Устройство ротора промышленного генератора - NEVINKA-INFO.RU

Устройство ротора промышленного генератора

Устройство промышленного генератора - рассказывают специалисты «Дизель-машинери». Статьи и полезные советы. Круглосуточная служба поддержки клиентов: +7 (495) 755-09-48, +7 (906) 042-72-45.

Устройство ротора промышленного генератора

Устройство промышленного генератора

Устройство, которое преобразует механическую энергию в электрическую называется генератором. Различают генераторы постоянного тока и переменного.

В генераторах постоянного тока магниты неподвижны. Они образуют магнитное поле и получили название – катушки возбуждения. Электродвижущая сила индуктируется во вращающихся катушках, а также с них производится съем тока. В конструкции используются полукольца с изолированными промежутками и щетки, которые соприкасаются с полукольцами. В генераторах постоянного тока используется несколько проволочных контуров. Их предназначение – присоединяться к собственной контактной пластине.

Изолирующие промежутки отделяют пластины друг от друга. Отдельно стоит сказать про коллектор, который представляет собой совокупность контактных пластин и изолирующих промежутков. Контактную пластину называют иначе коллекторная пластина.

Щеточно-коллекторный узел – это весь узел в сборе, что подразумевает совокупность коллектора, щеток и держателей щеток. Изолятор между коллекторными пластинами изготавливается из материала, твердость которого примерно равна твердости коллекторных пластин. Это необходимо для равномерного износа. Как правило, используется миканит, который представляет собой прессованную слюду. А коллекторные пластины производятся из меди.

Ярмо – это остов (статор) генератора. Изготавливается из литой стали.

Сердечки электромагнитов – на них насажены катушки возбуждения. Сердечки возбуждения прикрепляются к ярму.

Крышки с подшипниками – в них вращается вал генератора.

Полюсные наконечники – ими оснащаются сердечники электромагнитов, для придания магнитным линиям магнитного поля нужное направление.

Электромагниты – создают в генераторе магнитное поле.

Катушка возбуждения – состоит из витков медной изолированной проволоки, намотанной на каркас.

Якорь – вращающаяся часть генератора (ротор). Для изготовления сердечника якоря используется электротехническая сталь. Сердечник якоря собирается из отдельных стальных листов зубчатой формы, которые образуют впадины (пазы). Это помогает избежать потерь на вихревые токи. Якорная обмотка укладывается во впадины. Если генератор с малой мощностью, то тогда якорная обмотка производится из медной изолированной проволоки. Если мощность большая, то из медных полос прямоугольной формы.

Бандаж – требуется для закрепления якорной обмотки. Иначе она может выпасть из пазов.

Обмотка якоря наносится на сердечник таким образом, что каждые два активных проводника, соединённых непосредственно и последовательно друг с другом, лежат под разными магнитными полюсами. Обмотка бывает волновая и петлевая. В первом случае провод проходит по очереди под всеми полюсами и возвращается к исходному полюсу. В случае петлевой обмотки, провод, пройдя под «северным» полюсом и «южным», возвращается на прежний «северный» полюс.

Чтобы пластины коллектора и изолирующие миканитовые (слюдяные) пластины между ними не были вырваны центробежными силами из своих гнёзд — в нижней части они имеют крепление «ласточкин хвост».

Минимальное количество щеток в генераторе постоянного тока – две. Одна представляет собой положительный полюс, а другая – отрицательный. Генератор работает намного лучше, если он многополюсный. Щётки с одной полярностью электрически соединены друг с другом.

Щёткодержатель обеспечивает постоянный прижим щёток вогнутой стороной к цилиндрической поверхности коллектора.

Устройство генератора переменного тока

Генераторы переменного тока различают по конструкции:

· с неподвижными магнитными полюсами и вращающимся якорем;

· с вращающимися магнитными полюсами и неподвижным статором.

Ротор – это подвижная часть генератора. Производится из сплошного железа.

Статор – неподвижная часть генератора. Он состоит из отдельных железных листов. С внутренней стороны статора есть пазы. Провода статорной обмотки генератора складываются именно в них.

Катушки возбуждения питаются постоянным током и расположены на сердечниках полюсов. Посредством щеток, к контактным кольцам, находящимся на валу генератора, подводится постоянный ток.

Итак, теперь вы знаете об устройстве промышленного генератора. Если вас интересует аренда дизель-генераторов, то такую услугу предоставляет компания «Дизель-машинери».

ИНФОФИЗ — мой мир.

Весь мир в твоих руках — все будет так, как ты захочешь

Весь мир в твоих руках — все будет так, как ты захочешь

  • Главная
  • Мир физики
    • Физика в формулах
    • Теоретические сведения
    • Физический юмор
    • Физика вокруг нас
    • Физика студентам
      • Для рефератов
      • Экзамены
      • Лекции по физике
      • Естествознание
  • Мир астрономии
    • Солнечная система
    • Космонавтика
    • Новости астрономии
    • Лекции по астрономии
    • Законы и формулы — кратко
  • Мир психологии
    • Физика и психология
    • Психологическая разгрузка
    • Воспитание и педагогика
    • Новости психологии и педагогики
    • Есть что почитать
  • Мир технологий
    • World Wide Web
    • Информатика для студентов
      • 1 курс
      • 2 курс
    • Программное обеспечение компьютерных сетей
      • Мои лекции
      • Для студентов ДО
      • Методические материалы
  • Физика школьникам
  • Физика студентам
  • Астрономия
  • Информатика
  • Индивидуальный проект
  • Арх ЭВМ и ВС
  • Методические материалы
  • Медиа-файлы
  • Тестирование
  • ПОКС

Как сказал.

Вопросы к экзамену

Для всех групп технического профиля

Список лекций по физике за 1,2 семестр

Урок 43-3 Устройство и принцип работы генератора переменного тока

  • » onclick=»window.open(this.href,’win2′,’status=no,toolbar=no,scrollbars=yes,titlebar=no,menubar=no,resizable=yes,width=640,height=480,directories=no,location=no’); return false;» rel=»nofollow»> Печать
  • E-mail

Рассмотрим замкнутый контур (рамку) площадью S, помещенный в однородное магнитное поле, индукция которого равна B. Контур равномерно вращается вокруг оси OO’ с угловой скоростью ω.

Магнитный поток, пронизывающий контур, определяется формулой Ф = BS cosΔφ, где Δφ — угол между вектором нормали n к плоскости контура и вектором В. Рамка вращается внутри магнита с частотой v, и за время t совершает N = vt оборотов. За оборот рамка поворачивается на угол 2π рад. Угол на который поворачивается рамка за время t: Δφ = 2π vt = ωt, тогда изменение магнитного потока ΔФ = BS cos Δφ = BS cos ωt .

В замкнутом контуре возникает э.д.с. индукции, которая по закону электромагнитной индукции равна скорости изменения магнитного потока .

Тогда получим мгновенное значение э.д.с.

e = — Ф’ = — (BS cos ωt)’ = BSω sin ωt

Следовательно э.д.с. индукции, возникающая в замкнутом контуре, при его равномерном вращении в однородном магнитном поле меняется со временем по закону синуса. Э.д.с. индукции максимальна при sin ωt = 1, т.е. α = ωt = π/2

Величина ε = ωBS – называется амплитудным значением э.д.с. индукции.

Если такой контур замкнуть на внешнюю цепь, то по цепи пойдет ток, сила и направление которого изменяются. Такая рамка, вращающаяся в магнитном поле является простейшимгенератором переменного тока.

В нашей стране используется переменный ток частотой 50 Гц (в США – 60 Гц). Такой ток вырабатывается генераторами.

Генераторы электрического тока – это устройства для преобразования различных видов энергии – механической, химической, тепловой, световой и др. – в электрическую.

Работа генератора переменного тока основана на явлении электромагнитной индукции.

В настоящее время имеется много различных типов генераторов. Но все они состоят из одних и тех нее основных частей. Это, во-первых, электромагнит или постоянный магнит, создающий магнитное поле, и, во-вторых, обмотка, в которой индуцируется переменная ЭДС — электродвижущая сила (в рассмотренной модели генератора это вращающаяся рамка).

Неподвижную часть генератора называют статором, а подвижную – ротором.

Так как ЭДС, наводимые в последовательно соединенных витках, складываются, то амплитуда ЭДС индукции в рамке пропорциональна числу витков в ней. Она пропорциональна также амплитуде переменного магнитного потока (Фm = BS) через каждый виток.

В изображенной на рисунке модели генератора вращается проволочная рамка, которая является ротором. Магнитное поле создает неподвижный постоянный магнит. Разумеется, можно было бы поступить и наоборот: вращать магнит, а рамку оставить неподвижной. К концам обмотки ротора присоединены контактные кольца. Неподвижные пластины — щетки — прижаты к кольцам и осуществляют связь обмотки ротора с внешней цепью.

Модель генератора переменного тока.

Промышленные генераторы имеют намного большие размеры, для увеличения напряжения, снимаемого с клемм генератора, на рамки наматывают не один, а много витков. Во всех промышленных генераторах переменного тока витки, в которых индуцируется переменный ток, устанавливают неподвижно, а вращается магнитная система. Если ротор вращать с помощью внешней силы, то вместе с ротором будет вращаться и магнитное поле, создаваемое им, при этом в проводниках статора будет индуцироваться э.д.с.

Принцип действия генератора переменного тока следующий. Для получения большого магнитного потока в генераторах применяют специальную магнитную систему, состоящую из двух сердечников, сделанных из электротехнической стали. Обмотки, создающие магнитное поле, размещены в пазах одного из сердечников, а обмотки, в которых индуцируется ЭДС, — в пазах другого. Один из сердечников (обычно внутренний) вместе со своей обмоткой вращается вокруг горизонтальной или вертикальной оси. Поэтому он называется ротором. Неподвижный сердечник с его обмоткой называют статором. Зазор между сердечниками статора и ротора делают как можно меньшим для увеличения потока магнитной индукции.

В больших промышленных генераторах вращается именно электромагнит, который является ротором, в то время как обмотки, в которых наводится ЭДС, уложены в пазах статора и остаются неподвижными. Дело в том, что подводить ток к ротору или отводить его из обмотки ротора во внешнюю цепь приходится при помощи скользящих контактов. Для этого ротор снабжается контактными кольцами, присоединенными к концам его обмотки.

Читайте также  Шкив для генератора мазда 323

Структурная схема генератора переменного тока.

Неподвижные пластины — щетки — прижаты к кольцам и осуществляют связь обмотки ротора с внешней цепью. Сила тока в обмотках электромагнита, создающего магнитное поле, значительно меньше силы тока, отдаваемого генератором во внешнюю цепь. Поэтому генерируемый ток удобнее снимать с неподвижных обмоток, а через скользящие контакты подводить сравнительно слабый ток к вращающемуся электромагниту. Этот ток вырабатывается отдельным генератором постоянного тока (возбудителем), расположенным на том левее валу (В настоящее время постоянный ток в обмотку ротора чаще всего подают из статорной обмотки этого же генератора через выпрямитель).

В маломощных генераторах магнитное поле создается вращающимся постоянным магнитом. В таком случае кольца и щетки вообще не нужны.

Появление ЭДС в неподвижных обмотках статора объясняется возникновением в них вихревого электрического поля, порожденного изменением магнитного потока при вращении ротора.
Современный генератор электрического тока — это внушительное сооружение из медных проводов, изоляционных материалов и стальных конструкций. При размерах в несколько метров важнейшие детали генераторов изготовляются с точностью до миллиметра. Нигде в природе нет такого сочетания движущихся частей, которые могли бы порождать электрическую энергию столь же непрерывно и экономично.

Как устроен генератор переменного тока — назначение и принцип действия

Люди пользуются энергией электрического тока практически во всех сферах своей деятельности. Сейчас нелегко представить жизнь без электричества, которое с помощью специального оборудования преобразуется из механической энергии. Рассмотрим подробнее, как происходит этот процесс, и как устроены современные генераторы.

Превращение механической энергии в электрическую

Любой генератор работает по принципу магнитной индукции. Самый простой генератор переменного тока можно представить, как катушку, которая вращается в магнитном поле. Также есть вариант, при котором катушка остается неподвижной, но магнитное поле только её пересекает. Именно во время этого движения и вырабатывается переменный ток. По такому принципу функционирует огромное количество генераторов во всем мире, объединенных в систему электроснабжения.

Устройство и конструкция генератора переменного тока

Стандартный электрогенератор имеет следующие компоненты:

  • Раму, к которой закреплен статор с электромагнитными полюсами. Изготовлена она из металла и должна выполнять защитную функцию всех элементов механизма.
  • Статор, к которому крепится обмотка. Изготавливается он из ферромагнитной стали.
  • Ротор – подвижный элемент, на сердечнике которого располагается обмотка, образующая электрический ток.
  • Узел коммутации, который отводит электричество с ротора. Представляет собой систему подвижных токопроводящих колец.

В зависимости от назначения, генератор имеет определенные особенности конструкции, но существуют два компонента, которыми обладает любое устройство, конвертирующее механическую энергию в электричество:

  1. Ротор – подвижная цельная деталь из железа;
  2. Статор – неподвижный элемент, который изготовлен из железных листов. Внутри него есть пазы, внутри которых располагается проволочная обмотка.

Для получения большей магнитной индукции, между этими элементами должно быть небольшое расстояние. По своей конструкции генераторы бывают:

  • С подвижным якорем и статическим магнитным полем.
  • С неподвижным якорем и вращающимся магнитным полем.

В настоящее время более распространено оборудование с вращающимися магнитными полями, т.к. значительно удобнее снимать электрический ток со статора, чем с ротора. Устройство генератора имеет немало сходств с конструкцией электродвигателя.

Схема генератора переменного тока

Принцип работы электрогенератора: в тот момент, когда половина обмотки находится на одном из полюсов, а другая на противоположном, ток движется по цепи от минимального до максимального значения и обратно.

Классификация и виды агрегатов

Все электрогенераторы можно распределить по критерию работы и по типу топлива, из которого и образуется электроэнергия. Все генераторы делятся на однофазные (выход напряжения 220 Вольт, частота 50 Гц) и трехфазные (380 Вольт с частотой 50 Гц), а также по принципу работы и типу топлива, которое конвертируется в электричество. Ещё генераторы могут использоваться в разных сферах, что определяет их технические характеристики.

По принципу работы

Разделяют асинхронные и синхронные генераторы переменного тока.

Асинхронный

У асинхронных электрогенераторов нет точной зависимости ЭДС от частоты вращения ротора, но здесь работает такой термин, как «скольжение S». Оно определяет эту разницу. Величина скольжения вычисляется, поэтому некоторое влияние элементов генератора в электромеханическом процессе асинхронного двигателя все же есть.

Синхронный

Такой генератор обладает физической зависимостью от вращательного движения ротора к генерируемой частоте электроэнергии. В таком устройстве ротор является электромагнитом, состоящим из сердечников, обмоток и полюсов. Статором являются катушки, которые соединены по принципу звезды, и имеющими общую точку – ноль. Именно в них вырабатывается электрический ток.
Ротор приводит в движение посторонняя сила подвижных элементов (турбин), которые двигаются синхронно. Возбуждение такого генератора переменного тока может быть, как контактным, так и бесконтактным.

По типу топлива двигателя

Удаленность от электросети с появлением генераторов больше не становится препятствием для пользования электроприборами.

Газовый генератор

В качестве топлива здесь используется газ, во время сгорания которого и вырабатывается механическая энергия, которая затем заменяется электрическим током. Преимущества использования газогенератора:

  • Безопасность для окружающей среды, ведь газ при сгорании не выделяет вредных элементов, копоти и токсичных продуктов распада;
  • Экономически это очень выгодно – сжигать дешевый газ. В сравнении с бензином, это обойдется значительно дешевле;
  • Подача топлива осуществляется автоматически. Бензин и дизельное топливо требуется по мере необходимости подливать, а газовый генератор обычно подключают к системе газоснабжения;
  • Благодаря автоматике, аппарат приходит в действие самостоятельно, но для этого он должен располагаться в теплом помещении.

Дизельный генератор

Эту категорию составляют преимущественно однофазные агрегаты мощностью 5 кВт. 220 Вольт и частота 50 Гц являются стандартными для бытовой техники, поэтому дизельный аппарат неплохо справляется со стандартной нагрузкой. Как можно догадаться, для его работы требуется дизельное топливо. Почему стоит выбрать именно дизельный электрогенератор:

  • Относительная дешевизна топлива;
  • Автоматика, позволяющая автоматически запускать генератор при прекращении подачи электрического тока;
  • Высокий уровень противопожарной безопасности;
  • В течении длительного периода времени агрегат на дизеле способен проработать без сбоев;
  • Внушительная долговечность – некоторые модели способны работать в общей сумме 4 года непрерывной эксплуатации.

Бензогенератор

Такие аппараты довольно востребованы как бытовое оборудование. Несмотря на то, что бензин дороже газа и дизеля, такие генераторы имеют немало сильных сторон:

  • Малые габариты при высокой мощности;
  • Просты в эксплуатации: большинство моделей можно запустить вручную, а более мощные генераторы оснащены стартером. Регулируется напряжение под определенную нагрузку при помощи специального винта;
  • В случае перегрузки генератора автоматически срабатывает защита;
  • Просты в обслуживании и ремонте;
  • Во время работы не издают много шума;
  • Можно применять и в помещении, и на улице, но следует защищать от попадания влаги.

1. Магнитопровод и вал ротора

1.1. Изготовление ротора

Высокая частота вращения приводит к возникновению в роторе больших механических напряжений из-за действия центробежных сил. Для получения необходимой прочности ротор изготавливают массивным цилиндрическим из цельной стальной поковки. В качестве материала для роторов турбогенераторов относительно небольшой мощности с воздушным охлаждением используют углеродистую кованную сталь марки 35. Рогоры крупных турбогенераторов изготавливают из высоколегированной стали марок: ОХНЗМ, ОХН4МАР, 35ХНМ, 35ХНЗМА 35ХН4МА. 35ХН1МФА, 36ХНМА. 36ХНЗМФА, 36ХН1Н. на электромашиностроительном заводе из заготовки вытачивают все ступени ротора с припуском до чистоты, необходимой для проведения ультразвуковой дефектоскопии. По отражению звуковой волны удается обнаруживать дефекты размером более 3 мм на большой глубине. После чистовой обработки в роторе фрезеруют пазы под обмотку, токоподводы и для вентиляции (рис. 1). Пазы под обмотку возбуждения занимают примерно 2/3 окружности бочки ротора. Оставшаяся свободной третья часть, образует два диаметрально расположенных больших зубца, через которые проходит главная часть магнитного потока генератора. В турбогенераторах российского производства используют четыре формы пазов (рис. 2), Глубина пазов определяется допустимой толщиной основания зубца, где возникают наибольшие растягивающие напряжения при вращении ротора.

В генераторах с форсированным охлаждением ротора на зубцах фрезеруют скосы для улучшения входа газа из зазора в отверстия пазовых клиньев (рис. 3).

При косвенном охлаждении обмотки возбуждения на поверхно­сти ротора прорезают поперечные винтовые канавки небольшой глубины. Такое рифление бочки уменьшает поверхностные потери и увеличивает наружную поверхность, что приводит к улучшению охлаждения ротора. Температура обмотки ротора снижается в результате на 7—10 0 С.

Для выхода газа, охлаждающего лобовые части обмотки ротора, в больших зубцах прорезают по два вентиляционных паза такой же ширины, как и пазы для обмотки, но меньшей глубины. Вентиляционные пазы служат также для более эффективного охлаждения бочки ротора.

В роторах машин небольшой мощности для токоподвода обмотки возбуждения на валу со стороны возбудителя фрезеруют два диаметрально расположенных паза. В турбогенераторах, имеющих контактные кольца, вынесенные за подшипник, для токоподвода используют центральное отверстие ротора. Пазы токоподвода соединяют двумя отверстиями с центральным отверстием, которое дополнительно растачивают для укладки стержней токоподвода. Радиальные отверстия сверлят и в месте установки контактных колец.

Читайте также  Щетки генератора от мерседеса подойдут

В больших зубьях роторов с форсированным охлаждением об мотки вдоль первых обмоточных пазов сверлят два ряда отверстий для размещения балансировочных грузов. В турбогенераторах с поверхностным охлаждением ротора отверстия для балансировочных грузов сверлят в пазовых клиньях.

Для крепления центрирующего кольца и вентилятора на каждом хвостовике ротора обрабатывают посадочные площадки. Все кромки и углы пазов и зубцов ротора выполняют с закруглениями для устранения концентрации напряжений в этих местах. С аналогичной целью ступени ротора с различным диаметром имеют переходный радиус.

Участок вала, опирающийся на подшипник, называют цапфой. Размеры цапфы выбирают из соображений механической прочности самого вала и режима работы подшипника. Обрабатывают цапфы вала на полностью собранном роторе.

1.2. Конструкция обмотки ротора

Обмотка возбуждения двухполюсного турбогенератора состоит со ответственно из двух групп катушек, укладываемых в пазы ротора. Катушки, принадлежащие одной группе, располагаются концентрически на одном полюсном делении ротора относительно его большого зуба (рис. 4). Таким образом, обмотка возбуждения турбогенератора является распределенной, благодаря чему достигается близкая к синусоидальной форма МДС ротора. Число катушек в группе может составлять 7—10, а число витков в катушке 5—28. Рассмат- риваемые далее особенности конструкции обмоток возбуждения во многом определяются используемой системой охлаждения.

Ротор с поверхностным охлаждением. Каждую катушку обмотки возбуждения наматывают непрерывно из сплошного провода. На мотку производят на ребро, Для машин небольшой мощности используют проводник из чистой электролитической меди, а для более мощных генераторов — проводник из меди с присадкой серебра, который обладает значительно более высокой прочностью. Это объясняется тем, что витки обмотки возбуждения с течением времени укорачиваются. Укорочение может достигать 30—40 мм и является следствием одновременного действия термических напряжений н центробежных сил при пусках машины. При недостаточной механической прочности укорочение витков может привести к разрушению изоляции или меди обмотки возбуждения. Из-за намотки провода на ребро в углах изгиба происходит утолщение меди по внутреннему радиусу проводника. Общее увеличение высоты катушки состав- ляет несколько сантиметров. Поэтому утолщение каждого витка устраняют опиловкой или обжатием на специальном прессе.

Соединяют катушки между собой последовательно. Соединение выполняют по такой схеме; верхний виток одной катушки — с верх ним витком следующей, соответственно нижний виток — с нижним витком. При такой схеме четные катушки должны иметь правую намотку, а нечетные — левую. Специальных перемычек между катушками не требуется, так как их витки спаивают встык под углом 45° к оси проводника. Соединение между группами катушек выполняют обычно по верхним виткам, что возможно только при чет ном числе катушек на полюс. Выводные концы обмотки возбуждения изготавливают гибкими из набора медных шин толщиной 0,3 0,5 мм, которые крепят я пазах вала стальными клиньями.

Электрическая прочность корпусной изоляции обмотки возбуждения определяется максимальным испытательным напряжением, которое, в своё очередь, зависит от величин перенапряжении, возникающих в обмотке при аварийном разрыве цепи возбуждения. С другой стороны толщина корпусной изоляции ограничена допустимым температурным перепадом, который не должен быть выше 25—30°С. С учетом этих двух противоположных факторов толщину гильзы выбирают в пределах 1—1,2 мм.

Начиная с мощности 500 МВт и выше турбогенераторы серии ТВВ имеют трапецеидальный паз ротора. Сечение обмотки возбуждения при этом увеличивается до 30%. Однако это достигается за счет усложнения фрезерования пазов и выполнения катушек с витками различной ширины. Поперечный разрез паза генератора ТВВ-500-2 показан на рис. 5 , а. Прямолинейная пазовая часть катушки с трапецеидальным сечением выходит на 30 мм с каждой стороны из бочки ротора. Лобовые части катушек имеют уже прямоугольное сечение (рис. 5, б) с внутренними продольными каналами для охлаждения. На выходе из бочки ротора пазовая изоляция имеет дополнительные манжеты из стеклотекстолита. Пазы в этих местах несколько расширены.

Крепление лобовых частей обмотки возбуждения генераторов серии ТВВ показано на рис. 5, в. В аксиальном и тангенциальном направлениях катушки плотно закреплены специальными клиньями. Между кольцом и обмоткой установлены изоляционные сегменты. Компенсирующие устройства позволяют обмотке удлиняться при ее нагревании.

2. Пазовые клинья и демпферная система ротора

Клинья крепят в пазах ротора обмотку возбуждения и совместно с зубцами образуют демпферную систему ротора. При работе турбо генератора высшие пространственные гармоники поля статора индуцируют в бочке ротора вихревые токи, вызывающие дополнительные потери. При несимметричных режимах вихревые токи могут явиться причиной местных перегревов и снижения прочности бочки ротора. Демпферная система разгружает ротор от протекания вихревых токов и ослабляет магнитные поля, приводящие к их возник- никновению. Следовательно, клинья должны быть изготовлены из материала не только с высокой механической прочностью, но и хорошей электропроводностью. Клинья должны быть немагнитными, чтобы не увеличивать поле рассеяния обмотки возбуждения, Основные характеристики металлов, применяемых для изготовления клиньев, приведены в табл.1, а формы пазовых клиньев показаны на рис. 6.

Механические свойства металла клиньев

Предел прочности, 10 7 Па

Предел текучести, 10 7 Па

Относительное удлинение t » 5 d , %

Принцип работы и устройство синхронного генератора переменного тока

Электричество – единственный вид энергии, которую легко можно передать на большие расстояния, а затем преобразовать её в механическую, тепловую или превратить в световое излучение. Саму же электроэнергию также можно получить разными способами: химическим, тепловым, механическим, фотоэлектрическим и др. Но именно механический способ, который основан на применении генераторов, оказался самым эффективным. Среди этих источников электроэнергии широкое применение нашёл синхронный генератор переменного тока.

Практически вся электроэнергия, используемая в быту и на производстве, вырабатывается генераторами этого типа. Они заслуживают того, чтобы более подробно рассмотреть их устройство и разобраться в принципе работы этих удивительных синхронных машин.

Устройство

В конструкции синхронных генераторов используются две основные рабочие детали – вращающийся ротор и неподвижный статор. На валу ротора располагаются постоянные магниты либо обмотки возбуждения. Магниты имеют зубчатую форму, с противоположно направленными полюсами.

Бесщёточные генераторы.

Обмотки статора размещают таким образом, чтобы их сердечники совпадали с выступами магнитных полюсов ротора, или с сердечниками катушек ротора. Количество зубцов магнита, обычно, не превышает 6. При такой конструкции вырабатываемый ток снимается непосредственно с обмоток статоров. Другими словами, статор выступает в роли якоря.

В принципе, постоянные магниты можно расположить на статоре, а рабочие обмотки, в которых будет индуцироваться ЭДС, — на роторе. Работоспособность генератора от этого не изменится, однако потребуются кольца и щётки для снятия напряжения с обмоток якоря, а это, чаще всего, не рационально.

Схематическое изображение бесщеточного генератора без обмоток возбуждения изображено на рис. 1.

Рис. 1. Модель генератора с магнитным ротором

Пояснение:

  • схема устройства;
  • схема расположения магнитных полюсов на якоре. Здесь буквами NS обозначено коаксиальный магнит с полюсами, а литерой R – стальной магнитопровод ротора в виде когтеобразных наконечников.
  • модель генератора в разрезе. Выводы фазных обмоток статора соединены «звездой».

Синхронные машины с индукторами.

Заметим, что постоянные магниты в качестве ротора используются в альтернаторах небольшой мощности. В мощных электрических машинах всегда применяются обмотки индуктора с независимым возбуждением. Независимым источником питания является маломощный генератор постоянного тока, смонтированный на валу синхронного двигателя.

Существуют конструкции синхронных генераторов малой и средней мощности, с самовозбуждающимися обмотками. Для возбуждения индуктора выпрямленный ток фазных обмоток подаётся через щётки на кольца, расположенные на валу статора. Строение такого альтернатора показано на рис. 2.

Рис. 2. Строение синхронного генератора средней мощности

Обратите внимание на наличие щёток, на которые подаётся питания от независимого источника.

По количеству фаз синхронные генераторы делятся на:

  • однофазные;
  • двухфазные;
  • трёхфазные.

По конструкции ротора можно выделить генераторы с явновыраженными полюсами и с неявновыраженными. В неявнополюсном роторе отсутствуют выступы, а катушки провода якоря спрятаны в пазы статора.

По способу соединения фазных обмоток различают трёхфазные генераторы:

  • соединённые по шестипроводной системе Тесла (не нашли практического применения);
  • «звезда»;
  • «треугольник»;
  • сочетание шести обмоток, соединённых в виде одной «звезды» и «треугольника». Это соединение ещё называют «Славянка».

Самое распространённое соединение – «звезда» с нейтральным проводом.

Принцип работы

Рассмотрим принцип генерации тока на примере контурной рамки, помещённой между магнитными полюсами. (Рис. 3)

Рис. 3. Схема, объясняющая принцип работы генератора

Если заставить рамку вращаться (по направлению стрелок), то она будет пересекать магнитные силовые линии. При этом, по закону электромагнитной индукции, в рамке индуцируется электрический ток, который проявляется при подключении нагрузки к щёткам. Его направление можно определить по правилу буравчика. На схеме направление тока показано чёрными стрелками.

Обратите внимание на то, что на участках рамки ab и cd ток движется в противоположных направлениях. Эти направления меняются при переходе участков рамки от одного полюса к другому полюсу магнита. Если каждый вывод рамки подключить к отдельному кольцу (на рисунке они подключены к коллектору!), то на выходе мы получим переменный ток.

Величина тока пропорциональна скорости вращения ротора. Кроме того, переменный ток характеризуется ещё одним параметром – частотой. Эта величина напрямую зависит от частоты вращения вала.

Частота тока в электросетях строго соблюдается. В России и в ряде других стран она составляет 50 Гц, то есть 50 колебаний в секунду.

Читайте также  Что происходит в генераторе автомобиля

Этот параметр довольно легко вычислить из таких соображений: за один оборот рамки (или двухполюсного магнита) происходит одно изменение направления тока. Если вал синхронного генератора делает 1 оборот в секунду, то частота переменного тока составит 1 Гц. Для получения частоты 50 Гц необходимо обеспечить 50 оборотов статора в секунду или 3000 об./мин.

При возрастании числа полюсов заданная частота удерживается путём снижения скорости вращения статора. (обратно пропорциональная зависимость). Так, для четерёхполюсного статора (число полюсов в два раза больше) для поддержания частоты 50 Гц скорость вращения вала необходимо снизить в два раза. Соответственно если используется 6 полюсов, то частота вращения вала должна уменьшиться в три раза – до 1000 об./мин.

Заметим, что в некоторых странах, таких как США, Япония и др. существуют другие стандарты – 60 Гц, а переменный 400 Гц используется, например, в бортовой сети современных самолётов.

Регулирование частоты

Достигнуть требуемых параметров частоты можно 2 путями:

  1. Сконструировать генератор с определённым количеством полюсов электромагнитов.
  2. Обеспечить соответствующую расчётную частоту вращения вала.

Например, в тихоходных гидротурбинах, вращающихся со скоростью 150 об./мин. для регулирования частоты число полюсов синхронных генераторов увеличивают до 40. На дизельных электростанциях, при скоростях вращения 750 об./мин., оптимальное число полюсов – 8.

Регулирование ЭДС

В связи с изменениями параметров активных нагрузок возникает необходимость в выравнивании номинальных напряжений. Несмотря на то, что ЭДС индукции синхронного генератора связана со скоростью вращения ротора, однако, из-за требований по соблюдению стабильной частоты, этим способом нельзя изменять указанный параметр. Но параметры магнитной индукции можно изменить путём снижения или увеличения магнитного потока, который зависит от количества витков обмотки индуктора и величины тока возбуждения.

Регулирование осуществляется путём включения в цепь катушек возбуждения дополнительных реостатов, электронных схем или регулировкой тока генератора-возбудителя (Рис. 4). В случае использования альтернаторов с постоянными магнитами, в таких устройствах напряжение регулируется внешними стабилизаторами.

Рис. 4. Схема регулировки напряжения

Благодаря малому весу и отличным токовым характеристикам синхронные генераторы переменного тока нашли применение во всех современных автомобилях. Поскольку бортовая сеть авто использует постоянный ток, конструкции автомобильных генераторов оборудованы трехфазным выпрямителем. Для выпрямляемых переменных токов частота не имеет значения, а вот напряжение должно быть стабильно. Этого добиваются с помощью внешних электронных устройств. На рисунке 5 представлена электрическая схема подключения генератора к бортовой сети современного автомобиля.

Рис. 5. Схема подключения генератора к бортовой сети авто

Применение

У синхронных генераторов переменного тока есть одна важная особенность: они поддаются синхронизации с другими подобными электрическими машинами. При этом синхронные скорости и ЭДС параллельно включенных альтернаторов совпадают, а фазовый сдвиг равен нулю. Данное обстоятельство позволяет применять устройства в промышленной энергетике и подключать резервные генераторы при превышении номинальных мощностей в часы пиковых нагрузок.

Трёхфазные тяговые генераторы применяют на тепловозах. Переменные токи для питания двигателей выпрямляются полупроводниковыми устройствами. Сегодня в России уже выпускаются тепловозы на базе асинхронных электродвигателей, не требующих выпрямления тока. В режиме торможения они работают в качестве асинхронных генераторов.

Синхронные генераторы устанавливают на гибридных автомобилях с целью совмещения тяги ДВС и мощности тяговых электродвигателей. Развивая активную мощность при номинальных нагрузках, они позволяют экономить дорогое топливо.

Существует много других сфер применения. Например, мобильные мини-электростанции, бытовые генераторы тока, как однофазный двигатель и т. п.

§ 3.2. Генератор переменного тока

Простейший генератор переменного тока

Простейшей схемой генератора может служить проводник в виде рамки, вращающейся вокруг оси в магнитном поле между полюсами постоянного магнита или электромагнита (см. рис. 2.3). При вращении рамки с постоянной угловой скоростью в ней возникает ЭДС, изменяющаяся по гармоническому закону — синусоидальная ЭДС.

Если рамку соединить с внешней частью цепи, то в цепи появится переменный ток. Для соединения рамки с внешней частью цепи используются кольца, укрепленные на той же оси, на которой укреплена вращающаяся рамка. Кольца изолированы от оси и друг от друга. К кольцам припаиваются концы рамки, а над каждым кольцом устанавливаются неподвижные пружинящие скользящие контакты — щетки.

Однако простейший генератор, изображенный на рисунке 2.3, даст ничтожно малую ЭДС. Дело в том, что ЭДС индукции определяется скоростью изменения магнитного потока, пронизывающего рамку. Но поток, пронизывающий рамку, очень мал, так как мала магнитная индукция поля, создаваемого постоянным магнитом.

Чтобы значительно увеличить ЭДС, полюсам магнита придают специальную форму, способствующую концентрации линий магнитной индукции, а внутрь рамки помещают ферромагнитный (стальной) цилиндр. При этом магнитная индукция (а следовательно, и магнитный поток) возрастает и становится равной = μ, где μ — магнитная проницаемость стали, а — индукция магнитного поля в вакууме (в воздухе). Увеличение магнитного потока, пронизывающего рамку, приводит к увеличению скорости изменения магнитного потока, а значит, и к возрастанию индуцируемой ЭДС.

Электромагнит (или магнит), создающий магнитное поле, называется индуктором, рамка (виток), в которой наводится ЭДС, — якорем. В простейшем генераторе, рассмотренном нами, индуктор неподвижен, поэтому называется статором, а якорь вращается, поэтому называется ротором.

Промышленный генератор

Устройство промышленного генератора переменного тока значительно сложнее рассмотренной выше модели. Во-первых, с клемм генератора нужно снимать достаточно высокое напряжение. Поэтому вместо одного витка необходимо использовать множество витков, соединенных между собой. Во-вторых, при помощи подвижных контактов (щеток и колец) практически невозможно отводить от генератора ток высокого напряжения и сколько-нибудь значительной мощности из-за сильного искрения в подвижных контактах.

По этой причине во всех промышленных генераторах переменного тока обмотку якоря, в которой наводится ЭДС, делают неподвижной. Ее укладывают в пазах внутренней полости статора (рис. 3.1, а). Статор генератора собирается из листовой стали для устранения токов Фуко. Индуктор (электромагнит) в таком генераторе вращается, являясь ротором. Один из типов ротора генератора показан на рисунке 3.1, б.

На магнитные полюсы ротора надета обмотка (обмотка возбуждения), по которой пропускается постоянный ток. Этот ток подводится к обмотке возбуждения через щетки и кольца от специального генератора постоянного тока — возбудителя. Якорь возбудителя расположен на одном валу с ротором генератора переменного тока. Однако в последнее время чаще всего постоянный ток в обмотку возбуждения (ротора) подается из статорной обмотки этого же генератора через выпрямитель. Возбудитель тогда не нужен. Сердечник ротора тоже набирается из листовой стали для борьбы с вихревыми токами.

На рисунке 3.1, в показана полная схема генератора переменного тока. При равномерном вращении ротора с помощью какого-нибудь двигателя вместе с ним вращается и создаваемое им магнитное поле. Линии индукции этого поля будут пересекать проводники, вложенные в пазы статора, и индуцировать в них ЭДС, изменяющуюся по гармоническому закону:

Многополюсные генераторы переменного тока

Если ротор генератора имеет одну пару полюсов (см. рис. 3.1, 6), то частота ЭДС, индуцируемой в генераторе, оказывается равной частоте вращения ротора, так как один оборот ротора соответствует одному периоду индуцируемой ЭДС. Для получения ЭДС с частотой v = 50 Гц двигатель, приводящий в движение ротор генератора с одной парой полюсов, должен вращаться с частотой 50 с -1 . Некоторые двигатели (например, водяные турбины) не могут развивать такие скорости вращения. Поэтому, кроме генераторов с одной парой полюсов, изготавливаются многополюсные генераторы, у которых ротор имеет несколько пар полюсов. В этом случае частота наведенной в генераторе ЭДС равна

где р — число пар полюсов ротора генератора, а n — частота его вращения.

Роторы генераторов, установленных на тепловых электростанциях, имеют одну пару полюсов. Такие генераторы (турбогенераторы) называются быст,роходными. Для получения стандартной частоты в 50 Гц такой ротор должен совершать 3000 оборотов в минуту. Эти роторы имеют цилиндрическую форму. Обмотка возбуждения уложена в пазы вдоль образующих цилиндра и хорошо закреплена.

Яков Кузнецов/ автор статьи

Приветствую! Я являюсь руководителем данного проекта и занимаюсь его наполнением. Здесь я стараюсь собирать и публиковать максимально полный и интересный контент на темы связанные ремонтом автомобилей и подбором для них запасных частей. Уверен вы найдете для себя немало полезной информации. С уважением, Яков Кузнецов.

Понравилась статья? Поделиться с друзьями:
NEVINKA-INFO.RU
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: