Электростатический генератор принцип действия

Первые способы получения электрических зарядов и электростатических полей заключались в трении разнородных материалов (меха, шерсти, шелка, кожи и других материалов о стекло, смолы, каучук и др.).

Электростатический генератор принцип действия

Электростатические генераторы — устройство, принцип действия и применение

Электрический заряд — явление, когда два разноименных заряда одинаковой величины взаимно уничтожаются. Если два тела, в значительной мере заряженные противоположным электрическим зарядом, находятся на близком расстоянии друг от друга, то между ними проскакивает искра и слышен короткий треск.

Сила действия электрически заряженного тела на другое, заряд которого принимается за единицу, называется потенциалом. Разница потенциалов — напряжение.

Первые способы получения электрических зарядов и электростатических полей заключались в трении разнородных материалов (меха, шерсти, шелка, кожи и других материалов о стекло, смолы, каучук и др.). Напряжения и заряды при этом были крайне малы. Наведением и накоплением зарядов путем механического переноса удалось несколько повысить получаемые при этом напряжения.

В дальнейшем для получения высоких напряжений были созданы непрерывно действующие машины с вращающимися дисками, основанные на принципе электростатического наведения (индуцировании). Однако эти машины не давали возможности получить большие мощности и нашли применение главным образом как приборы в физических кабинетах учебных заведений.

Электризация тел и электростатическая индукция

Сообщение телу электрических зарядов называется электризацией. Описанный в статье Электризация тел и взаимодействие зарядов процесс образования положительного и отрицательного ионов дает представление о процессе электризации тел: он заключается в переносе электронов от одного тела к другому.

Таким образом, электрическй заряд тела определяется избытком или недостатком в теле электронов. Наэлектризовать тело можно разными способами, из них техническими являются трение, контактирование, наведение, перенос зарядов.

Обратный процесс — восстановление нейтрального состояния тела (нейтрализация) — заключается в сообщении ему недостающего числа электронов или удаление из него избыточного числа их.

При электризации трением, если ни одному из соприкасающихся при этом тел не сообщается извне добавочных зарядов, оба тела заряжаются одинаковым количеством электричества разных знаков. При соединении тел их заряды полностью нейтрализуются.

Таким образом, заряды не создаются и не уничтожаются, а только передаются от одного тела к другому. Это убеждает нас в существовании закона сохранения электрических зарядов, подобно закону сохранения энергии.

Статическое электричество — электрический заряд в состоянии покоя. Оно возникает в результате трения двух непроводников или непроводника и металла (например, приводные ремни электромоторов), но необязательно твердых тел.

Статическое электричество может возникнуть также в результате трения некоторых жидкостей или газов. У людей с очень сухой кожей образуются электрические заряды. При движении (трении волокон о кожу) в ткани возникает значительный статический электрический заряд, ткань прилипает к телу и мешает движениям.

Статическое электричество становится опасным в легковоспламеняющейся и взрывоопасной среде, где одна искра может зажечь всю массу. В таком случае надо своевременно отвести статический заряд в землю или воздух с помощью какого-либо металлического приспособления, электропроводность которого можно поднять увлажнением или облучением.

Электростатическая индукция — возникновение электрических зарядов на проводнике под влиянием других зарядов, находящихся возле проводника (электризация тела на расстоянии).

Под действием внешнего заряда на ближайшем конце проводника индуктируется (возникает) заряд, знак которого противоположен знаку действующего извне заряда, а на дальнем конце проводника — заряд того же знака. При этом оба индуктируемых заряда равны по величине, т. е. индукция вызывает только разделение зарядов на проводнике, но не изменяет общего заряда проводника (т. к. сумма индуктируемых зарядов равна нулю).

Величина индуктируемых зарядов и их расположение определяются из условия, что электростатическое поле внутри проводника должно отсутствовать. Поэтому индуктируемые заряды располагаются так, что создаваемое ими электрическое поле как раз уничтожает внутри проводника то поле, которое создается индуктирующим зарядом.

Пример электростатической индукции: в незаряженном электроскопе оба электрических заряда, положительный и отрицательный, находятся в равных количествах и поэтому электроскоп не наэлектризован.

Если к нему приблизить стеклянную палочку с положительным зарядом, то свободные электроны одновременно притянутся к ней, положительный заряд электроскопа одновременно отталкивается.

Отрицательный заряд концентрируется ближе к стеклянной палочке, связан с ней, тогда как положительный отталкивается и поэтому располагается на обратной стороне электроскопа — он свободен.

Теперь электроскоп наэлектризован. Однако это состояние не является продолжительным. Стоит удалить стеклянную палочку, как разделение заряда на положительный и отрицательный нарушается, нейтральное состояние электроскопа восстанавливается, и его листочки вернутся в исходное положение.

Электроскоп — устройство, с помощью которого можно установить, каким зарядом наэлектризовано тело. Он состоит из металлического стержня с шариком или пластинкой на верхнем конце и двух свободно свисающих металлических листочков в нижней части. Действие электроскопа основано на принципе: одноименно заряженные тела отталкиваются (Смотрите — Принцип действия электроскопа).

Электростатическая индукция — одна из причин возникновения молнии в природе,— самого мощного и опасного проявления атмосферного статического электричества.

Молния — это разряд атмосферного электричества между отдельными частями облака, отдельными облаками, облаком и Землей, от Земли к облаку. Другими словами, молнию можно определить как электрический ток короткой продолжительности, электрическую искру, выравнивающую электрические потенциалы.

Электростатический генератор Ван де Графа

Для научных и технических целей (например, в ядерной физике, радиобиологии, рентгенотерапии, для испытания материалов, дефектоскопии и пр.) необходимы устройства, позволяющие получать напряжения в несколько миллионов вольт.

Такими устройствами являются технически совершенные электростатические генераторы высокого постоянного напряжения. Наиболее известен из них генератор Ван де Граафа, который создал в 1829-м году американский физик Роберт Ван де Грааф (1901 — 1967).

Генератор Ван де Граафа (1933 год) напряжением на 7 мегавольт

Генератор представляет собой металлический полый шар, укрепленный на высокой пустотелой колонне из изолирующего материала. Размеры шара и высота колонны определяются пределом требуемого напряжения генератора (например, у генератора напряжением 5 МВ диаметр шара достигает 5 м). Внутри колонны движется бесконечная лента из изолирующего материала (шелка, резины), которая служит конвейером для передачи зарядов на сферу.

При движении вверх лента проходит в нижней части устройства мимо щетки соединенной с одним полюсом источника постоянного тока напряжением примерно 10000 В (в качестве этого источника может служить соответствующее выпрямительное устройство). В конструкции своих первых электростатических генераторов Ван де Грааф использовал устройство с электронной лампой.

Устройство электростатического генератора Ван де Граафа

С остриев этой щетки заряды стекают на ленту, переносящую их внутрь шара, а через вторую щетку они переходят на внешнюю поверхность шара. Для усиления процесса незаряженной части ленты, движущейся вниз, передаются заряды противоположного знака, с помощью щеток отводимые от заряжаемого шара.

Благодаря электростатической индукции на щетке появляется отрицательный заряд, который путем истечения передается опускающейся части ленты. Этот заряд затем передается щетке и заземленному нижнему шкиву, через которые отводится в землю.

При непрерывном движении ленты заряд шара увеличивается, пока не достигает заданного предельного значения, определяемого диаметром шара и расстоянием от него до другого электрода или до земли.

При непрерывном движении ленты заряд шара увеличивается, пока не достигает заданного предельного значения, определяемого диаметром шара и расстоянием от него до другого электрода или до земли.

Чтобы увеличить напряжение, устанавливают два таких устройства, в которых шары получают заряды противоположных знаков. Так, например, чтобы получить напряжение 10 МВ, применяют два генератора, заряжаемых относительно земли до +5 Мв и -5 МВ и устанавливаемых на таком расстоянии один от другого, чтобы была исключена возможность пробоя при напряжении, меньше заданного.

В настоящее время существует большое количество разнообразных моделей электростатических генераторов, в том числе повторяющих конструкции Ван де Граафа. Они используются как для физических экспериментов, так и в качестве атракциона для развлечений и демонстраций действия статического электричества.

Генератор Тестатика — свободная энергия из атмосферы

Дата публикации: 31 октября 2019

  • Оригинальная история
  • Электростатический генератор Тестатика своими руками

Машина свободной энергии Testatika продолжает вдохновлять людей на эксперименты. Это когда-нибудь работало? Такой вопрос задают себе многие исследователи и физики, получившие классическое образование. В целом, конструкция напоминает типичную машину Вимшерста, но во многих других отношениях есть детали, которые остаются загадкой.

Оригинальная история

Электростатический генератор Тестатика, основанный на Pidgeon 1989 года, включает в себя цепь индуктивности. Предполагается, что прибор «свободной энергии» использует энергетический потенциал атмосферы, что в некотором отношении напоминает агрегат Вимшерста. Он был построен инженером и продвигался швейцарской религиозной общиной.

Изобретатель Бауман утверждал, что концепции устройств пришли к нему через посетителей из космоса, когда он находился в швейцарской тюрьме (1970-е) по обвинению в жестоком обращении с детьми, связанным с религиозным культом, основателем коего он был. Testatika известна как швейцарский конвертер ML или Thesta-Distatica. Примерная схема генератора Тестатика:

Работающие устройства, как утверждается, существуют с 1960-х в религиозной группе под названием Methernitha (недалеко от Берна, Швейцария). Конкретные и точные принципы работы приборов неизвестны. Согласно различным источникам, Testatika использует конструктивные особенности электростатической машины Пиджона: обладает индуктивной цепью, емкостной цепью и термоэлектронным выпрямительным клапаном. До сих пор в устройствах не использовались полупроводники или транзисторы. Всё устройство можно разделить на две большие составные части: генератор и вспомогательные цепи.

Читайте также  Что называется генератором переменного тока

1. Генератор

В базовой системе Pidgeon указаны модификации для повышения, стабилизации и фиксации полярностей заряда в определенных точках машины. Многодисковая конденсаторная машина Wommelsdorf также имеет аспекты, применимые к Testatika. Тестатика имеет 50 стальных решёток на диск. Это инновация для электростатических машин прошлого. Основываясь на умозрительных заключениях учёных-энтузиастов, исследовавших изобретение, можно выделить несколько отличительных черт детища господина Баумана:

  1. Принцип основан на предыдущих исследованиях и патентах на электрические цепи, в которых секторы гофрированы.
  2. Такие гофрированные электростатические секторы — более эффективные носители заряда по сравнению с плоскими аналогами.
  3. Диски переносят заряды с вращающихся элементов на коллекторы.
  4. Перфорированные клавишные панели заменяют стандартные щетки или заостренные направляющие предыдущих вариантов электростатических машин.
  5. Коллекторы не трогают диски, заряд проходит через параллельный воздушный зазор от металлических решеток к площадкам. Во время работы воздушный зазор подвергается воздействию миниатюрных вихревых токов, которые циркулируют вокруг перфорированной поверхности.

Вышеописанный процесс, в отличие от системы Pidgeon, имеет дополнительный косвенно связанный коллектор на передней верхней центральной части первого диска.

Диски вращаются со скоростью всего 60 об/мин (варьируется до 15 об/мин). Расположены очень близко друг к другу. Передний — прозрачный, сделан из плексигласа (положительно заряженный «облачный»), задний — темный диск (отрицательный «заземленный») соответствуют трибоэлектрическому ряду. Диски могут быть легированы парамагнитными частицами.

Нейтрализующие стержни размещены так, что заряды индуцируются из одной области, накапливаясь в других местах. Они выравнивают, стабилизируют частицы противоположных знаков, обеспечивают правильную распределенную полярность заряда в определенных зонах.

2. Вспомогательные цепи

Статическую энергию электростатический генератор Тестатика преобразует в электродвижущую силу с помощью своего колебательного контура, выпрямителей клапана. Колебания электрического тока контролируются соединением термоэлектронного выпрямительного клапана, конденсаторов цилиндров и естественным сопротивлением.

Колебания электромагнитной цепи модулируются через трансформаторы, выпрямляясь в импульсы постоянного тока. Герман Плазон, эстонский изобретатель, описывает такие методы преобразования статической энергии. Термоэлектронный выпрямительный клапан имеет анодную сетчатую пластину, спиральную медную решетку, светящийся (нагретый) катодный провод, проходящий горизонтально через его центр, и соответствующие провода.

Подковообразный магнит содержит четыре блока из плексигласовой среды, чередующиеся с медными, алюминиевыми пластинами. Два подковообразных магнита с ламинированными блоками из металлизированного плексигласа, чередующиеся с медными и алюминиевыми пластинами, образуют, как говорят разные источники, «генераторы электронного каскада». Существует цепная реакция, образующая «свободные электроны». Изолированный провод также наматывается вокруг подковообразных магнитов для индукционных целей.

Используются два внешних цилиндра. Соединение каждой отдельной вторичной обмотки может быть основано на «катушке разрывающего разряда», разработанной Николой Теслой. Цилиндры по бокам частично действуют как конденсаторы. Эта конфигурация формирует сеть импульсов. Каждый цилиндр имеет сердечник из 6 анизотропных ферритовых магнитов с полым кольцом, пластиковыми проставками для воздушных зазоров, образующих трансформатор.

Центральный входной стержень соединяется внизу со стопкой взаимосвязанных блинных катушек. Один трансформатор подключен к выходному отрицательному полюсу, а другой к выходной положительной полярности относительно зазоров магнитного сопротивления. Каждый соединен с вторичной обмоткой блинной катушки. Использование алюминиевой экранирующей сетки и сплошных медных экранирующих листов направлено на минимизацию паразитных электростатических зарядов.

Два дроссельных узла находятся в вертикальных двойных стеклянных трубках со спирально повернутой алюминиевой полосой. Трубы составляют две трети высоты башни. Стеклянная трубка заканчивается наверху прямоугольными латунными стержнями, соединяющимися с выпрямителем. Деревянное основание имеет чередующиеся слои перфорированных металлических изолирующих пластин, образующих накопительный конденсатор.

Возможно, это еще один пример альтернативного мышления, необходимого для трансформации нынешнего энергетико-экологического кризиса. Несмотря на создание и демонстрацию этого устройства, технология не использовалась остальным миром в течение более 30 лет не только по моральным соображениям (изобретение было детищем секты, а сам инженер был обвинён в жестоком обращении с детьми), а потому, что ни у кого из очевидцев нет точных технических данных об устройстве чудо-машины.

Но тот простой факт, что само религиозное сообщество Methernitha не использует устройство, ставит под сомнение его эффективность в отношении получения свободной энергии. Все их потребности в электричестве удовлетворяются парой ветрогенераторов, а также они покупают электроэнергию как все остальные. Большой вопрос о возможностях этой машины до сих пор остается без ответа.

Электростатический генератор Тестатика своими руками

Сейчас в открытом доступе довольно много информации о внешнем виде и эксплуатации аппарата, вся она предположительная и технически сложная. На протяжении многих лет агрегат демонстрировался различным техническим специалистам и инженерам, которые приглашались в общину, но за 30 лет никто так и не получил рабочего прототипа устройства, чтобы его можно было собрать за пределами Methernitha. По убеждению метернитов, для того, чтобы понять природу и ощутить её голос, человек обязан испытать тишину и одиночество. Ведь именно там были получены знания об этой технологии.

Но народные умельцы не оставляют надежды получить свободную энергию и пытаются воссоздать творение Пола Бауманна своими руками.

ЭЛЕКТРОСТАТИЧЕСКИЙ ГЕНЕРАТОР

устройство, в к-ром высокое постоянное напряжение (до нескольких MB) создаётся при помощи механич. переноса электроста-тич. зарядов. Цикл работы Э. г. можно представить диаграммой (рис. 1). На нек-рую ёмкость C 1 , состоящую из подвижного и неподвижного электродов, при первичном напряжении U 1 . подаётся заряд q 1 = C 1 U 1 . (точка А на диаграмме). При переметении подвижного электрода ёмкость уменьшается, и при нек-ром значении C 2 потенциал возрастёт до U 2 =U 1 C 1 /C 2 . (точка В). При этом потенциале U2 движущийся электрод соединяется с высоковольтной системой, и при дальнейшем уменьшении ёмкости до величины C3 (точка D )высоковольтной системе отдаётся заряд (q1q2) = (C2-C3) U2. Затем подвижный электрод отсоединяется от высоковольтной системы и начинает перемещаться к неподвижному заземлённому электроду (при постоянном заряде q2 = C3U2); ёмкость растёт и при нек-ром значении C4 потенциал электрода уменьшится до U1 (точка E). В этот момент электрод соединяют с источником первичного напряжения U1, и при дальнейшем увеличении ёмкости заряд растёт; когда ёмкость достигнет первонач. величины C1, на электрод переходит заряд (q1 — q2)=(C1 -C4) U1. В результате такого цикла кол-во электричества (q1-q2 )переходит от первичной системы с потенциалом U1 квысоковольтной системе с потенциалом U2. Сила тока I = (q1-q2)/Dt, где Dt — время цикла (при холостом ходе и в отсутствие утечек, q1q2 = 0, напряжение высоковольтной системы определяется значениями мин. ёмкости C3 и Um = C1U1/C3). Энергия, получаемая высоковольтной системой, складывается из электрич. энергии, сообщаемой первичной (низковольтной) системой W1=(q1-q2)U1. (возбуждение), и механич. работы W=(q1-q2)(U2— U1), затрачиваемой при перемещении заряда. Если C2 >U1 и W>>W1, т. е. практически вся энергия получается за счёт затрачиваемой механич. работы.

Рис. 1. Диаграмма цикла работы электростатического генератора.

Существует много типов Э. г., отличающихся способом транспортировки зарядов: Э. г. с жёсткими роторами в виде цилиндров или дисков; Э. г. с гибкими лентами (генератор Ван-де-Граафа); Э. г. с пылевым или жидкостным транспортёром и др. В работе Э. г. существ. значение имеют электроизолирующие свойства среды. Первые конструкции Э. г. (30-е гг.) работали в открытом воздухе при обычном атм. давлении. Для уменьшения габаритов большинство совр. Э. г. работает в сжатом газе.

У Э. г. с диэлектрич. транспортёром нанесение и съём зарядов производятся непрерывно системой коронирую-щих острий или щёток (рис. 2). Переносимый транспортёром ток равен i =sbu, где s -поверхностная плотность зарядов; b — ширина транспортёра; u его линейная скорость.

Если у высоковольтного электрода на транспортёр наносятся заряды обратной полярности, то переносимый ток увеличивается в 2 раза. Плотность зарядов s ограничивается возникновением поверхностных разрядов и обычно составляет (3-4)·10 -9 Кл/см 2 , при этом переносимый ток i не превышает 1 мА.

Рис. 2. Схема генератора Ван-де-Граафа с диэлектрическим транспортёром зарядов: 1 — транспортёр; 2 -устройства для нанесения и съёма зарядов; 3- валы транспортёра; 4 — высоковольтный электрод.

У транспортёра с проводящими зарядоносителями заряды наносятся на их поверхность в поле индуктора (рис. 3) и передаются высоковольтному электроду дискретными порциями. Переносимый транспортёром ток равен i = qN, где q — заряд токоносителей; N- число зарядоносителей, касающихся высоковольтного электрода за 1 с. Пульсации напряжения генератора, вызываемые дискретным переносом зарядов, весьма малы. Транспортёр из цилиндров (пеллетрон) передаёт ток ок. 0,1 мА, транспортёр из стержней (ладдетрон) — 0,5 мА (при скорости перемещения носителей ок. 10 м/с). Возможно параллельное включение неск. транспортёров.

Рис. 3. Устройство транспортёра с проводящими за рядоносителями: 1 — шкив транспортёра: 2 -зарядо носители; 3 — изоляторы; 4 — индуктор.

Транспортёры с проводящими зарядоносителями более надёжны по сравнению с диэлектрическими, могут работать в чистых электроотрицат. газах и не загрязняют изолирующий газ пылью. В качестве газовой изоляции используют азот, углекислоту или их смеси, для увеличения эяектрич. прочности изоляции применяют также эле-газ SF 6 , фреон или их смесь с азотом и углекислотой.

Напряжение на выходе Э. г. пропорционально сопротивлению его нагрузки и току транспортёра (рис. 4). Регулировать и стабилизировать его можно, изменяя ток в цепи нагрузки (напр., при помощи коронирующего электрода; рис. 5) или плотность наносимых на транспортёр зарядов. В первом случае постоянная времени регулятора составляет неск. мс, во втором — десятые доли секунды. Диапазон напряжений, развиваемых Э. г., в зависимости от типа составляет от неск. десятков кВ до 10 мВ и более. Э. г. используются как непосредственно в виде источников высокого напряжения, когда не требуются значит. мощности, так и в сочетании с ускорит. трубками в электростатич. ускорителях заряж. частиц (ускорители прямого действия, инжекторы, предускорители для циклич. и линейных ускорителей и т. д.).

Читайте также  Эксин ремонт генераторов елино

Рис. 4. Зависимость напряжения электростатического генератора от сопротивления нагрузки и тока, перено симого его транспортёром.

Рис. 5. Схема регулирования электростатического ге нератора с коронирующим электродом: 1— корони рующие острия; 2 — изолятор; 3- регулирующий триод; 4- высоковольтный электрод генератора; 5 — сосуд вы сокого давления.

Лит.: Гохберг Б. M., Яньков Г. Б., Электростатические З’скорители заряженных частиц, M., 1960; Электростатические ускорители заряженных частиц. Сб., под ред. А. К. Вальтера, M., 1963.

Б. M. Гохберг, M. П. Свиньин.

Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .

2 Схемы

Принципиальные электросхемы, подключение устройств и распиновка разъёмов

Электростатический генератор своими руками

Принцип работы генератора статического электричества (ещё их называют электрофорные машины) заключается в том, что диски вращаются относительно друг друга в противоположные стороны и создают положительные и отрицательные заряды. При вращении дисков по мере накопления зарядов происходит разряд — молния между электродами.

Как это работает — теория

Вращение дисков с металлическими секторами приводит к переносу электрического заряда внутри машины, который хранится в конденсаторах до момента возникновения искры или заряда утечки.

Самые важные части в электрофорном агрегате – нейтрализаторы. Это две перемычки со щетками установленные крестом. Если хотя бы одну из четырех щеток отодвинуть от сегментов, машинка перестает работать. Хотя казалось бы диски вращаются, электризуются трением о воздух и значит электричество вырабатывается.

Нейтрализатор делает следующее: он перетаскивает заряд с одной половинки диска на другую и диск оказывается не просто заряжен, а заряжен избирательно — не по всей плоскости.

Другими словами, диск собирает заряды из воздуха, а нейтрализаторы их перераспределяют. Заряд снимается щеткой, движется по проводнику к противоположной щетке и в тот момент когда напротив сегмента появится сегмент второго диска — перескакивает на него.

Далее этот сегмент подходит к щетке второго нейтрализатора и процесс повторяется, но уже на другом диске. Таким образом происходит кругооборот зарядов между дисками в процессе которого воздух между сегментами ионизируется и разделяется. В результате накачки увеличивается напряжение, кроме того в машинке работает эффект раздвигания обкладок конденсатора, что также способствует увеличению напряжения.

Миниатюрное устройство по созданию таких безвредных молний (но не для микроэлектроники) легко сделать своими руками.

Данный электростатический генератор способен генерировать более 20000 Вольт, но малый ток делает его безопасным для использования без специальных мер предосторожности.

Характеристики устройства

  • Высота: около 140 мм
  • Ширина: приблизительно 120 мм
  • Питание: 3 В 0,3 А
  • Статический заряд: 20 кВ
  • Диаметр диска: 120 мм

Руками тут ничего крутить не нужно (как это было в прототипе позапрошлого века) — всё делают 2 электромотора. достаточно нажать на кнопку включения и подождать некоторое время до накопления заряда на электродах.

Материалы и компоненты

Необходимо будет для монтажа: паяльник и припой, отвертка и плоскогубцы. Два мотора от старых CD плееров и всякая крепёжная мелочёвка.

Генератор работает от двух батареек АА и способен создавать разряды длинной 2 см. Самое сложное тут — 120 мм диски. Их нужно изготовить по такому принципу: взять два лазерных диска от CD или DVD. Сегменты приклеить из алюминиевого скотча (25 секторов). Приклеить диски к моторчикам. Сделать щетки из алюминиевых полосок.

Если всё сделать и настроить как надо, то искра достигнет размеров около 20 мм, а разряд будет пробивать каждые 0,5 сек.

НАЖМИТЕ ТУТ И ОТКРОЙТЕ КОММЕНТАРИИ

Что бы затем, полученной статикой запустить генератор — хотя бы на 10 ватт, этой мощности статики не хватит. А что бы иметь сотню ватт генератор на выходе статики, в качестве нагрузки, диаметр статики дисков должен быть не один метр. К тому же — для согласования кило ваттных генераторов с статикой дисков, у генераторов должна быть исключительно — не стандартная технология. Я бы пошёл по пути — ИСПОЛЬЗОВАНИЯ готовых стандартных в промышленности генераторов из АД.

Другое дело; Взяв Предпочтительное, с целю использовать в технологии; При этом ещё и пытаться осознать написанное под схемой качера: http://uploads.ru/MmRfO.jpg и пробовать сие адаптировать под тут показанное, под ИНДУКЦИОНКУ, Моторы, роторы, турбины, ветряки, ВД, БТГ, самоходы колёс, маятников, авто Тесла, тогда окажется понятным и то, что 400 лет назад был САМОХОД тележек Леонардо Да Винчи. … — Подробнее об использовании СЕ можно продолжить и голосом в скайп : FILL1133

И крепёжные пластины и диски имеют значок молнии — высокого напряжения, и разметку для проводников именно электрофорной машины, а значит они изготовлены специально для этого промышленным способом. Итого: купили электрофорную машину, разобрали, собрали, и гордо рассказали, как легко собрать электрофорую машину из старых CD. Хоть раз попробуйте не пиздеть, а реально сделать что-то из подручных материалов.

Как работает электрический генератор

Функция любого электрического генератора — вырабатывать электрический ток. Но на самом деле генератор ничего не производит, а лишь преобразует один вид энергии — в другой (как это и свойственно всем энергетическим процессам в природе). Чаще всего, произнося словосочетание «электрический генератор», имеют ввиду машину, преобразующую механическую энергию — в электрическую.

Механическая энергия может быть получена от расширяющегося под давлением газа или пара, от падающей воды или даже вручную. В любом случае для получения от генератора электрической энергии, ему необходимо сначала передать эту энергию в приемлемой форме, чаще всего в механической.

— А откуда у вас электричество?
— Два гигантских хомяка крутят колёса в секретном бункере.

Остаться в живых (Lost)

Генераторы, работающие посредством механического привода, — доминирующий вид генераторов в современном мире. Такие генераторы работают на атомных и гидроэлектростанциях, в автомобилях, в дизельных и бензиновых генераторах, на ветряках, в ручных динамо-машинах и т. д. Пар, бензин, ветер — служат источниками механической энергии, вращающей ротор генератора.

Пример работы простого электрогенератора:

На роторе генератора закреплена обмотка намагничивания или постоянные магниты. В последние годы широкое распространение получают генераторы с неодимовыми магнитами на роторе, так как современные неодимовые магниты не уступают по своим характеристикам мощной обмотке намагничивания.

Принцип выработки электрической энергии в генераторе основан на явлении электромагнитной индукции, которое заключается в том, что изменяющийся в пространстве магнитный поток индуцирует вокруг этого пространства электрическое поле.

И если в область где присутствует это индуцированное электрическое поле поместить проводник, то в нем наведется (будет индуцирована) ЭДС — электродвижущая сила, и между концами проводника можно будет наблюдать (измерить, использовать для питания нагрузки) соответствующее напряжение.

Изменяющийся магнитный поток получается в генераторе при помощи движущихся вместе с ротором магнитов или полюсных наконечников, намагничиваемых специальными обмотками — обмотками намагничивания. Обмотки намагничивания обычно получают питание через щетки и контактные кольца.

Применение генератора для электрификации модели железной дороги:

Провода, в которых наводится ЭДС (электрическое напряжение) в генераторе, представляют собой обмотку статора, расположенную, как правило, в магнитопроводе, закрепленном на неподвижной части электрической машины. Эта обмотка у генераторов разного типа может быть выполнена различным образом.

В трехфазных генераторах переменного тока приняты обмотки статора, изготовленные по трехфазной схеме, — три части такой трехфазной обмотки могут быть соединены «звездой» или «треугольником».

Соединение звездой позволяет получить от генератора напряжение большей величины, чем при соединении треугольником. Разница в напряжениях составит корень из 3 раз (около 1,73). Чем больше напряжение — тем меньше максимальный ток, который можно получить от данного генератора на нагрузке.

Работа электрического генератора на электростанции:

Номинальная мощность генератора зависит от нескольких факторов, которые определяют его номинальные ток и напряжение. Напряжение на выходных клеммах генератора зависит от длины обмотки (провода) статора, от скорости вращения ротора и от индукции магнитного поля на его полюсах. Чем эти параметры больше — тем большее напряжение получается с генератора на холостом ходу и под нагрузкой.

Портативный генератор (мини-электростанция) для автономного электроснабжения:

Максимальный ток, который можно получить от генератора, теоретически ограничен его током короткого замыкания. Практически при номинальных оборотах он зависит от толщины провода обмотки статора и от общего магнитного потока ротора.

Если магнитного потока не достаточно, в некоторых случаях прибегают к увеличению оборотов. Но тогда генератор обязательно должен быть оснащен автоматическим регулятором напряжения, как это реализовано в автомобильных генераторах, которые способны выдавать приемлемый для зарядки аккумулятора ток в широком диапазоне оборотов.

Читайте также  Шкив генератора газель размеры

Электрический генератор

Основное оборудование электрических станций и подстанций

Электрический генератор — это устройство, в котором неэлектрические виды энергии (механическая, химическая, тепловая) преобразуются в электрическую энергию.

История изобретения генератора электрического тока

Русский ученый Э.Х.Ленц еще в 1833г. указал на обратимость электрических машин: одна и та же машина может работать как электродвигатель, если ее питать током, и может служить генератором электрического тока, если ее ротор привести во вращение каким-либо двигателем, например паровой машиной. В 1838г. Ленц, один из членов комиссии по испытанию действия электрического мотора Якоби, на опыте доказал обратимость электрической машины.

Первый генератор электрического тока, основанный на явлении электромагнитной индукции, был построен в 1832г. парижскими техниками братьями Пиксин. Этим генератором трудно было пользоваться, так как приходилось вращать тяжелый постоянный магнит, чтобы в двух проволочных катушках, укрепленных неподвижно вблизи его полюсов, возникал переменный электрический ток. Генератор был снабжен устройством для выпрямления тока. Стремясь повысить мощность электрических машин, изобретатели увеличивали число магнитов и катушек. Одной из таких машин, построенной в 1843г., был генератор Эмиля Штерера. У этой машины было три сильных подвижных магнита и шесть катушек, вращавшихся от рук вокруг вертикальной оси. Таким образом, на первом этапе развития электромагнитных генераторов тока (до 1851г.) для получения магнитного поля применяли постоянные магниты. На втором этапе (1851-1867гг.) создавались генераторы, у которых для увеличения мощности постоянные магниты были заменены электромагнитами. Их обмотка питалась током от самостоятельного небольшого генератора тока с постоянными магнитами. Подобная машина была создана англичанином Генри Уальдом в 1863г.

При эксплуатации этой машины выяснилось, что генераторы, снабжая электроэнергией потребителя, могут одновременно питать током и собственные магниты. Оказалось, что сердечники электромагнитов сохраняют остаточный магнетизм после выключения тока. Благодаря этому генератор с самовозбуждением дает ток и тогда, когда его запускают из состояния покоя. В 1866-1867гг. ряд изобретателей получили патенты на машины с самовозбуждением.

В 1870г. бельгиец Зеноб Грамм, работавший во Франции, создал генератор, получивший широкое применение в промышленности. В своей динамо-машине он использовал принцип самовозбуждения и усовершенствовал кольцевой якорь, изобретенный еще в 1860 г.А.Пачинотти.

В одной из первых машин Грамма кольцевой якорь, укрепленный на горизонтальном валу, вращался между полюсными наконечниками двух электромагнитов. Якорь приводился во вращение через приводной шкив, обмотки электромагнитов были включены последовательно с обмоткой якоря. Генератор Грамма давал постоянный ток, который отводится с помощью металлических щеток, скользивших по поверхности коллектора. На Венской международной выставке в 1873г. демонстрировались две одинаковые машины Грамма, соединенные проводами длиной 1 км. Одна из машин приводилась в движение от двигателя внутреннего сгорания и служила генератором электрической энергии. Вторая машина получала электрическую энергию по проводам от первой и, работая как двигатель, приводила в движение насос. Это была эффектная демонстрация обратимости электрических машин, открытой Ленцем, и демонстрация принципа передачи энергии на расстояние.

До того, как была открыта связь между электричеством и магнетизмом, использовались электростатические генераторы, которые работали на основе принципов электростатики. Они могли вырабатывать высокое напряжение, но имели маленький ток. Их работа была основана на использовании наэлектризованных ремней, пластин и дисков для переноса электрических зарядов с одного электрода на другой.

Заряды вырабатывались, используя один из двух механизмов:

  • Электростатическую индукцию
  • Трибоэлектрический эффект, при котором электрический заряд возникал из-за механического контакта двух диэлектриков

По причине низкой эффективности и сложностей с изоляцией машин, вырабатывающих высокие напряжения, электростатические генераторы имели низкую мощность и никогда не использовались для выработки электроэнергии в значимых для промышленности масштабах. Примерами доживших до наших дней машин подобного рода являются электрофорная машина и генератор Ван де Граафа.

Принцип работы любого электрического генератора

Принцип работы любого электрического генератора основан на явлении электромагнитной индукции. Электромагнитная индукция преобразовывает механическую энергию двигателя (вращение0 в энергию электрическую. Принцип магнитной индукции: если в однородном магнитном поле В равномерно вращается рамка, то в ней возникает, переменная Э.Д.С., частота которой равна частоте вращения рамки. Будем ли мы вращать рамку в магнитном поле, или магнитное поле вокруг рамки, либо магнитное поле внутри рамки, результат будет один — Э.Д.С., изменяющаяся по гармоническому закону.

Вот теперь и поговорим о асинхронном и синхронном генераторе более подробно.

Синхронный электрогенератор

Синхронный электрогенератор — это синхронная машина, работающая в режиме генератора в которой частота вращения магнитного поля статора равна частоте вращения ротора. Ротор с магнитными полюсами создает вращающееся магнитное поле, которое пересекая обмотку статора, наводит в ней ЭДС. В синхронном генераторе ротор выполнен виде постоянного магнита или электромагнита.

Число полюсов ротора может быть два, четыре и т.д., но кратно двум. В бытовых электростанциях используется, как правило, ротор с двумя полюсами, чем и обусловлена частота вращения двигателя электростанции 3000 об/мин. Ротор, при запуске электростанции, создает слабое магнитное поле, но с увеличением оборотов, увеличивается и ЭДС в обмотке возбуждения. Напряжение с этой обмотки через блок автоматической регулировки (AVR) поступает на ротор, контролируя выходное напряжение за счет изменения магнитного поля. Например, подключенная индуктивная нагрузка размагничивает генератор и снижает напряжение, а при подключении емкостной нагрузки происходит подмагничивание генератора и повышение напряжения. Это называется «реакцией якоря».

Для обеспечения стабильности выходного напряжения необходимо изменять магнитное поле ротора путем регулирования тока в его обмотке, что и обеспечивается блоком AVR. Преимуществом таких генераторов является высокая стабильность выходного напряжения, а недостатком — возможность перегрузки по току, так как при завышенной нагрузке, регулятор может чрезмерно повысить ток в обмотке ротора. Еще к недостаткам синхронного генератора можно отнести наличие щеточного узла, который рано или поздно придется обслуживать. Благодаря такому способу регулировки, вне зависимости от изменения тока нагрузки и оборотов двигателя электростанции стабильность выходного напряжения генератора остается очень высокой, примерно ±1%.

Асинхронный электрогенератор

Асинхронный электрогенератор — асинхронная машина (двигатель) работающая в режиме торможения, ротор которой вращается с опережением, но в том же направлении что и магнитное поле статора. В зависимости от типа обмотки, ротор может быть короткозамкнутым либо фазным.

Вращающееся магнитное поле, созданное вспомогательной обмоткой статора, индуцирует на роторе магнитное поле, которое вращаясь вместе с ротором, наводит ЭДС в рабочей обмотке статора, так же как и в синхронном генераторе. Вращающееся магнитное поле остается всегда неизменным и не регулируемо, вследствие чего напряжение и частота на выходе генератора зависит от частоты оборотов ротора, а следовательно от стабильности работы двигателя электростанции.

Несмотря на простоту обслуживания, малую чувствительность к короткому замыканию и невысокую стоимость, асинхронные генераторы применяются достаточно редко, так как имеются ряд недостатков: асинхронный генератор всегда потребляет намагничивающий ток значительной силы, поэтому для его работы необходим источник реактивной мощности (конденсаторы), зависящий от активно-индуктивного характера нагрузки; ненадежность работы в экстремальных условиях; возбуждение асинхронного генератора зависит от случайных факторов и происходит, как правило, при скорости превышающей или равной синхронной; зависимость выходного напряжения и частоты тока от устойчивости работы двигателя и т.д.

Устройство генератора

Основными частями любого генератора являются: система магнитов (или, чаще всего, электромагнитов), создающих магнитное поле, и система проводников, пересекающих это магнитное поле. При пропускании магнитного поля через катушку магнитный поток принудит свободные электроны сместиться на концы проводника. Подобное смещение отрицательно заряженных частиц становится источником возникновения электродвижущей силы — ЭДС (напряжение). В результате у генератора при вращении его оси идёт постоянное воздействие магнитного потока на обмотки, на которых и возникает ЭДС.

Составные части генератора:

  • коллектор,
  • щетки,
  • магнитные полюса,
  • витки,
  • вал,
  • якорь.

Принцип действия генератора

Принцип действия генератора основан на явлении электромагнитной индукции, когда в проводнике, двигающемся в магнитном поле и пересекающем его магнитные силовые линии, индуктируется ЭДС. Следовательно, такой проводник можно использовать как источник электрической энергии.

Виды генераторов

  • электрогенераторы,
  • бензогенераторы,
  • дизельгенераторы,
  • инверторные генераторы.

Применение

Генераторы используются во многих сферах жизнедеятельности и производства, при различных условиях. Бензогенераторы незаменимы в случае отключения электричества в небольших загородных домах и дачах. Кроме того, их удобно применять в тех местах, где нет электроэнергии (отдаленные районы, горы, леса). Дизельные генераторы применяется в качестве основного или резервного источника электропитания. Инверторные генераторы незаменимы как источник дополнительного питания для электронного оборудования. Такие электростанции исспользуются организациями, использующими различную электронную технику.

Яков Кузнецов/ автор статьи

Приветствую! Я являюсь руководителем данного проекта и занимаюсь его наполнением. Здесь я стараюсь собирать и публиковать максимально полный и интересный контент на темы связанные ремонтом автомобилей и подбором для них запасных частей. Уверен вы найдете для себя немало полезной информации. С уважением, Яков Кузнецов.

Понравилась статья? Поделиться с друзьями:
NEVINKA-INFO.RU
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: