Управляемый блокинг генератор схема

Блокинг генератор: принцип работы Устройства этого типа используются для создания сигналов с большой скважностью, повторяющихся редко. В них используется трансформатор, который включён в цепь

Управляемый блокинг генератор схема

Блокинг генератор: принцип работы

Устройства этого типа используются для создания сигналов с большой скважностью, повторяющихся редко. В них используется трансформатор, который включён в цепь обратной связи. Наличие гальванической развязки на выходе позволяет формировать высоковольтные импульсы. Эта особенность применяется для питания блоков строчной развёртки, катушек «Тесла».

Как выглядит блокинг генератор

Простую схему блокинг генератора можно собрать без затруднений в домашних условиях.

Принцип работы

Разобраться с функционированием блокинг генератора поможет схема, изображённая ниже.

Принципиальная схема типового генератора

В следующем перечне приведены основные этапы работы:

  • После подачи напряжения через резистор R1 происходит зарядка конденсатора C Время завершения этого процесса определяется параметрами данных элементов.

Величину тока ограничивает сопротивление цепи, а напряжение на конденсаторных клеммах не успевает стать максимальным.

  • Как только оно достигло определённой величины, транзистор начнёт открываться. Ток начинает проходить по цепи: обмотка трансформатора – коллектор – эмиттер. На этом этапе, напряжение почти мгновенно становится максимальным, а ток увеличивается относительно медленно.
  • Он индуцирует ЭДС в обмотке трансформатора, соединённой с базой, что ещё больше увеличивает напряжение и открывает транзистор. Этот процесс завершается при насыщении сердечника трансформатора (материал не способен проводить магнитное поле определённой интенсивности). Также он прекратится при увеличении тока базы, до порога насыщения полупроводникового прибора.
  • Транзистор закрывается. Начинается зарядка конденсатора C Индуктивность обмотки трансформатора образует ЭДС с направлением, противоположным первоначальному. Это ускоряет закрытие транзистора.

Принцип работы блокинг генератора проще понять с помощью временных диаграмм, которые иллюстрируют изменение электрических параметров в отдельных частях схемы.

Диаграммы токов и напряжений

Эти рисунки необходимо изучать совместно со следующим чертежом, на котором изображена другая принципиальная схема блокинг генератора.

Схема блокинг генератора

На рисунке выше не приведена определённая нагрузка (обозначение Rн). Диод выполняет демпфирующие функции. Он предотвращает броски напряжения, способные повредить транзистор.

Описанные выше этапы хорошо видны на диаграммах. Ниже отмечены особенности, которые характерны для второй схемы:

  • Комбинацией t0 отмечен момент, когда напряжение на базе транзистора недостаточно для его открытия.
  • Временной отрезок t0 – t1 обозначает период постепенного открытия транзистора. В конечной точке насыщение произошло, поэтому изменение тока в базе не оказывает влияние на форму импульса.
  • Однако разряд конденсатора происходит. Поэтому происходит постепенное уменьшение тока базы.
  • Так как нагрузка на коллекторе обладает индуктивными характеристиками, ток Ic не уменьшается. Продолжительность этого периода определяется параметрами сердечника трансформатора.
  • С точки t2 начинается срез импульса. Ток, созданный индукцией, уменьшается, что провоцирует постепенное закрытие транзисторного ключа. На рисунках видно, когда появляется ток в обратном направлении. Этот процесс интенсифицирует разряд конденсатора. Скорость закрытия транзистора увеличивается, и срез получается крутым (образуется за малое время).
  • Точкой t3 обозначен момент полного закрытия затвора транзистора. После него допустимо появление колебательных процессов. Для их блокировки в данной схеме установлен диод.

Расчёт

Принцип работы блокинг генератора понятен. Ниже приведён расчёт, который поможет правильно выбрать транзистор второй принципиальной схемы.

Для примера использованы следующие исходные параметры:

  • частота (Ч) – 40 кГц;
  • скважность (С) – 0,25;
  • амплитуда (АМ) – 6 V;
  • сопротивление Rнг (нагрузки) – 30 Ом;
  • напряжения на выходе источника питания (НП) – 300 V.

Допустимое напряжение базы-коллектора должно быть от 1,5 до 2 раз больше, чем НП. Для этого примера – от 450 до 600 V.

Ток коллектора (Iк) определяют по формуле:

Iк должен быть равен или больше чем ((3…5)*АМ*КТФ)/ Rнг.

КТФ – это коэффициент, который учитывает особенности трансформации энергии (коллекторная – нагрузочная обмотки):

Таким образом, допустимый ток коллектора должен быть больше следующих величин:

((3…5)*6*0,024)/ 30 = 0,0144…0,024.

Максимальная частота (Чмакс, кГц) рассчитывается по следующей формуле:

Чмакс≥(5…8) * Ч = (5…8) * 40 = 200…320.

На основании полученных данных определяют тип транзистора.

Параметры подходящего условного прибора:

  • максимальное напряжение коллектор-база (НКБ) – 620 V;
  • максимальное напряжение база-эмиттер (НБЭ) – 8 V$
  • максимальный ток коллектора (Iк) – 0,03 А;
  • ток коллектор-база (Iкб) – 12 мкА;
  • максимальная частота (Чмакс) – 1000 кГц;
  • сопротивление базы (Rб) – 250 Ом.

Расчёт и практика позволяют собрать блокинг генератор своими руками

Чтобы создать блокинг генератор правильно, необходимо знать теорию и практику, уметь сделать расчёт.

Генератор на полевом транзисторе

Принцип работы этого устройства не отличается от рассмотренных выше вариантов. Но в схему внесены изменения, которые существенно повышают эффективность использования электроэнергии, надёжность и долговечность.

Схема блокинг генератора на полевом транзисторе

Рекомендации для правильной сборки изделия:

  • Указанные на чертеже отечественные транзисторы и диоды можно заменить аналогичными импортными полупроводниковыми приборами с подходящими электрическими характеристиками.
  • Сопротивление R2 подбирают так, чтобы на C1 напряжение в режиме холостого хода не превышало уровень 450 V. Такая настройка предотвратит пробой полупроводникового перехода транзистора VT
  • Во избежание повреждения устройства, его нельзя включать без нагрузки.
  • Сопротивление R6 выполняет защитные функции. Его наличие позволяет отключать генератор от сети при разомкнутой цепи прерывателя S

Видео. Блокинг генератор своими руками

Одной из самых простых схем повышающих напряжение преобразователей является схема блокинг-генератора. Понимание принципов работы позволит без ошибок изготовить генератор с применением других схемотехнических решений.

Блокинг-генератор

В этой статье я поведаю вам о том, что такое блокинг-генератор.

Блокинг-генератор — это генератор импульсов сравнительно небольшой длительности и большого периода. Он работает благодаря трансформаторной обратной связи. Из-за простоты блокинг-генератор широко применяют в компактных преобразователях напряжения (например в каждой второй схеме электронной зажигалки можно встретить эту схему).

Вот это блокинг-генератор(одна из многих вариаций этой схемы):

Как видите, он реально прост в сборке. Самая сложная часть в нем — это трансформатор.Но обо всем по порядку.

1) Принцип работы

Сначала обмотка 2 работает как «резистор», т.е. через нее и резистор протекает ток, который начинает открывать транзистор.Открывание транзистора приводит к появлению тока в обмотке 1, а это в свою очередь приводит к появлению напряжения на обмотке 2, т.е. напряжение на базе транзистора увеличивается еще, он открывается еще больше, и так происходит до тех пор, пока сердечник или транзистор не войдет в насыщение. Когда это произошло, ток через обмотку 1 начинает уменьшаться, следовательно напряжение на обмотке 2 меняет полярность, что приводит к закрыванию транзистора.Все, цикл замкнулся!

2) Детали

Трансформатор обмотка 1 обычно в 2 раза больше обмотки 2, а число витков и диаметр провода подбираются в зависимости от напряжения на обмотке 3 и тока через нее.

Резистор обычно берут в пределах 1кОм — 4,7кОм.

Транзистор подойдет почти любой.

3) Тест

Сначала соберем базовую схему генератора. Трансформатор вот такой от балласта энергосберегающей лампы:

На нем я намотал сначала обмотку 2 (18 витков проводом 0,4мм)

Изолировал ее (подойдет обычная изолента)

А потом намотал и обмотку 1 (36 витков тем же проводом, что и 2-ую)

И наконец, вставил сердечник и зафиксировал его той же изолентой

На этом трансформатор готов.

Транзистор я выбрал мощный: кт805, потому что в обмотке всего 36 витков не самого тонкого провода(малое сопротивление).

Читайте также  Электродвигатель из генератора ваз схема

Вот что у меня в итоге получилось:

Питание, как вы поняли, я буду брать от кроны.

Итак, с транзистором кт805, резистором 2,2кОм и обмоткой 1 в 2 раза больше обмотки 2, осциллограмма напряжения между коллектором и эмиттером выглядит так:

Амплитуда 60В, частота около 170кГц.

Теперь поставим резистор на 4,7кОм. Осциллограмма выглядит так:

Амплитуда около 10В, частота такая же.

Поставим теперь резистор 1кОм:

Амплитуда 120В, частота около 140кГц.

Теперь поставим обратно резистор 2,2кОм, и поменяем местами обмотки:

Амплитуда 80В, частота около 250кГц.

4) Вывод

Чем больше коэффициент обратной связи, тем быстрее нарастает сигнал, и частота выше.(чем меньше резистор, и больше соотношение число витков обмотки 2/число витков обмотки 1, тем больше коэффициент ОС).Еще на ОС влияет коэффициент усиления транзистора.

5) Практическая польза

Вы наверняка заметили, что я ни слова не сказал про обмотку 3. Она нужна для того, чтобы снять выходное напряжение.

Давайте посмотрим что будет, если намотать в обмотку 3 100 витков провода 0,08мм:

Сначала нам, конечно, нужно домотать трансформатор. Изолируем в прошлом последний слой:

Теперь наматываем 100 витков провода 0,08. Собираем сердечник. НА ВЫХОД ЦЕПЛЯЕМ ДИОД (можно любой с обратным напряжением не менее 200В. Например я взял дешевый и распространенный 1n4007). Спаиваем схему:

Диод нужен для отсекания отрицательных выбросов. Смотрим осциллограмму на выходе:

Постоянная составляющая 50В, импульсы амплитудой 50В. Чтобы убрать импульсную составляющую, поставим конденсатор на выходе. Подойдет 0,1мкФ:

Постоянное напряжение амплитудой 100В.

Небольшие колебания амплитудой 50мВ.

И наконец, полная схема:

Если генерации нет, впаяйте параллельно резистору конденсатор на пару микрофарад.

ElectronicsBlog

Обучающие статьи по электронике

Блокинг-генератор. Расчёт блокинг-генератора

Всем доброго времени суток! В прошлой статье я рассказал о мультивибраторах, которые предназначены для генерирования прямоугольных импульсов. Но для этой, же цели применяются и другой тип генератора, который называется блокинг-генератором. Вообще же блокинг-генератор – это регенеративное устройство (генератор импульсов), основанное на однокаскадном усилителе, обратная связь в котором создаётся за счёт импульсного трансформатора.

Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.

Основное предназначение блокинг-генераторов заключается в создании мощных коротких импульсов с крутыми фронтами и большой скважностью. В настоящее время они используются в импульсных блоках питания в качестве задающих генераторов

Так же как и мультивибратор, блокинг-генератор может работать в следующих режимах: автоколебательном, ждущем, синхронизации и деления частоты, но наиболее распространенным являются автоколебательный и ждущий режимы.

Автоколебательный блокинг-генератор

Как говорилось выше, автоколебательный блокинг-генератор является наиболее распространённым. Давайте рассмотрим его устройство и принцип работы на основе простейшей схемы, которая изображена ниже


Простейшая схема автоколебательного блокинг-генератора.

Простейший блокинг-генератор состоит из транзистора VT1 по схеме с общим эмиттером, трансформатора обратной связи Т1, демпфирующей цепи в виде диода VD1, времязадающей цепочки R2C1, базового резистора R1 и сопротивления нагрузки Rн.

Рассмотрим работу блокинг-генератора на основе временных диаграмм его работы, которые представлены ниже


Временные диаграммы работы блокинг-генератора.

Первая стадия (формирование фронта импульса) начинается в момент времени t0, то есть в момент включения питания либо по окончании периода предыдущего импульса. В этот момент транзистор оказывается заперт, а конденсатор С1 начинает заряжаться через резистор R2. По мере заряда конденсатора С1 увеличивается напряжение UBE на базе транзистора VT1, что приводит к постепенному открытию транзистора и возрастанию коллекторного тока IC. Возрастающий ток коллектора приводит к формированию ЭДС в трансформаторе и на его зажимах формируется возрастающее напряжение и ток пропорционально току коллектора транзистора VT1. Данная стадия заканчивается в момент времени t1, когда транзистор перешёл полностью в режим насыщения.

Вторая стадия (формирование вершины импульса) начинается в момент времени t1. После того как транзистор VT1 перешёл в режим насыщения на него уже мало влияет ток протекающий через базу транзистора, поэтому нарастание амплитуды импульса прекращается и начинает формироваться плоская вершина импульса. В данный период времени напряжение на зажимах трансформатора практически не изменяется, поэтому напряжение на коллекторе не изменяется, но так как происходит разряд конденсатора С1 уменьшается напряжение на базе транзистора VT1, а следовательно и ток базы Ib. По мере уменьшения тока базы Ib начинает уменьшаться ток коллектора IC, но вследствие индуктивного характера коллекторной нагрузки, начинает увеличиваться ток намагничивания трансформатора, а, следовательно, и коллекторный ток транзистора VT1, в результате напряжение на коллекторе остаётся постоянным некоторое время, которое зависит от параметров трансформатора Т1.

Третья стадия (формирование среза импульса) начинается в момент времени t2. В это время ток подмагничивания уменьшается и транзистор VT1 начинает закрываться под воздействием уменьшающегося тока базы Ib, вследствие разряда конденсатора С1. Когда транзистор полностью закроется коллекторный ток уменьшится практически до нуля и потенциал на выводах трансформатора Т1 также уменьшится, но вследствие этого в обмотках трансформатора возникнет ток обратный току коллектора IC и соответственно току базы Ib, что приведёт к ещё быстрейшему разряду конденсатора и образованию отрицательного всплеска напряжения на базе. Отрицательный импульс напряжения на базе транзистора VT1 ещё быстрее разрядит конденсатор, что уменьшит продолжительность среза импульса по сравнению с фронтом.

Четвёртая стадия (восстановление) начинается в момент времени t3. В это время транзистор находится в полностью закрытом состоянии. В этот период времени происходит рассеивание энергии в конденсаторе и трансформаторе, запасённой в третьей стадии работы блокинг-генератора. В этот период времени в трансформаторе могут возникать некоторые колебательные процессы (изменение напряжения до уровня UK max), что в общем случае нежелательны, поэтому для предотвращения этого параллельно коллекторной обмотке трансформатора включают различные демпфирующие цепи, в данном случае эту роль выполняет диод VD1.

Расчёт блокинг-генератора в автоколебательном режиме

Как любая электронная схема параметры работы блокинг-генератора полностью зависят от величин элементов составляющих схему, поэтому для расчёта необходимо задаться параметрами схемы.

Для расчёта блокинг-генератора обычно задаются следующими выходными характеристиками схемы: амплитуда импульсов Um, период прохождения импульсов Т, длительность импульса τi, сопротивление нагрузки RH.

Так как в настоящее время блокинг-генераторы очень часто используют в качестве задающих генераторов импульсных блоков питания, то для примера рассчитаем простейшую схему, на основе которой можно создать импульсный блок питания.

Зададим следующие параметры для расчёта: частота прохождения импульсов F = 50 кГц, скважность импульсов Q = 0,3, амплитуда выходных импульсов Um = 5 В, сопротивление нагрузки RH = 25 Ом, напряжение питания схемы ЕК = 310 В (выпрямленное сетевое напряжение).

1.Первым этапом расчёта является определение типа транзистора, как основного элемента схемы. Транзистор выбирается по следующим параметрам: максимально допустимое напряжение UCBmax, максимально допустимый ток коллектора ICmax и предельная частота fh21e.

где nH — коэффициент трансформации из коллекторной обмотки в обмотку нагрузки.

Примем IC = 0,02 А

Данным параметрам удовлетворяет транзистор MJE13001 со следующими характеристиками:

    • тип транзистора: NPN;
    • UCBmax = 600 В;
    • UBЕmax = 7 В;
    • ICmax = 0,2 А;
    • ICBO = 10 мкА;
    • fh21e = 8 МГц;
    • h21e = 5…30;
    • rb ≈ 200 Ом.

2.Определим величину сопротивления R1

Примем значение R1 = 390 Ом.

3.Рассчитаем параметры импульсного трансформатора. Коэффициент трансформации для выходной обмотки nH

Читайте также  Эквивалентный электрический генератор схема

Коэффициент трансформации для обмотки в цепи базы nB

где Ub – напряжение на базе транзистора VT1.

Выберем UB = 5 В. Тогда

Индуктивность коллекторной обмотки трансформатора

где ti – длительность импульса;

R’H – приведённое сопротивление нагрузки;

r’b – приведённое к коллекторной нагрузке сопротивление базы.

Определим длительность импульса и приведённые сопротивления

где rb – внутреннее объемное сопротивление базы. Тогда

Тогда индуктивность первичной обмотки будет равна

4.Определим величину сопротивления R2 и емкость конденсатора С1. Ёмкость конденсатора С1 определится из следующего условия

Примем С1 = 12 нФ
Сопротивление резистора R2

Примем R2 = 62 кОм.

5.В коллекторную цепь транзистора необходимо включать демпфирующую цепочку. Она позволяет ограничить всплески импульсов на трансформаторе, вследствие чего уменьшаются импульсные помехи и вероятность пробоя транзистора. В данном случае применена простейшая демпфирующая цепь в виде диода VD1, который должен удовлетворять следующим условиям

Данным параметрам удовлетворяет диод типа 1N4004.

Более подробно о демпфирующих цепях я расскажу, когда будем рассматривать индуктивные элементы и импульсные источники питания.

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

Управляемый блокинг генератор схема

_________________
Мудрость(Опыт и выдержка) приходит с годами.
Все Ваши беды и проблемы, от недостатка знаний.
Умный и у дурака научится, а дураку и ..
Алберт Ейнштейн не поможет и ВВП не спасет. и МЧС опаздает
и таки теперь Дураки и Толерасты умирают по пятницам!

_________________
Кто замазался в МЯВЕ, как отмываться будете?
«Йухан, Тор! Вы — на бой!» (Reverse)

JLCPCB, всего $2 за прототип печатной платы! Цвет — любой!

Зарегистрируйтесь и получите два купона по 5$ каждый:https://jlcpcb.com/cwc

Есть схема для питания светодиода от одной батарейки:

Подскажите, можно ли так сделать питание от двух батареек последовательно? Чтобы уменьшить ток потребления от одной батарейки (так батарейка дольше прослужит).
Дело в том что напряжение светодиоду достаточно примерно 2,8 вольта, а новые батарейки дают 3,2 v и разряжаются до 1,5 v. Будет ли в этом случае работать блокинг-генератор и насколько эффективно?

_________________
() Паяю только медным жалом.
_/_ . . А не вступить ли мне в секту любителей «TS100»?

Сборка печатных плат от $30 + БЕСПЛАТНАЯ доставка по всему миру + трафарет

Я делал по вот такой схеме.

Транзистор использовал германиевый — ГТ311И.
Его измеренный коэффициент усиления (h21э) около 40.
Светодиоды начинают светиться при 0.28 В, потребляемый от батарейки ток при этом = 3 мА.
0.28 В — 3.00 мА
0.50 В — 17.9 мА.
0.75 В — 31.0 мА.
1.00 В — 42.3 мА.
1.25 В — 51.7 мА.
1.50 В — 59.2 мА.
Пробовал КТ315Б, но ему нужно для начала работы около 0.4-0.45 В. Германиевый транзистор в этом плане более подходящий.

В испытаниях вместо батарейки использовался блок питания.
Резистор 680 Ом. Определил сопротивление методом подбора — установил 1.5 В на БП и уменьшал сопротивление, до срыва генерации.
После этого немного добавил сопротивления до устойчивой работы. Получилась максимальная яркость при минимальном для нее потреблении энергии.

Трансформатор намотал на первом попавшемся ферритовом кольце (примерно 21x12x6, точно не замерил до намотки) проводом 0.35 мм, в два провода, виток к витку до заполнения (

50 витков первичная и столько же вторичная обмотки).
L1 = 1477 мкГн.
L2 = 1477 мкГн.

Добавил еще диод Шоттки (SS24 — Multicomp Диод Шоттки, 2 А, 40 В, SMB) и конденсатор 470 мкФх35В (см. на схеме).

Поставил батарейку «GP Super» с U = 1.12 В, ток КЗ не помню, около 0.3-0.4 А.
Проработал фонарик 62 часа на этой, уже дохленькой, батарейке.
В конце напряжение на батарейке было U = 0.249 В. Еле тлеет.
Очень неплохо. Я его выключил, напряжение на батарейке начало повышаться (до 0.26-0.27 В), включил — он загорелся и напряжение сразу стало падать.
Даже на 0.25 В он уверенно зажигается. Отлично!

Приглашаем всех желающих 13 октября 2021 г. посетить вебинар, посвященный искусственному интеллекту, машинному обучению и решениям для их реализации от Microchip. Современные среды для глубинного обучения нейронных сетей позволяют без детального изучения предмета развернуть искусственную нейронную сеть (ANN) не только на производительных микропроцессорах и ПЛИС, но и на 32-битных микроконтроллерах. А благодаря широкому портфолио Microchip, включающему в себя диапазон компонентов от микроконтроллеров и датчиков до ПЛИС, средств скоростной передачи и хранения информации, возможно решить весь спектр задач, возникающий при обучении, верификации и развёртывании модели ANN.

Управляемый блокинг генератор схема

Блокинг-генератор представляет собой однокаскадный релаксационный генератор кратковременных импульсов с сильной индуктивной положительной обратной связью, создаваемой импульсным трансформатором. Вырабатываемые блокинг-генератором импульсы имеют большую крутизну фронта и среза и по форме близки к прямоугольным. Длительность импульсов может быть в пределах от нескольких десятков нс до нескольких сотен мкс. Обычно блокинг-генератор работает в режиме большой скважности, т. е. длительность импульсов много меньше периода их повторения. Скважность может быть от нескольких сотен до десятков тысяч. Транзистор, на котором собран блокинг-генератор, открывается только на время генерирования импульса, а остальное время закрыт. Поэтому при большой скважности время, в течении которого транзистор открыт, много меньше времени, в течении которого он закрыт. Тепловой режим транзистора зависит от средней мощности, рассеиваемой на коллекторе. Благодаря большой скважности в блокинг-генераторе можно получить очень большую мощность во время импульсов малой и средней мощности.

При большой скважности блокинг-генератор работает весьма экономично, так как транзистор потребляет энергию от источника питания только в течении небольшого времени формирования импульса. Так же, как и мультивибратор, блокинг-генератор может работать в автоколебательном, ждущем режиме и режиме синхронизации.

Блокинг-генераторы могут быть собраны на транзисторах, включенных по схеме с ОЭ или по схеме с ОБ. Схему с ОЭ применяют чаще, так как она позволяет получить лучшую форму генерируемых импульсов (меньшую длительность фронта), хотя схема с ОБ более стабильна по отношению к изменению параметров транзистора.

Схема блокинг-генератора показана на рисунке 3.3.1

Рисунок 3.3.1 Блокинг-генератор

Работу блокинг-генератора можно разделить на две стадии. В первой стадии, занимающей большую часть периода колебаний, транзистор закрыт, а во второй — транзистор открыт и происходит формирование импульса. Закрытое состояние транзистора в первой стадии поддерживается напряжением на кондере С1, заряженным током базы во время генерации предыдущего импульса. В первой стадии кондер медленно разряжается через большое сопротивление резика R1, создавая близкий к нулевому потенциал на базе транзистора VT1 и он остается закрытым.

Когда напряжение на базе достигнет порога открывания транзистора, он открывается и через коллекторную обмотку I трансформатора Т начинает протекать ток. При этом в базовой обмотке II индуктируется напряжение, полярность которого должна быть такой, чтобы оно создавало положительный потенциал на базе. Если обмотки I и II включены неправильно, то блокинг-генератор не будет генерировать. Значится, концы одной из обмоток, неважно какой, необходимо поменять местами.

Положительное напряжение, возникшее в базовой обмотке, приведет к дальнейшему увеличению коллекторного тока и тем самым — к дальнейшему увеличению положительного напряжения на базе и т. д. Развивается лавинообразный процесс увеличения коллекторного тока и напряжения на базе. При увеличении коллекторного тока происходит резкое падение напряжения на коллекторе.

Читайте также  Уаз 469 генератор схема подключения регулятора напряжения

Лавинообразный процесс открывания транзистора, называющийся прямым блокинг-процессом, происходит очень быстро, и поэтому вовремя его протекания напряжение на конденсаторе С1 и энергия магнитного поля в сердечнике практически не изменяются. В ходе этого процесса формируется фронт импульса. Процесс заканчивается переходом транзистора в режим насыщения, в котором транзистор утрачивает свои усилительные свойства, и в результате положительная обратная связь нарушается. Начинается этап формирования вершины импульса, во время которого рассасываются неосновные носители, накопленные в базе, и конденсаторе С1 заряжается базовым током.

Когда напряжение на базе постепенно приблизится к нулевому потенциалу, транзистор выходит из режима насыщения и тогда восстанавливаются его усилительные свойства. Уменьшение тока базы вызывает уменьшение тока коллектора. При этом в базовой обмотке индуктируется напряжение, отрицательное относительно базы, что вызывает ещё большее уменьшение тока коллектора и т. д. Образуется лавинообразный процесс, называемый обратным блокинг-процессом, в результате которого транзистор закрывается. Во время этого процесса формируется срез импульса.

Так как за время обратного блокинг-процесса напряжение на конденсаторе С1 и энергия магнитного поля в сердечнике не успевают измениться, то после закрывания транзистора положительное напряжение на коллекторе продолжает расти и образуется характерный для блокинг-генератора выброс напряжения, после которого могут образоваться паразитные колебания.

Обратный выброс напряжения значительно увеличивает напряжение на коллекторе закрытого транзистора, создавая опасность его пробоя. Отрицательные полупериоды паразитных колебаний, трансформируясь в базовую цепь, могут вызвать открывание транзистора, т. е. ложное срабатывание схемы.

Для ограничения обратного выброса включают «демпферный» диод VD1. Во время основного процесса диод закрыт и не влияет на работу блокинг-генератора. Диод VD1 включается параллельно коллекторной обмотке трансформатора.

Опосля всех этих процессов происходит восстановление схемы в исходное состояние. Это и будет промежуток между импульсами. Процесс, так сказать, молчания заключается в медленном разряде кондера С1 через резик R1. Напряжение на безе при этом медленно растет, пока не достигнет порога открывания транзистора и процесс повторяется.

Период следования импульсов можно приближенно определить по формуле:

TV Service

Ремонт ИП. Разделение на блокинг-генратор и схему управления
Источник питания на дискретных элементах (транзисторах) сконструированы схематично из двух частей: 1) автогенератор (блокинг-генератор), 2) устройство управления работой автогенератора (схема управления, ключ КУ и R огр. ).
M50.jpg
Автогенератор обеспечивает выработку импульсных напряжений на ТПИ, а устройство контролирует выходные напряжения источника питания и регулирует работу автогенератора при их изменении. Автогенератор обычно выполнен на:
а) мощном выходном транзисторе,
б) обмотке ТПИ работающей в режиме ПОС (Положительная обратная связь),
в)сопротивлении Rсв и ёмкости Cсв, последовательно включенных в цепь между обмоткой ПОС и базой транзистора
г) сопротивлении смещения Rсм, включенном между Uпит+ (выпрямленное сетевое напряжение) и базой транзистора.
д) диода, обеспечивающего постоянство отпирающего тока базы транзистора и шунтирующего RC цепочку в прямом направлении.
Обмотка ПОС, Rсв и Cсв формируют импульс определённой формы на базе транзистора. Диод формирует положительное смещение на базе транзистора, тем самым обеспечивая необходимый размах на обмотках ТПИ. Rсм служит для первичного запуска автогенератора.

Идея методики ремонта . Отключить блокинг генератор от схемы управления и части нагрузок на вторичных обмотках блока питания, проверить его работоспособность, если нужно отремонтировать, а затем в несколько приёмов подключать схему управления, нагрузки и т.д. при этом проверять работоспособность и при необходимости ремонтировать.
Но если просто включить автогенератор, то ИП сразу же пойдёт в «разнос» и ключевой транзистор выйдет из строя. Также при наличие дефектов в самом генераторе ключевой транзистор также может выйти из строя. Поэтому проверять нужно в двух режимах. Отключаются во вторичке ИП все нагрузки, за исключением диода и ёмкости по B+ и параллельной этой ёмкости подключается лампа обычно 220 вольт 60 ватт. Затем отключается схема управления и её питание и в разрыв между сетевым конденсатором и обмоткой ТПИ подключается лампа 220вольт 100ватт.
M50_2-2.jpg
Включается ИП. Обе лампы должны загореться и ИП не издавать посторонних звуков. Если не загорается лампа на B+ или ИП трещит, верещит и тп, то блокинг-генератор нужно ремонтировать. Если нормально, то восстанавливается место соединения конденсатор-ТПИ и лампа 100 ватт впаивается вместо предохранителя. Лампы желательно подбирать таким образом, чтобы на В+ напряжение было как можно ближе к оптимальному. На сеть комплект ламп 200ватт, 150ватт, 100 ватт, на нагрузку 100ватт, 60 ватт, 40 ватт. Если неизвестно какие ламы оптимальны для данного блока питания то лучше начинать со 100 ватт -сеть и 100 ватт-нагрузка. Увеличение мощности ламы в цепи сети-увеличивается В+, увеличение мощности в нагрузке-уменьшается.
После проверки работоспособности блокинг-генератора во втором режиме подключаются последовательно схема управления, нагрузки и т.д. при этом проверяется работоспособность и при необходимости ремонтируется.

Например, методика ремонта ИП шасси M50.

M50_PS.jpg
Напряжения на рабочем ИП: B+112вольт
Q801 К 5,1в, Э 9,7в, Б 9,2в,
Q802 К 0,0в, Э 2,0в, Б ?,
Q803 К 1,6в, Э 0,2в, Б 0,4в.

Начинается ремонт с проверки работоспособности автогенератора. Отпаиваются с одного конца следующие детали: R831, R832, R831A, L804 (вторичка ИП)D805,D807, C810 (устройство управления автогенератором). Впаиваются лампа 60 ватт параллельно С827 (В+) и между С806 и 3 ногой ТПИ 100ватт.

M50_PS_2-2.jpg
Включаем ИП в сеть. ИП должен работать без посторонних звуков (верещание, свист и тп). На В+ 64 вольта. Если нет запуска или посторонние звуки издаёт ТПИ , то блокинг-генератор нужно ремонтировать. Если нормально, то восстанавливается место соединения сетевой конденсатор-ТПИ и лампа 100 ватт впаивается вместо предохранителя. Проверяется работа блокинг-генератора в этом режиме. Должно быть на В+ 112 вольта на сетевом конденсаторе 82 вольт. Впаиваются обратно D805 и D807. Должны быть следующие напряжение
Q801 К 10,0в, Э 10,0в, Б 9,4в,
Q802, К 0,6в, Э 3,1в, Б 2,8в,
Q803 К 3,3в, Э 0,6в, Б 0,6в.
Если есть большие отклонения по напряжениям то ремонтируем устройство управления.
Если норма, то впаивается обратно С810, отпаивается лампа между сетевым конденсатором и ТПИ и восстанавливается в этом месте соединение. После включение напряжение на B+ должно быть +112вольт. При необходимости подрегулировать VR801. Затем отпаивается лампа с В+ и припаиваются обратно R831, R832, R831A, L804. И производится проверка работы телевизора, при необходимости ремонт других блоков.

Благодарю за помощь в подготовке материала viktor_ramb и Admin .

Яков Кузнецов/ автор статьи

Приветствую! Я являюсь руководителем данного проекта и занимаюсь его наполнением. Здесь я стараюсь собирать и публиковать максимально полный и интересный контент на темы связанные ремонтом автомобилей и подбором для них запасных частей. Уверен вы найдете для себя немало полезной информации. С уважением, Яков Кузнецов.

Понравилась статья? Поделиться с друзьями:
NEVINKA-INFO.RU
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: