Частотный генератор до 1 мгц

Проект недорогого генератора сигналов с частотой от 0 до 20 МГц

Частотный генератор до 1 мгц

Недорогой генератор сигналов с частотой от 0 до 20 МГц

Краткое содержание

В данном проекте описывается создание генератора сигналов специальной формы частотой выше 10 МГц и нелинейными искажениями до 1%.

Генератор создает: синусоидальный, треугольный, пилообразный или прямоугольный (импульсный) сигнал с нелинейными искажениями до 1%, с возможностью регулирования коэффициента заполнения импульсов, частотной модуляцией, имеет ТТЛ выход и и источник напряжения смещения. Также может выполнять функцию частотомера.

Главная микросхема MAX 038 снята с производства, но все еще продается в розничной сети.

Ниже прикреплен файл с приблизительным расчетом стоимости генератора.

Изготовление печатной платы

Подготовка печатной платы для трафаретной печати (сериграфия).

В проекте необходимо использовать двухстороннюю печатную плату. Выбранный нами процесс воздействия является химическим, поэтому сначала необходимо выполнить трафаретную печать макета с помощью лазерной установки, после чего подвергнуть химической обработке.

Сначала, мы конвертируем файлы макетов печатной схемы в формат JPG. Поскольку печатная плата двухсторонняя, мы будем ее переворачивать для того, чтобы выполнить трафаретную печать на обеих сторонах, поскольку мы будем использовать лазерную установку. По этой причине печатная плата должны иметь тот же размер, что и макет, или один из размеров (в зависимости от направления, в котором переворачивается печатная плата). После обрезки печатной платы по точным размерам (также можно подогнать размер макета с печатной платой) плата покрывается черной акриловой краской с помощью краскопульта (процедуру нанесения краски нужно выполнять одним днем ранее). Печатную плату необходимо поместить в левом верхнем углу (точка 0,0 лазерной установки должна совпадать с этой точкой), поскольку при перевороте печатной платы она должна находиться в том же месте для совпадения отверстий.

Размеры макета печатной схемы: 207,5 мм X 52 мм.

Изготовление печатной платы (сериграфия)

Сериграфия.

Лазерная установка будет убирать краску в тех частях, где это необходимо, для последующего воздействия кислотой.

Параметры данного процесса для лазерной установки указаны ниже:

Скорость 60. Мощность 30. Разрешение 1200, режим — mood Raster.

Данный процесс необходимо выполнить дважды на обеих сторонах печатной платы, чтобы корректно удалить краску.

Изготовление печатной платы (удаление следов краски)

Удаление следов краски.

После предыдущей процедуры, все еще остаются следы краски и они должны быть удалены перед процессом воздействия кислотой. После вынимания платы из лазерной установки мы должны подождать, по крайней мере, один час, чтобы печатная плата стала сухой. Для этого необходимо использовать мягкий растворитель, такой как скипидар или его заменитель.

После очистки печатной платы, она должна выглядеть, как на фото выше.

Изготовление печатной платы (воздействие кислотой)

Воздействие кислотой

Для данного процесса необходимо использовать кислоту и любой другой продукт, чтобы начать реакцию и ускорить сам процесс.

Для начала необходимо посетить магазин радиотоваров. Обычно, используемая кислота – это соляная кислота, разведенная с водой, продается в супермаркетах в отделе бытовых чистящих средств (хлористоводородная кислота). Большая концентрация ускоряет весь процесс. Как указывалось ранее, кроме кислоты нам необходимо использовать катализатор реакции. Для этой цели лучше всего подходит надборнокислый натрий, который продается в магазине радиотоваров; также необходимо использовать медицинский кислород с высокой концентрацией.

Изготовление печатной платы (удаление остатков краски)

Удаление остатков краски

После обработки кислотой, необходимо удалить остатки краски, используя сильный растворитель.

Электрическая схема генератора

Сборка генератора сигналов, часть 1

Сначала необходимо просверлить печатную плату и начать припаивать компоненты. Необходимо уделять внимание тому факту, что печатная плата двухсторонняя, поэтому нужно учитывать пайку сквозных отверстий и компонентов, которые необходимо запаивать с двух сторон платы.

Размещение компонентов показано на фотографиях.

Резистор номиналом 100 кОм, микросхема chip 1 (операционный усилитель), конденсаторы, соединенные с микросхемой chip 1 и потенциометр номиналом 220 кОм, составляют схему регулировки коэффициента заполнения импульсов, которая используется для наклона импульса. Данная схема может генерировать некоторые искажения, поэтому она присоединяется к земле через перемычку SW3.(типичное положение ON-ON). Можно не использовать перемычку, но не забудьте заземлить схему.

Сборка генератора сигналов, часть 2

Конденсатор емкостью 1мкФ неполярный (смотрите объяснение схемы, в пункте 3.2.1).

Коннектор выбора диапазона подключается к поворотному переключателю, в котором вывод коннектора подсоединен к резистору номиналом 4,7 кОм, который в свою очередь подсоединен к общему выводу (A) переключателя. Данный поворотный переключатель имеет четыре положения срабатывания и одно не подключенное (для выбора высокой частоты, конденсатор 27 пФ).

Как указано в описании схемы, паразитная емкость может ограничивать полосу пропускания. В данном проекте паразитные емкости возникают вследствие использования транзисторов, подсоединенных к конденсаторам, поэтому максимальная частота достигает значения 10 МГц, однако если вы хотите увеличить данный предел необходимо отсоединить конденсатор емкостью 27 пФ или использовать конденсатор меньшего номинала, чтобы достичь полосы пропускания выше 20 МГц.

Другой коннектор предназначен для выбора типа сигнала. Мы должны установить поворотный переключатель в 3-е положение переключения. Вывод 5V подсоединяется к общему выводу поворотного переключателя (A), а выводы A0 и A1 к выводам 1 и 2, оставляя вывод 3 не подключенным.

Микросхема MAX038 не выпускается, но ее все еще можно приобрести. Не рекомендуется покупать данную микросхему напрямую в Китае, поскольку она обычно приходит неисправная, хотя дешевая.

Сборка генератора сигналов, часть 3

BNC коннектор предназначен для ТТЛ выхода.

Перемычки p1 и p2 заменяют резисторы номиналом 47 Ом, поскольку BNC коннектор уже имеет данное электрическое сопротивление.

Положительный вывод электролитического конденсатора подключается к квадратной контактной площадке. Ее положение указано на фотографии.

Потенциометр номиналом 1 кОм предназначен для контроля выходного уровня сигнала.

Голубой потенциометр номиналом 4,7 кОм контролирует усиление для того, чтобы выбрать максимальный уровень выходного сигнала.

Сборка генератора сигналов, часть 4

Перемычка SW5 переключает напряжение смещения на ноль.

Потенциометр номиналом 4,7 кОм предназначен для изменения напряжения смещения.

Перемычка p3 и операционный усилитель работают как повторитель, для того, чтобы передавать сигналы в частотомер.

Сборка генератора сигналов, часть 5

На данной фотографии показано правильное расположение операционных усилителей.

Схема источника питания

Сборка источника питания, часть 1

Макет печатной схемы имеет следующие размеры: 63,4 мм X 7,9 мм.

Сборка источника питания, часть 2

Компоненты должны размещаться так, как указано на фотографии.

Сборка источника питания, часть 3

Непомеченные провода подают напряжение питания на светодиод, который сигнализирует о том, что генератор включен.

Корпус устройства

Корпус изготавливается из фанеры толщиной 5 мм.

Дизайн выполнен в программе Rhinoceros Зои Карбахо (Zoe Carbajo).

Нанесение рисунка выполняется с помощью лазерной установки.

Также в конструкцию необходимо добавить некоторые допуски, чтобы различные части идеально состыковались. Это зависит от выбранного типа материала.

Корпус подсоединяется к кусочку самоклеющейся алюминиевой фольги (обычно используется в сантехнике) для того, чтобы подсоединить к земле металлические компоненты потенциометров и переключателей. Далее заземление подсоединяется к алюминиевой фольге через FM вход BNC коннектора.

Установка печатной платы в корпус, часть 1

Плата подсоединяется к кусочку самоклеющейся алюминиевой фольги (обычно используется в сантехнике) для того, чтобы подсоединить к земле металлические компоненты потенциометров и переключателей. Далее заземление подсоединяется к алюминиевой фольге через FM вход BNC коннектора.

Установка печатной платы в корпус, часть 2

На фотографии выше показано размещение трансформатора и коннектора для провода питания и переключателя. Два последних компонента можно взять от компьютерного блока питания

Два вывода 0В от вторичной обмотки трансформатора должны соединяться вместе, поскольку нам нужен источник питания со средней точкой. Эту точку соединения необходимо подключит к земле (средний вывод коннектора). Оплетки проводов необходимо также подсоединить к земле блока питания.

Частотный генератор до 1 мгц

Простой аналоговый функциональный генератор (0,1 Гц — 8 МГц)

Автор: SSMix
Опубликовано 10.09.2012
Создано при помощи КотоРед.
Участник Конкурса «Поздравь Кота по-человечески 2012!»

Лет 10-15 назад у радиолюбителей заслуженной популярностью пользовалась микросхема MAX038, на основе которой можно было собрать несложный функциональный генератор, перекрывающий полосу частот 0,1 Гц – 20 МГц. Правда цена микросхемы сильно кусалась, а в последнее время достать MAX038 стало практически невозможно. Такая вот странная политика у производителя. Появившиеся клоны MAX038 имеют по сравнению с ней весьма скромные параметры. Так, у ICL8038 максимальная рабочая частота составляет 300 кГц, а у XR2206 – 1 МГц. Встречающиеся в радиолюбительской литературе схемы простых аналоговых функциональных генераторов также имеют максимальную частоту в несколько десятков, и очень редко, сотен кГц.

Поэтому в своё время автором для настройки разнообразных схем был разработан и изготовлен аналоговый функциональный генератор, формирующий сигналы синусоидальной, прямоугольной, треугольной формы и работающий в диапазоне частот от 0,1 Гц до 8 МГц.

Генератор имеет следующие параметры:

амплитуда выходных сигналов:

напряжение питание………………………….220 В, 50 Гц.

За основу разработанной схемы функционального генератора, приведенной ниже, была взята схема из [1]:

Генератор выполнен по классической схеме: интегратор + компаратор, только собран на высокочастотных компонентах.

Интегратор собран на ОУ DA1 AD8038AR, имеющем полосу пропускания 350 МГц и скорость нарастания выходного напряжения 425 В/мкс. На DD1.1, DD1.2 выполнен компаратор. Прямоугольные импульсы с выхода компаратора (выв. 6 DD1.2) поступают на инвертирующий вход интегратора. На VT1 выполнен эмиттерный повторитель, с которого снимаются импульсы треугольной формы, управляющие компаратором. Переключателем SA1 выбирают требуемый диапазон частот, потенциометр R1 служит для плавной регулировки частоты. Подстроечным резистором R15 устанавливается режим работы генератора и регулируется амплитуда треугольного напряжения. Подстроечным резистором R17 регулируется постоянная составляющая треугольного напряжения. С эмиттера VT1 напряжение треугольной формы поступает на переключатель SA2 и на формирователь синусоидального напряжения, выполненный на VT2, VD1, VD2. Подстроечным резистором R6 выставляются минимальные искажения синусоиды, а подстроечным резистором R12 регулируется симметрия синусоидального напряжения. С целью уменьшения коэффициента гармоник верхушки треугольного сигнала ограничиваются цепями VD3, R9, C14, C16 и VD4, R10, C15, C17. С буфера DD1.4 снимаются импульсы прямоугольной формы. Сигнал, выбранный переключателем SA2, подаётся на потенциометр R19 (амплитуда), а с него — на выходной усилитель DA5, выполненный на AD8038AR. На элементах R24, R25, SA3 выполнен выходной аттенюатор напряжения 1:1 / 1:10.

Читайте также  Что такое генератор знакомств

Для питания генератора использован классический трансформаторный источник с линейными стабилизаторами, формирующими напряжения +5В, ±6В и ±3 В.

Для индикации частоты генератора была использована часть схемы от уже готового частотомера, взятая из [2]:

На транзисторе VT3 выполнен усилитель-формирователь прямоугольных импульсов, с выхода которого сигнал поступает на вход микроконтроллера DD2 PIC16F84A. МК тактируется от кварцевого резонатора ZQ1 на 4 МГц. Кнопкой SB1 выбирается по кольцу цена младшего разряда 10, 1 или 0.1 Гц и соответствующее время измерения 0.1, 1 и 10 сек. В качестве индикатора использован WH1602D-TMI-CT с белыми символами на синем фоне. Правда угол обзора у этого индикатора оказался 6:00, что не соответствовало его установке в корпус с углом обзора 12:00. Но эта неприятность была устранена, как будет описано ниже. Резистор R31 задаёт ток подсветки, а резистором R28 регулируется оптимальная контрастность. Следует отметить, что программа для МК была написана автором [2] для индикаторов типа DV-16210, DV-16230, DV-16236, DV-16244, DV-16252 фирмы DataVision, у которых процедура начальной инициализации по-видимому не подходит к индикаторам WH1602 фирмы WinStar. В результате после сборки частотомера на индикатор ничего не выводилось. Других малогабаритных индикаторов в продаже на тот момент не было, поэтому пришлось вносить изменения в исходник программы частотомера. Попутно в ходе экспериментов была выявлена такая комбинация в процедуре инициализации, при которой двухстрочный дисплей с углом обзора 6:00 становился однострочным, причём достаточно комфортно читаемым при угле обзора 12:00. Выводимые в нижней строке надписи-подсказки о режиме работы частотомера стали не видны, но они особо и не нужны, т.к. дополнительные функции этого частотомера не использованы.

Конструктивно функциональный генератор выполнен на печатной плате из одностороннего фольгированного стеклотекстолита размерами 110х133 мм, разработанной под стандартный пластиковый корпус Z4. Индикатор установлен на палате вертикально на двух уголках. С основной платой он соединён при помощи шлейфа с разъёмом под IDC-16. Для соединения высокочастотных цепей в схеме использован тонкий экранированный кабель. Вот фото генератора со снятой верхней крышкой корпуса:

Перечень элементов и чертёж платы в Layout5 прилагаются.

После первого включения генератора необходимо проконтролировать питающие напряжения, а также установить подстроечным резистором R29 напряжение -3В на выходе DA7 LM337L. Резистором R28 устанавливается оптимальная контрастность индикатора. Для настройки генератора необходимо подключить осциллограф к его выходу, переключатель SA3 установить в положение 1:1, SA2 — в положение, соответствующее напряжению треугольной формы, SA1 – в положение 100…1000 Гц. Резистором R15 добиваются устойчивой генерации сигнала. Переместив движок резистора R1 в нижнее по схеме положение, подстроечным резистором R17 добиваются симметричности треугольного сигнала относительно нуля. Далее переключатель SA2 необходимо перевести в положение, соответствующее синусоидальной форме выходного сигнала, и подстроечными резисторами R12 и R6 добиться соответственно симметричности и минимальных искажений синусоиды.

Вот что получилось в итоге:

Треугольник 1 Мгц:

Треугольник 4 Мгц:

Следует отметить, что на частотах свыше 4 Мгц на треугольном и прямоугольном сигналах начинают наблюдаться искажения, связанные с недостаточной полосой пропускания выходного усилителя. При желании этот недостаток можно легко устранить, если перенести усилитель выходного каскада DA5 в цепь от истока VT2 к SA2, т.е. использовать его как усилитель синусоидального сигнала, а вместо выходного усилителя применить повторитель на ещё одном ОУ AD8038AR, пересчитав соответственно сопротивления делителей треугольного (R18, R36) и прямоугольного (R21, R35) сигналов на меньший коэффициент деления.

1) Широкодиапазонный функциональный генератор. А.Ишутинов. Радио №1/1987г.

2) Экономичный многофункциональный частотомер. А.Шарыпов. Радио №10-2002.

Генераторы функциональных сигналов для тестирования устройств: недорогие модели с Aliexpress

Бюджетные цифровые генераторы для проверки устройств, которые будут не только полезны в качестве хоббийного генератора для радиолюбителя, но и подойдут для профессионального тестирования и разработки компонентов. В подборке будут генераторы тестовых сигналов для проверки оборудования, телевизоров и мониторов, для управления двигателями (ШИМ), а также выскокочастотные генераторы, в том числе для радиосвязи, а также для модули DDS и ВЧ-генераторов для самостоятельной сборки.

С целью тестирования и проверки оборудования применяют различного вида сигналы нужной формы, частоты и скважности, амплитуды и т.п. Пример такого тестирования можно посмотреть в недавнем обзоре осциллографа Rubyster 1C15 с полосой до 110 МГц. Я использовал недорогой генератор JDS-2900 c диапазоном генерации до 60 МГц.

Начну, пожалуй, с одного из самых-самых бюджетных вариантов, а именно с генератора PWM (ШИМ) сигналов FNIRSI XY-PWM1, с диапазоном генерации сигналов от 1 Hz до 150 KHz. Скважность, длительность и период повторения импульсов регулируются. Также предусмотрен таймер на отключение генерации. Настраивать удобно кнопками с контролем по дисплею. Устройство реализовано на базе контроллера Nuvoton серии N76, так что вариант интересный.

Портативный функциональный генератор от Juntek — модель JDS2900-60М с диапазоном генерации 60 МГц. Представляет собой компактный цифровой двухканальный DDS генератор сигналов с выходом BNC (х2). Есть встроенный частотомер. Можно настроить сигнал под себя либо воспользоваться предустановленными (синус, меандр, пила). Что проверить таким? Да хоть новые модели осциллографов и мультиметров.

Простейшая модель для радиолюбителя, представляет собой DDS функциональный генератор сигналов на базе микроконтроллера. Устройство имеет частотный диапазон от 1 Гц- до 65534 Гц. Форму сигнала можно настроить: доступны синусоидальный, прямоугольный, треугольный сигналы на выходе. Фронты сигнала выдаёт чёткие. Большой диапазон регулировок и настроек. Выход — BNC разъемы. Провода и адаптеры для такого генератора можно изготовить самостоятельно. Такой генератор подойдет для тестирования и проверки аудиоустройств.

Отличный функциональный генератор сигналов произвольной формы от UNI-T. В лоте на выбор две модели: UNI-T UTG932 и UNI-T UTG962. Отличаются соответственно предельной частотой генерации: 30 МГц и 60 МГц соответственно. Обе модели двухканальные. Имеет большой экран и серьезный функционал, в том числе и изменение фазы. Внутри установлен прецизионный источник цифрового сигнала 200 Ms/s (14 bit DAC). Предусмотрен встроенный частотомер.

Если вы ищете совсем недорогой, но высокостабильный и, одновременно, высокочастотный генератор функциональных сигналов, то обратите внимание в сторону готовых модулей CJMCU-5351 на базе генератора Si5351/Si5351A. Представляет собой отдельный модуль для подключения к контроллеру по шине I2C, в зависимости от сигнала устанавливается выход. Тактовая частота микросхемы составляет 25 МГц, но в модуле предусмотрены умножители и делители частоты, реальный сигнал модно получить аж до 160 МГц. Минимальный — от 8 кГц. Подойдет и для Arduino, и для STM32, и для других отладочных плат. Модуль под пайку, в комплекте есть стандартная гребенка с шагом 2.54 мм. Выход ВЧ сделан с разъемами SMA-типа. Это самый бюджетный вариант такого плана.

Наверное, это самый недорогой генератор сигналов с возможностью получить синус/треугольник/квадратный на выходе. Продается в виде комплекта, который нужно будет собрать. В составе есть акриловый корпус и все необходимое. Микросхема XR2206 дает возможность генерировать тестовый сигнал в пределах 1 Гц-1 МГц. Можно регулировать выходную амплитуду в нужных пределах.

Удобный и недорогой вариант модуля-генератора импульсных сигналов, аналог такого же, что был в начале подборке. Представляет собой отдельный модуль без корпуса, со встроенным дисплеем и генератор сигналов PWM или импульсным сигналов. Можно устанавливать частоту импульсов, период повторения и скважность импульсов. Рабочий диапазон от 1Hz до 150Khz, пределы выходного напряжения от 3,3 V до 30 V.

Специальный модуль с тестовыми сигналами для VGA мониторов. Представляет собой небольшую плату со специализированой микросхемой. Питается от 7 V до 12 V (работает от любых блоков питания или батарейки типа «Крона» 9 V). Удобно для тестирования ЖК-дисплеев в ремонте или при покупке. Выдает несколько стандартных картинок для проверки матрицы.

Еще один недорогой модуль DDS генератора сигналов на основе AD9833. На этот раз характеристики чуть попроще, цена ниже. Также работает с микроконтроллерами Arduino и STM32. Удобный и недорогой способ собрать дома генератор сигналов с синусоидальным, прямоугольным, треугольным сигналом на выходе. Выход ВЧ сделан с разъемами SMA-типа.

Одна из самых лучших плат-генераторов HackRF с софтовым приемником (SDR). Может не просто принимать любой сигнал в диапазоне от 1 МГц до 6 ГГц, но и генерировать сигнал на антенну. Можно использовать в радиолюбительских целях, для исследований, для студенческого или кандидатского проекта. Фактически, это популярные RTL-SDR, но с расширенным диапазоном и возможностью передачи сигнала. По ссылке несколько вариантов комплектации, это один из самых доступных лотов на Алиэкспресс.

Очень простой генератор из ардуины.

  • Форумы
  • Мастерская
  • Проекты участников
  • Оборудование

ТехнарьКто

Иногда бывает нужно подать сигнал определённой частоты, а специального устройства под рукой нету. Благодаря появлению микроконтроллеров теперь можно при необходимости хоть на коленке в поле сделать генератор. Вот скетч для генератора с регулируемой частотой, пользуюсь давно и успешно.

Генератор частоты от 1 Гц до 8 000 000 Гц. Вырабатывает однополярный меандр со скважность 2. По русски это значит длительность импульса и длительность паузы между импульсами равны, а сигнал имеет прямоугольную форму.

Вопрос: Что такое генератор?
Ответ: Это устройство которое преобразует энергию источника питания в энергию выходных электрических импульсов заданной частоты и формы.

Вопрос: А мне то это зачем?
Ответ: Очень хороший вопрос, ответ на который Вы вряд ли найдете в интернете. Вы сможете проверить работоспособность усилителя. Проверить диапазон воспроизводимых усилителем частот. Проверить целостность динамика, даже без усилителя с помощью только этого генератора. Найти обрыв силового провода в проводке, обрыв телефонного провода, обрыв в электропроводке автомобиля. Правда кроме генератора нужен будет еще и детектор сигнала. Для поиска обрыва проводки генератор присоединяют к исследуемой линии, а частота генератора лежит в пределах килогерца. Поиск производится детектором. По резкому уменьшения громкости звука, определяется место разрыва. Генератор позволит проверить работу микропроцессора ардуины или PIC контроллера при использовании его как тактового. Можно сделать звуковую сирену с тональностью сигнала который Вам нравиться. Сделать передатчик с использованием генератора в качестве задающего несущую частоту. Настроить фильтр низкой частоты, настроить фильтр высокой частоты, настроить режекторный фильтр. Фильтры используют в цветомузыке, в каскадах радиоприемников, в импульсной технике для защиты от помех, для очистки информационного сигнала от сопутствующих работе помех. Подать сигнал низкой частоты на устройства работающие на шине I2C и посмотреть обмен информации хоть с помощью вольтметра. С помощью генератора можно измерять индуктивность и емкость с очень высокой точностью. Да и вообще сейчас трудно назвать современное электронное устройство в котором нет генератора и для быстрой проверки работы устройства не требовался бы внешний генератор, хотя бы такой. Кроме этого при использовании генератора показывающего все знаки неизменно возникнет вопрос, почему во всех генераторах частота немного отличается. Поэтому этот генератор позволит заинтересоваться вопросом точности и что же такое ppm, ppb зачем и когда это нужно.

Читайте также  Частота генератора первого шлейфа саут ц

Подначка: Да я программу генератора на компьютере запущу. Че мне заморачиватся.
Ответ: Программы генераторов на компьютере для звуковых карт ограничены звуковой частотой. Мне будет очень любопытно узнать, как вы с генерируете сигнал хотя бы в мегагерц 1 000 000 Гц с помощью звуковой карты. С помощью этого генератора — легко.

Теперь Вы знаете зачем нужен генератор. Практические примеры использования выходят за рамки данного сообщения. Здесь только про создание самого генератора.

Итак схема.

Я же обещал очень простой генератор

На выход сигнала можно смело цеплять динамик для проверки его работоспособности. Без конденсатора можно сразу подавать сигнал на микроконтроллеры и электронные схемы у которых 5V питание.

Из терминала послать требуемую частоту в герцах. Только цифру. В ответ в терминал будет выведена частота в герцах, а на выходе генератора появиться сигнал с частотой как в терминале.
Пример для частоты 200 кГц. В терминале набирал 200000

Пример для частоты 8 мегагерц. В терминале набирал 8000000

Меандр кривой из за малого частотного диапазона осциллографа. Но это совершенно другой вопрос.

Надо понимать, что выводимая в терминале частота будет отличаться от реальной. Выводимая в терминале частота была бы при идеальном кварце работающем точно на частоте 16 000 000 Гц. У ардуин такого не бывает. Если кому интересно, то могу написать о кварцевых резонаторах. Для понимания, почему в ардуино не бывает точных кварцев.

PS Поскольку в целом я далек от программирования но весьма не плохой электроник, вынужденный современностью разбираться в коде разных программ, то по большей части использую приборы которые кто то уже делал. Зачастую модифицирую, иногда и очень сильно, под свои потребности и использую. При этом считаю, что соблюдение авторства все равно должно быть. Код обычно беру из общедоступных источников, когда авторы сами выложили для использования другими. Поскольку найти конструкции бывает затруднительно, а при повторении конструкций бывают малопонятные особенности, о которых Вы можете и не найти информации, то считаю, что выложить и подробно описать для чего это надо и как заставить работать ту или иную конструкцию — это нормально.

Генераторы

Количество каналов: 2; Частотный диапазон ОТ: 1 мкГц; Частотный диапазон ДО: 20 МГц; Опорный генератор (погрешность установки частоты): ±2×10 -5 ; Выходной уровень (минимум): 1 мВпик-пик; Выходной уровень (максимум): 10 Впик-пик, Импульс- 2,5 Впик-пик; Выходной импеданс (Ом): 50; ЦАП (бит): 14; Память (СПФ): 16 кБ; Виды модуляции: AM, ЧМ, ФM, ЧМн, SUM, ШИМ, АМн, ФМн; ГКЧ: да; BURST Пакетный режим: да; Экран (см, разрешение): TFT, 480 х 272, 11 см; Особенности: Все выходы полностью гальванически развязаны. Встроенный усилитель до 20 Вт на нагрузке 8 Ом. Прямой цифровой синтез, разрешение по частоте 1 мкГц. Формы сигнала — стандартные (6 видов), произвольная форма (65 видов). Возможность редактирования СПФ без подключения к ПК. Встроенный частотомер до 150 МГц. Усиленная изоляция между выходами с поддержкой режима объединения с ИП постоянного тока (каскадное подключение) для увеличения амплитуды Uвых (AC-DC) до +42 В или -42 В. Программное обеспечение AWES для формирования сигналов произвольной формы.; Интерфейс: USB; Госреестр СИ: №78118-20 до 27.04.2025 г.

Количество каналов: 3; Частотный диапазон ОТ: 1мкГц; Частотный диапазон ДО: 60 МГц, Импульс- 25 МГц, ВЧ-выход- 320 МГц; Опорный генератор (погрешность установки частоты): ±2×10 -5 ; Выходной уровень (минимум): 1 мВпик-пик; Выходной уровень (максимум): 10 Впик-пик, Импульс- 2,5 Впик-пик, ВЧ-выход- 1 Впик-пик; Выходной импеданс (Ом): 50; ЦАП (бит): 14; Память (СПФ): 16 кБ; Виды модуляции: AM, ЧМ, ФM, ЧМн, SUM, ШИМ, АМн, ФМн; ГКЧ: да; BURST Пакетный режим: да; Экран (см, разрешение): TFT, 480 х 272, 11 см; Особенности: Все выходы полностью гальванически развязаны. Прямой цифровой синтез, разрешение по частоте 1 мкГц. Формы сигнала — стандартные (6 видов), произвольная форма (65 видов). Возможность редактирования СПФ без подключения к ПК. Встроенный частотомер до 150 МГц. Усиленная изоляция между выходами с поддержкой режима объединения с ИП постоянного тока (каскадное подключение) для увеличения амплитуды Uвых (AC-DC) до +42 В или -42 В. Программное обеспечение AWES для формирования сигналов произвольной формы.; Интерфейс: USB; Госреестр СИ: №78118-20 до 27.04.2025 г.

Количество каналов: 1; Частотный диапазон ОТ: 2 ГГц; Частотный диапазон ДО: 20 ГГц; Опорный генератор (погрешность установки частоты): ±2×10 -9 (опция ±5×10 -10 ); Выходной уровень (минимум): -15 дБм; Выходной уровень (максимум): 15 дБм; Выходной импеданс (Ом): 50; Виды модуляции: опции АМ, ЧМ, ФМ, ИМ; ГКЧ: да; Экран (см, разрешение): да; Особенности: MG3690C покрывает аудио, ВЧ, СВЧ, УВЧ, РЧ и микроволновые частоты в диапазоне от 0,1 Гц (опция) до 70 ГГц в комплектации с одним коаксиальным выходом и в диапазоне до 500 ГГц или выше при наличии внешних умножителей. MG3690C – идеальный источник сигналов с возможностью настройки для решения от простых до сложных задач, включая имитацию радара, замену LO и генерацию синхроимпульсов. MG3690C предлагает три уровня наилучших в классе характеристик фазового шума в ОБП -стандартный, ультра-низкий (опция) и фазовый шум уровня премиум (опция), а также полный набор возможностей модуляции.; Госреестр СИ: №45035-10 до 29.06.2025 г.

Количество каналов: 1; Частотный диапазон ОТ: 2 ГГц; Частотный диапазон ДО: 40 ГГц; Опорный генератор (погрешность установки частоты): ±2×10 -9 (опция ±5×10 -10 ); Выходной уровень (минимум): -15 дБм; Выходной уровень (максимум): 15 дБм; Выходной импеданс (Ом): 50; Виды модуляции: опции АМ, ЧМ, ФМ, ИМ; ГКЧ: да; Экран (см, разрешение): да; Особенности: MG3690C покрывает аудио, ВЧ, СВЧ, УВЧ, РЧ и микроволновые частоты в диапазоне от 0,1 Гц (опция) до 70 ГГц в комплектации с одним коаксиальным выходом и в диапазоне до 500 ГГц или выше при наличии внешних умножителей. MG3690C – идеальный источник сигналов с возможностью настройки для решения от простых до сложных задач, включая имитацию радара, замену LO и генерацию синхроимпульсов. MG3690C предлагает три уровня наилучших в классе характеристик фазового шума в ОБП -стандартный, ультра-низкий (опция) и фазовый шум уровня премиум (опция), а также полный набор возможностей модуляции.; Госреестр СИ: №45035-10 до 29.06.2025 г.

Генератор сигналов RFSG6

Количество каналов: 1; Частотный диапазон ОТ: 9 кГц; Частотный диапазон ДО: 6,1 ГГц; Опорный генератор (погрешность установки частоты): ±5×10 -7 ; Выходной уровень (минимум): -30 дБм, — 120 дБм — опция PE3; Выходной уровень (максимум): 20 дБм; Выходной импеданс (Ом): 50; Виды модуляции: АМ, ФМ, ЧМ, ИМ, ЛЧМ, импульсная модуляция с шириной импульса от 30 нс; ГКЧ: линейное, логарифмическое, случайное, по списку; Экран (см, разрешение): да; Особенности: Высокая выходная мощность, высокая скорость перестройки частоты — 20 мкс. Фазовый шум 10.05.2022 г.

Генератор импульсов АКИП-3301

Количество каналов: 1; Частотный диапазон ОТ: 0,1 мГц; Частотный диапазон ДО: 50 МГц; Опорный генератор (погрешность установки частоты): ±5×10 -5 ; Выходной уровень (минимум): 10 мВпик; Выходной уровень (максимум): 5 Впик; Выходной импеданс (Ом): 50; BURST Пакетный режим: да; Экран (см, разрешение): VFD 40 символов; Особенности: Прямой цифровой синтез (DDS). Режим одиночных и парных импульсов, регулируемая задержка между основным и синхроимпульсом. Регулировка смещения (±5 В). Период следования 20 нс. 10000 с. Длительность импульса и задержка 5 нс. 10000 с.; Интерфейс: опция — GPIB; Госреестр СИ: №68025-17 до 17.07.2022 г.

Генератор импульсов АКИП-3302

Количество каналов: 2; Частотный диапазон ОТ: 0,1 мГц; Частотный диапазон ДО: 50 МГц; Опорный генератор (погрешность установки частоты): ±5×10 -5 ; Выходной уровень (минимум): 10 мВпик; Выходной уровень (максимум): 5 Впик; Выходной импеданс (Ом): 50; BURST Пакетный режим: да; Экран (см, разрешение): VFD 40 символов; Особенности: Прямой цифровой синтез (DDS). Режим одиночных и парных импульсов, регулируемая задержка между основным и синхроимпульсом. Для двух каналов – независимая регулировка параметров. Регулировка смещения (±5 В). Период следования 20 нс. 10000 с. Длительность импульса и задержка 5 нс. 10000 с.; Интерфейс: опция — GPIB; Госреестр СИ: №68025-17 до 17.07.2022 г.

Генератор импульсов АКИП-3303

Количество каналов: 2; Частотный диапазон ОТ: 0,1 мГц; Частотный диапазон ДО: 50 МГц; Опорный генератор (погрешность установки частоты): ±5×10 -5 ; Выходной уровень (минимум): 10 мВпик; Выходной уровень (максимум): 5 Впик; Выходной импеданс (Ом): 50; BURST Пакетный режим: да; Экран (см, разрешение): ЖКИ 14,4 см; Особенности: Прямой цифровой синтез (DDS). Режим одиночных и парных импульсов, регулируемая задержка между основным и синхроимпульсом. Для двух каналов – независимая регулировка параметров. Регулировка смещения (±5 В). Период следования 20 нс. 10000 с. Длительность импульса и задержка 5 нс. 10000 с.; Интерфейс: RS-232 опция — GPIB; Госреестр СИ: №68025-17 до 17.07.2022 г.

Читайте также  Щетки генератора приора артикул

Генератор импульсов АКИП-3304

Количество каналов: 2; Частотный диапазон ОТ: 0,1 мГц; Частотный диапазон ДО: 50 МГц; Опорный генератор (погрешность установки частоты): ±5×10 -5 ; Выходной уровень (минимум): 10 мВпик; Выходной уровень (максимум): 5 Впик; Выходной импеданс (Ом): 50; BURST Пакетный режим: да; Экран (см, разрешение): ЖКИ 14,4 см; Особенности: Прямой цифровой синтез (DDS). Режим одиночных и парных импульсов, регулируемая задержка между основным и синхроимпульсом. Для двух каналов – независимая регулировка параметров. Регулировка смещения (±5 В). Период следования 20 нс. 10000 с. Длительность импульса и задержка 5 нс. 10000 с. Встроенный усилитель до 50 В.; Интерфейс: RS-232 опция — GPIB; Госреестр СИ: №68025-17 до 17.07.2022 г.

Генератор импульсов АКИП-3305

Количество каналов: 2; Частотный диапазон ОТ: 0,1 мГц; Частотный диапазон ДО: 50 МГц; Опорный генератор (погрешность установки частоты): ±5×10 -5 ; Выходной уровень (минимум): 10 мВпик; Выходной уровень (максимум): 5 Впик; Выходной импеданс (Ом): 50; BURST Пакетный режим: да; Экран (см, разрешение): ЖКИ 14,4 см; Особенности: Прямой цифровой синтез (DDS). Режим одиночных и парных импульсов, регулируемая задержка между основным и синхроимпульсом. Для двух каналов – независимая регулировка параметров. Регулировка смещения (±5 В). Период следования 20 нс. 10000 с. Длительность импульса и задержка 5 нс. 10000 с. Встроенный усилитель до 150 В.; Интерфейс: RS-232 опция — GPIB; Госреестр СИ: №68025-17 до 17.07.2022 г.

Генератор импульсов АКИП-3307

Количество каналов: 1; Частотный диапазон ОТ: 0,1 мГц; Частотный диапазон ДО: 50 МГц; Опорный генератор (погрешность установки частоты): ±5×10 -5 ; Выходной уровень (минимум): 50 мВпик-пик; Выходной уровень (максимум): 10 Впик-пик; Выходной импеданс (Ом): 50; BURST Пакетный режим: да; Экран (см, разрешение): ЖКИ 11 см; Особенности: Прямой цифровой синтез (DDS). Режимы формирования импульсов — отрицательная логика, положительная логика. Длительность импульса от 8 нс до 9999,5 с. Время нарастания от 5 нс. Регулировка смещения (±5 В).; Интерфейс: RS-232 опция — GPIB; Госреестр СИ: №68025-17 до 17.07.2022 г.

Количество каналов: 2; Частотный диапазон ОТ: 0,125 Гц; Частотный диапазон ДО: 125 МГц; Опорный генератор (погрешность установки частоты): ±5×10 -6 ; Выходной уровень (минимум): 10 мВпик-пик; Выходной уровень (максимум): 5 Впик-пик; Выходной импеданс (Ом): 50; BURST Пакетный режим: да; Экран (см, разрешение): Емкостной сенсорный ЖК 17,78 см; Особенности: Длительность фронта/среза — ≤100 пс Регулировка смещения ±2,5 В. Минимальная длительность импульса от 300 пс. Формирование — одиночного, парных импульсов, последовательности из 3-х и 4-х импульсов, последовательность тактовых импульсов (clock). Максимальная частота до 500 МГц (формирование в режиме «4 импульса»/quadruple). Опция — монтаж в 19” стойку, высота корпуса 3U.; Интерфейс: USB LAN; Госреестр СИ: №72919-18 до 26.10.2023 г.

Схемы генераторов высокой частоты

Предлагаемые генераторы высокой частоты предназначены для получения электрических колебаний в диапазоне частот от десятков кГц до десятков и даже сотен МГц. Такие генераторы, как правило, выполняют с использованием LC-колебательных контуров или кварцевых резонаторов, являющихся частотозадающими элементами. Принципиально схемы от этого существенно не изменяются, поэтому ниже будут рассмотрены LC-генераторы высокой частоты. Отметим, что в случае необходимости колебательные контуры в некоторых схемах генераторов (см., например, рис. 12.4, 12.5) могут быть без проблем заменены кварцевыми резонаторами.

Генераторы высокой частоты (рис. 12.1, 12.2) выполнены по традиционной и хорошо зарекомендовавшей себя на практике схеме «индуктивной трехточки». Они различаются наличием эмиттерной RC-цепочки, задающей режим работы транзистора (рис. 12.2) по постоянному току. Для создания обратной связи в генераторе от катушки индуктивности (рис. 12.1, 12.2) делают отвод (обычно от ее 1/3. 1/5 части, считая от заземленного вывода). Нестабильность работы генераторов высокой частоты на биполярных транзисторах обусловлена заметным шунтирующим влиянием самого транзистора на колебательный контур. При изменении температуры и/или напряжения питания свойства транзистора заметно изменяются, поэтому частота генерации «плавает». Для ослабления влияния транзистора на рабочую частоту генерации следует максимально ослабить связь колебательного контура с транзистором, до минимума уменьшив переходные емкости. Кроме того, на частоту генерации заметно влияет и изменение сопротивления нагрузки. Поэтому крайне необходимо между генератором и сопротивлением нагрузки включить эмиттерный (истоковый) повторитель.

Для питания генераторов следует использовать стабильные источники питания с малыми пульсациями напряжения.

Генераторы, выполненные на полевых транзисторах (рис. 12.3), обладают лучшими характеристиками.

Генераторы высокой частоты, собранные по схеме «емкостной трехточки» на биполярном и полевом транзисторах, показаны на рис. 12.4 и 12.5. Принципиально по своим характеристикам схемы «индуктивной» и «емкостной» трехточек не отличаются, однако в схеме «емкостной трехточки» не нужно делать лишний вывод у катушки индуктивности.

Во многих схемах генераторов (рис. 12.1 — 12.5 и другие схемы) выходной сигнал может сниматься непосредственно с колебательного контура через конденсатор небольшой емкости или через согласующую катушку индуктивной связи, а также с неза-земленных по переменному току электродов активного элемента (транзистора). При этом следует учитывать, что дополнительная нагрузка колебательного контура меняет его характеристики и рабочую частоту. Иногда это свойство используют «во благо» — для целей измерения различных физико-химических величин, контроля технологических параметров.

На рис. 12.6 показана схема несколько видоизмененного варианта ВЧ генератора — «емкостной трехточки». Глубину положительной обратной связи и оптимальные условия для возбуждения генератора подбирают с помощью емкостных элементов схемы.

Схема генератора, показанная на рис. 12.7, работоспособна в широком диапазоне значений индуктивности катушки колебательного контура (от 200 мкГн до 2 Гн) [Р 7/90-68]. Такой генератор можно использовать в качестве широкодиапазонного высокочастотного генератора сигналов или в качестве измерительного преобразователя электрических и неэлектрических величин в частоту, а также в схеме измерения индуктивностей.

Генераторы на активных элементах с N-образной ВАХ (туннельные диоды, лямбда-диоды и их аналоги) содержат обычно источник тока, активный элемент и частотозадающий элемент (LC-контур) с параллельным или последовательным включением. На рис. 12.8 показана схема ВЧ генератора на элементе с лям-бдаобразной вольт-амперной характеристикой. Управление его частотой осуществляется за счет изменения динамической емкости транзисторов при изменении протекающего через них тока.

Светодиод НИ стабилизирует рабочую точку и индицирует включенное состояние генератора.

Генератор на аналоге лямбда-диода, выполненный на полевых транзисторах, и со стабилизацией рабочей точки аналогом стабилитрона — светодиодом, показан на рис. 12.9. Устройство работает до частоты 1 МГц и выше при использовании указанных на схеме транзисторов.

На рис. 12.10 в порядке сопоставления схем по степени их сложности приведена практическая схема ВЧ генератора на туннельном диоде. В качестве полупроводникового низковольтного стабилизатора напряжения использован прямосме-щенный переход высокочастотного германиевого диода. Этот генератор потенциально способен работать в области наиболее высоких частот — до нескольких ГГц.

Высокочастотный , по схеме очень напоминающий рис. 12.7, но выполненный с использованием полевого транзистора, показан на рис. 12.11 [Рл 7/97-34].

Прототипом RC-генератора, показанного на рис. 11.18 является схема генератора на рис. 12.12 [F 9/71-171; 3/85-131].

Этот генератор отличает высокая стабильность частоты, способность работать в широком диапазоне изменения параметров частотозадающих элементов. Для снижения влияния нагрузки на рабочую частоту генератора в схему введен дополнительный каскад — эмиттерный повторитель, выполненный на биполярном транзисторе VT3. Генератор способен работать до частот свыше 150 МГц.

Из числа всевозможных схем генераторов особо следует выделить генераторы с ударным возбуждением. Их работа основана на периодическом возбуждении колебательного контура (либо иного резонирующего элемента) мощным коротким импульсом тока. В результате «электронного удара» в возбужденном таким образом колебательном контуре возникают постепенно затухающие по амплитуде периодические колебания синусоидальной формы. Затухание колебаний по амплитуде обусловлено необратимыми потерями энергии в колебательном контуре. Скорость затухания колебаний определяется добротностью (качеством) колебательного контура. Выходной высокочастотный сигнал будет стабилен по амплитуде, если импульсы возбуждения следуют с высокой частотой. Этот тип генераторов является наиболее древним в ряду рассматриваемых и известен с XIX века.

Практическая схема генератора высокочастотных колебаний ударного возбуждения показана на рис. 12.13 [Р 9/76-52; 3/77-53]. Импульсы ударного возбуждения подаются на колебательный контур L1C1 через диод VD1 от низкочастотного генератора, например, мультивибратора, или иного генератора прямоугольных импульсов (ГПИ), рассмотренных ранее в главах 7 и 8. Большим преимуществом генераторов ударного возбуждения является то, что они работают с использованием колебательных контуров практически любого вида и любой резонансной частоты.

Еще один вид генераторов — генераторы шума, схемы которых показаны на рис. 12.14 и 12.15.

Такие генераторы широко используют для настройки различных радиоэлектронных схем. Генерируемые такими устройствами сигналы занимают исключительно широкую полосу частот — от единиц Гц до сотен МГц. Для генерации шума используют обратносмещенные переходы полупроводниковых приборов, работающих в граничных условиях лавинного пробоя. Для этого могут быть использованы переходы транзисторов (рис. 12.14) [Рл 2/98-37] или стабилитроны (рис. 12.15) [Р 1/69-37]. Чтобы настроить режим, при котором напряжение генерируемых шумов максимально, регулируют рабочий ток через активный элемент (рис. 12.15).

Отметим, что для генерации шума можно использовать и резисторы, совмещенные с многокаскадными усилителями низкой частоты, сверхрегенеративные приемники и др. элементы. Для получения максимальной амплитуды шумового напряжения необходим, как правило, индивидуальный подбор наиболее шумящего элемента.

Для того чтобы создать узкополосные генераторы шума, на выходе схемы генератора может быть включен LC- или RC-фильтр.

Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год

Яков Кузнецов/ автор статьи

Приветствую! Я являюсь руководителем данного проекта и занимаюсь его наполнением. Здесь я стараюсь собирать и публиковать максимально полный и интересный контент на темы связанные ремонтом автомобилей и подбором для них запасных частей. Уверен вы найдете для себя немало полезной информации. С уважением, Яков Кузнецов.

Понравилась статья? Поделиться с друзьями:
NEVINKA-INFO.RU
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: