним возбуждением является усилитель мощности, на вход которого подаются электрические сигналы от источника колебаний. Генераторы с самовозбуждением содержат формирователи колебаний; такие генераторы часто называют автогенераторами.
Схемы LC-генераторов гармонических колебаний.
В генераторах с LC-контурами используются индуктивные катушки и конденсаторы с высокой добротностью. Автогенератор — формирователь колебаний — представляет собой один или несколько усилительных каскадов с цепями положительной частотно-зависимой обратной связи; схемы обратной связи содержат колебательные цепи. Возможны различные варианты включения колебательной цепи относительно электродов УЭ: только на входе, только на выходе или одновременно в нескольких участках схемы. По способам соединения LC -элементов с электродами усилительных элементов различают трансформаторную связь и так называемую трехточечную связь — индуктивную или емкостную. Автогенератор с трансформаторной связью показан на рис. 1.
Рис. 1. Автогенератор-формирователь синусоидальных колебаний с трансформаторной связью.
Колебательный контур, состоящий из катушки Lк и конденсатора С, является коллекторной нагрузкой транзистора V1, Индуктивная связь между выходом и входом усилителя обеспечивается катушкой Lб, присоединенной к базе транзистора. Элементы R1, R2, Rэ, Сэ предназначены для обеспечения необходимого режима работы по постоянному току и его термостабилизации.
Благодаря конденсатору С1 обладающему малым сопротивлением на частоте генерации, создается цепь для переменной составляющей тока между базой и эмиттером транзистора. Точками обозначены начала обмоток Lб и Lк, поскольку необходимо соблюсти условие баланса фаз. Условие баланса фаз соблюдается, если приток энергии совершается синхронно с изменением знака напряжения на контуре; например, в каскаде с транзистором, включенным по схеме с ОЭ, фазы входного и выходного сигналов взаимно сдвинуты на 180° С. Поэтому концы катушки Lб надо подключить так, чтобы входные и выходные колебании совпадали по фазе. Условие баланса амплитуд состоит в том, что потери в контуре и нагрузке непрерывно пополняются за счет источника питания.
Рис. 1а. Работа автогенератора. Переходные процессы.
Работа антогенератора (Рис. 1а) начинается при включении источника Ек. Начальный импульс тока возбуждает в контуре LкC колебания с частотой , которые могли бы прекратиться из-за тепловых потерь энергии в активном сопротивлении катушки и конденсатора. Но поскольку между катушками Lб и Lк имеется индуктивная связь с коэффициентом взаимоиндукции М, в базовой цепи возникнет переменный ток , совпадающий по фазе с током коллекторной цепи (условие баланса фаз обеспечивается рациональным включением концов обмотки Lб). Усиленные колебания передаются из контура снова в базовую цепь, и размах колебаний постепенно нарастает, достигая заданного значения.
Схемы RC-генераторов гармонических колебаний.
RC-автогенераторы используются для генерирования колебаний инфранизкой и низкой частоты (от долей герца до нескольких десятков килогерц); RС-генераторы могут вырабатывать колебания и более высоких частот, однако низкочастотные колебания отличаются более высокой стабильностью.
Рис. 3. Автогенераторы синусоидальных колебаний с целью из Г-образных RC-звеньев (а) и мостового типа (б).
RC-автогенератор состоит из усилителя (одно- или многокаскадного) и цепи частотно-зависимой обратной связи. Цепи обратной связи выполняются в виде «лестничных» (рис. 3, а) или мостовых (рис. 3, б) RC-схем.
RC-автогенератор с многозвенной RC-цепью обратной связи показан на рис. 3, а. Три последовательно соединенных фазирующих эвена R1C1—R3С3, включенных между выходом и входом усилительного каскада, образуют цепь положительной обратной связи с фильтрующими свойствами. Она поддерживает колебательный процесс только на одной определенной частоте; без RC-элементов однокаскадный усилитель имел бы отрицательную обратную связь по напряжению. Условие баланса фаз прояв ляется в том, что каждое из RС-звеньев поворачивает фазу сигнала на угол 60°, а суммарный угол сдвига равен 180°. Условие баланса амплитуд удовлетворяется путем выбора соответствующего коэффициента усиления каскада.
Автогенератор с RC-фильтром мостового типа приведен на рис. 3,б. Два плеча моста — звенья R1C1 и R2C2 — подключены к неинвертируюшему входу усилителя 2 (цифра внутри треугольника означает число каскадов). Эти звенья образуют цепь ПОС. К инвертирующему входу того же усилителя присоединена другая диагональ, составленная из нелинейных элементов R3 и r, которая создает цепь ООС. В данной схеме мост обладает избирательным свойством и условие баланса фаз обеспечивается при одной частоте (на которой выходной сигнал моста совпадает по фазе со входным). Регулировка частоты в данном автогенераторе проста и удобна, причем возможна в очень широком диапазоне частот. Ее осуществляют изменением либо сопротивлений обоих резисторов, либо емкостей обоих конденсаторов моста.
Общий недостаток всех генераторов — чувствительность генерируемой частоты к изменению питающих напряжений, температуры, «старению» элементов схемы.
Генераторы сигналов
Генераторы сигналов – приборы, позволяющие получать электрические, акустические и иного рода импульсы. Устройства бывают разных видов — обычно прибор подбирают под конкретную цель. Решающими факторами при выборе могут оказаться форма прибора, его статические функции и энергетические показатели. Устройство применяют в разных сферах — как в медицине, так и в быту (стиральные машины, микроволновки).
Историческая справка
Первый генератор был создан в 1887 году немецким физиком Германом Герцем. Прибор разрабатывался на основе индукционной катушки (или катушки Румкорфа). Он был искровым и вырабатывал электромагнитные волны. Потом история развивалась так:
- 1913 г. Другой немецкий ученый, Александр Мейснер, создал электронный генератор с ламповым каскадом и общим катодом.
- 1915 г. Появилась ламповая (или индуктивная) схема. Включение контура было автотрансформаторным, что отличало его от ранних изобретений. Идея принадлежала американскому физику Ральфу Хартли.
- 1919 г. На этот раз идея снова принадлежит американцам. Ученый Эдвин Колпитц создал устройство на электронной лампочке, подключаемое к колебательному контуру посредством емкостного разделителя напряжения.
Это было лишь начало. Позже инженерами разных стран было создано множество вариаций электронных генераторов.
Как устроен генератор сигналов?
Устройство генерирует импульсы различной природы для замера параметров электронных приборов. Большинство генераторов работает только при наличии входного импульса, амплитуда которого постоянно меняется.
Стандартная модель сигнального генератора состоит из нескольких частей:
- Экран на передней панели. Нужен для отслеживания колебаний и управления ими.
- Редактор. Расположен в верхней половине экрана. Позволяет выбрать функцию.
- Секвенсор. Размещён чуть ниже редактора, дает информацию о частоте колебаний.
- Регулятор. Контролирует и настраивает частоту изменений.
- Выходы сигналов. Обычно располагаются под экраном в самом низу прибора. Рядом – кнопка включения оборудования.
Смещение сигнала и его амплитуда обычно регулируются 2 кнопками. Работа с файлами происходит через мини-панель. Она дает пользователю просмотреть результаты тестирования или сохранить их для будущего анализа.
Принцип действия
Рассмотрим схему действия на примере простейшего электронного генератора. Есть проводник и магнитное поле, по которому он движется. В качестве проводника обычно используют рамку.
Принцип действия таков:
- Рамка крутится внутри поля и пересекает линии магнитной индукции, отчего образуется электродвижущая сила.
- Электродвижущая сила воздействует на ток, который начинает двигаться по рамке.
- Электроток проникает в наружную цепь за счет контактных колец.
Схема генератора похожа на схему усилителя. Разница в том, что у первого нет источника входного сигнала. Он заменяется сигналом положительной обратной связи (ПОС).
В процессе обратной связи (ОС) часть выходного сигнала направляется на входную цепь. Структура такого импульса задается спецификой цепи обратной связи. Чтобы обеспечить нужную периодичность колебаний, цепи ОС создают на базе LC или RC-цепей. Частота будет зависеть от времени перезарядки конденсатора.
После формировки в цепи ПОС сигнал отправляется на вход усилителя. Там он умножается в несколько раз и поступает на выход. Оттуда часть отправляется на вход посредством цепи ПОС и снова ослабляется, возвращаясь к исходному значению. Благодаря такой схеме внутри устройства поддерживается постоянная амплитуда выходного сигнала.
Как устроен генератор смешанных сигналов?
Принцип действия генератора смешанных импульсов направлен на то, чтобы ускорить образование сигналов и воспроизводить их с максимальной точностью. Передняя панель прибора снабжена органами управления для контроля самых важных и часто изменяемых параметров. Менее востребованные и редко используемые функции можно найти в меню на основном экране.
Регулятором уровня устанавливается амплитуда движения выходного сигнала. Амплитуду и смещение можно регулировать без входа в многоуровневую систему меню.
Отдельный регулятор также позволяет изменить частоту дискретизации путем изменения периодичности выходного сигнала. При этом форму последнего этот настройщик изменить не сможет. Такая функция есть лишь в меню на основном экране редактирования. Форму выбирают при помощи сенсорной панели или мышки. Пользователь открывает нужную страницу и просто заполняет бланк с цифровой клавиатуры или поворотной ручкой.
Виды генераторов сигналов
Приборы различаются по ряду характеристик. Например, по форме сигнала (синусоидальные, прямоугольные, в виде пилы), по частоте (низкочастотные, высокочастотные), по принципу возбуждения (независимое, самовозбуждение). Однако существует несколько основных видов — о них и расскажем подробнее.
Синусоидальный
Прибор усиливает первоначальный синусоидный код в десятки раз. На выходе получается частота до 100 МГц. При этом исходный синус, как правило, не превышает 50 МГц. Генераторы синусоидального импульса активно используют при проверке блоков питания, инверторов и другой высокочастотной техники, а также радиоаппаратуры.
Генератор низкочастотный
Ниже схема самого простого низкочастотного генератора. На ней видно, что в приборе присутствуют переменные резисторы. Они позволяют корректировать форму и частоту сигнала. Изменить силу импульса можно подключенным модулятором KK202.
Такой прибор подойдет для настройки аудиоаппаратуры (звуковых усилителей, проигрывателей). Наиболее доступным вариантом низкочастотного генератора является обычный компьютер. Достаточно скачать драйверы и подключить его к аппаратуре через переходник.
Генератор звуковой частоты
Стандартная конструкция с микросхемами внутри. Напряжение подается в селектор, а сам сигнал генерируется в одной или нескольких микросхемах. Частоту можно настраивать при помощи модуляционного регулятора. Прибор отличается более обширным диапазоном частоты, чем аналоги (до 2000 кГц).
Импульсы произвольной формы
Генераторы с импульсами произвольной формы имеют повышенную точность. Погрешность минимальная — до 3%. Выходной импульс подвергается тонкой регулировке с применением шестиканального селектора. Прибор вырабатывает частоту от 70 Гц.
Устройства делят по степени синхронизации. Зависит она от типа коннектора, который установлен в прибор. Поэтому сигнал может усиливаться за 15-40 ньютон-секунд. Некоторые модели работают на 2 режимах – линейном и логарифмическом. Режим меняется переключателем, за счет чего корректируется амплитуда.
Контроллеры сложных сигналов
В сборке присутствуют только многоканальные селекторы, так как приборы получают импульсы сложной формы. Сигналы многократно усиливаются, режим можно изменить при помощи регулятора. Вариацией такого прибора считается DDS (устройство по схеме прямого цифрового синтеза).
Базовая плата оборудуется микроконтроллерами, которые легко снимаются и ставятся на место. В некоторых моделях можно заменить микроконтроллер одним движением. Если редактор монтированный, ограничители установить нельзя. Прибор генерирует измерительный сигнал мощностью до 2000 кГц с погрешностью до 2%.
Генератор цифрового сигнала
Цифровые генераторы популярны, потому что отличаются высокой точностью. Пользоваться ими удобно, однако они нуждаются в тщательной настройке. Здесь стоят коннекторы KP300, резисторы достигают сопротивления от 4 Ом. Это позволяет добиться предельно допустимого внутреннего напряжения в схеме.
Области применения
Генераторы сигналов используют современные лаборатории разработчиков электронных и измерительных приборов. Одинаковые генераторы могут применяться в кабинетах от начального до продвинутого уровня.
Однако эти функциональные устройства применяют для настройки и тестирования оборудования и в областях, более доступных обывателю. Вот лишь неполный список устройств, которые используют генераторы:
- мобильные телефоны, техника для передачи данных, радио- и телеприемники;
- вычислительные приборы;
- инверторы, источники бесперебойного питания от электричества или импульсов;
- бытовые приборы (СВЧ-печи, стиральные и посудомоечные машины);
- измерительные приборы (амперметры, вольтметры, осциллографы);
- медицинская аппаратура (томографы, электрокардиографы, аппараты УЗИ).
Находчивые пользователи применяют устройства и для иных целей. Например, прибором Tektonix AFG 3000 измеряли емкости, а RStamp SMA100A хорошо показал себя в регулировке аэронавигационных систем.