Устройство для параллельной работы генераторов

На электрических станциях всегда устанавливают несколько турбо- или гидроагрегатов, которые работают совместно в параллельном соединении на общие шины генераторного или повышенного напряжени

Устройство для параллельной работы генераторов

Параллельная работа генераторов

На электрических станциях всегда устанавливают несколько турбо- или гидроагрегатов, которые работают совместно в параллельном соединении на общие шины генераторного или повышенного напряжения.

В результате этого выработка электроэнергии на электростанциях производится несколькими параллельно работающими генераторами и такая совместная их работа имеет много ценных преимуществ.

Параллельная работа генераторов:

1. повышает гибкость эксплуатации оборудования электростанций и подстанций, облегчает проведение планово-предупредительных ремонтов генераторов, основного оборудования и соответствующих РУ при минимуме необходимого резерва.

2. повышает экономичность работы электростанции, так как дает возможность распределять наиболее рационально суточный график нагрузки между агрегатами, чем достигается наилучшее использование мощности и повышается к. п. д.; на ГЭС дает возможность наиболее полно использовать мощность водяного потока в период паводков и летней и зимней межени;

3. повышает надежность и бесперебойность работы электростанций и электроснабжения потребителей.

Рис. 1. Принципиальная схема параллельной работы генераторов

Для увеличения производства и улучшения распределения электроэнергии многие электростанции объединяются для параллельной работы в мощные энергетические системы.

В нормальном режиме эксплуатации генераторы присоединены на общие шины (генераторного или повышенного напряжения) и вращаются синхронно. Их роторы вращаются с одинаковой угловой электрической скоростью

При параллельной работе мгновенные значения напряжений на выводах обоих генераторов должны быть равны по величине и обратны по знаку.

Для подключения генератора на параллельную работу с другим генератором (или с сетью) нужно произвести его синхронизацию, т. е. отрегулировать скорость вращения и возбуждение подключаемого генератора в соответствии с работающим.

Генераторы, работающий и включаемый на параллельную работу, должны быть сфазированы, т. е. иметь одинаковый порядок чередования фаз.

Как видно из рис. 1, при параллельной работе генераторы по отношению друг к другу включены навстречу, т. е. их напряжения U1 и U2 на выключателе будут прямо противоположны. По отношению же к нагрузке генераторы работают согласно, т. е. их напряжения U1 и U2 совпадают. Эти условия параллельной работы генераторов отражены на диаграммах рис. 2.

Рис. 2. Условия включения генераторов на параллельную работу. Напряжения генераторов равны по величине и противоположны по фазе.

Существуют два метода синхронизации генераторов: точная синхронизация и грубая синхронизация, или самосинхронизация.

Условия точной синхронизации генераторов.

При точной синхронизации возбужденный генератор подключают к сети (шинам) выключателем В (рис. 1) при достижении условий синхронизма — равенства мгновенных значений их напряжений U1 = U2

При раздельной работе генераторов их мгновенные фазные напряжения будут соответственно равны:

Отсюда вытекают условия, необходимые для параллельного включения генераторов. Для включаемого и работающего генераторов требуется:

1. равенство действующих значений напряжений U1 = U2

2. равенство угловых частот ω1 = ω2 или f1 = f2

3. совпадение напряжений по фазе ψ1 = ψ2 или Θ= ψ1 -ψ2 =0.

Точное выполнение этих требований создает идеальные условия, которые характеризуются тем, что в момент включения генератора уравнительный ток статора будет равен нулю. Однако следует отметить, что выполнение условий точной синхронизации требует тщательной подгонки сравниваемых величин напряжения частоты и фазных углов напряжения генераторов.

В связи с этим на практике невозможно полностью выполнить идеальные условия синхронизации; они выполняются приближенно, с некоторыми небольшими отклонениями. При невыполнении одного из указанных выше условий, когда U2, на выводах разомкнутого выключателя связи В будет действовать разность напряжений:

Рис. 3. Векторные диаграммы для случаев отклонения от условий точной синхронизации: а — Действующие напряжения генераторов не равны; б — угловые частоты не равны.

При включении выключателя под действием этой разности потенциалов в цепи потечет уравнительный ток, периодическая составляющая которого в начальный момент будет

Рассмотрим два случая отклонения от условий точной синхронизации, показанные на диаграмме (рис. 3):

1. действующие напряжения генераторов U1 и U2 не равны, остальные условия соблюдаются;

2. генераторы имеют одинаковые напряжения, но вращаются с разными скоростями, т. е. их угловые частоты ω1 и ω2 не равны, и имеет место несовпадение напряжений по фазе.

Как видно из диаграммы на рис. 3, а, неравенство действующих значений напряжений U1 и U2 обусловливает возникновение уравнительного тока I”ур, который будет почти чисто индуктивным, так как активные сопротивления генераторов и соединительных проводников сети весьма малы и ими пренебрегают. Этот ток не создает толчков активной мощности, а, следовательно, и механических напряжений в деталях генератора и турбины. В связи с этим при включении генераторов на параллельную работу разность напряжений может быть допущена до 5—10%, а в аварийных случаях — до 20%.

При равенстве действующих значений напряжений U1 = U2, но при расхождении угловых частот Δω=ω1 – ω2 ≠ 0 или Δf=f1 – f2 ≠ 0 происходит смещение векторов напряжений генераторов и сети (или 2-го генератора) на некоторый угол Θ, меняющийся во времени. Напряжения генераторов U1 и U2 в рассматриваемом случае будут отличаться по фазе не на угол 180°, а на угол 180°—Θ (рис. 3, б).

На выводах разомкнутого выключателя В, между точками а и б, будет действовать разность напряжений ΔU. Как и в предыдущем случае, наличие напряжения может быть установлено при помощи электрической лампочки, а действующую величину этого напряжения можно измерить вольтметром, включенным между точками а и б.

Если замкнуть выключатель В, то под действием разности напряжений ΔU возникает уравнительный ток I”ур, который в отношении U2 будет почти чисто активным и при включении генераторов на параллельную работу вызовет сотрясения и механические напряжения в валах и других деталях генератора и турбины.

При ω1 ≠ ω2 синхронизация получается вполне удовлетворительной, если скольжение s0

Вследствие инерционности регуляторов турбины нельзя осуществить длительное равенство угловых частот ω1 = ω2, и угол Θ между векторами напряжений, характеризующий относительное положение обмоток статора и ротора генераторов, не остается постоянным, а непрерывно меняется; его мгновенное значение будет Θ=Δωt.

На векторной диаграмме (рис. 4) последнее обстоятельство выразится в том, что с изменением угла сдвига фаз в между векторами напряжений U1 и U2 будет также изменяться ΔU. Разность напряжений при этом ΔU называется напряжением биений.

Рис. 4. Векторная диаграмма синхронизации генераторов при неравенстве частот.

Мгновенное значение напряжений биений Δu представляет собой разность мгновенных значений напряжений u1 и u2 генераторов (рис. 5).

Предположим, что достигнуто равенство действующих значений U1=U2, фазные углы начала отсчета времени ψ1 и ψ2 тоже равны.

Тогда можно написать

Кривая изменения напряжения биений показана на рис.5.

Напряжение биений гармонически изменяется с частотой, равной полусумме сравниваемых частот, и с амплитудой, изменяющейся во времени в зависимости от угла сдвига фаз Θ:

Из векторной диаграммы рис. 4 для некоторого определенного значения угла Θ можно найти действующее значение напряжения биений:

Рис. 5. Кривые напряжения биений.

Учитывая изменение угла Θ с течением времени, можно написать выражение для огибающей по амплитудам напряжения биений, которое дает изменение амплитуд напряжения во времени (пунктирная кривая на рис. 5, б):

Как видно из векторной диаграммы на рис. 4 и последнего уравнения, амплитуда напряжения биений ΔU изменяется от 0 до 2Um. Наибольшая величина ΔU будет в тот момент, когда векторы напряжения U1 и U2 (рис. 4) совпадут по фазе и угол Θ = π, а наименьшая — когда эти напряжения будут отличаться по фазе на 180° и угол Θ = 0. Период кривой биений равен

При включении генератора на параллельную работу с мощной системой значение хс системы мало и им можно пренебречь (хс ≈ 0), тогда уравнительный ток

В случае неблагоприятного включения в момент Θ = π ударный ток в обмотке статора включаемого генератора может достигнуть двойного значения ударного тока трехфазного короткого замыкания на выводах генератора.

Активная составляющая уравнительного тока, как видно из векторной диаграммы на рис. 4, равна

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Параллельная работа генераторов, способы синхронизации

Под параллельной работой двух или более генераторов подразумевается их параллельное подключение между собой — объединение в единую автономную сеть для постоянного электроснабжения потребителей электроэнергии.

Данный способ в электроснабжении нередко используется для организации электропитания ответственных потребителей. Помимо очевидного увеличения надежности и бесперебойности электроснабжения можно отметить следующие преимущества его применения:

— возможность компенсации роста мощности в часы с наибольшим потреблением электроэнергии; — более равномерное распределение нагрузки на генераторы (особенно актуально для часов пик); — бесперебойность электроснабжения при необходимости проведения плановых и аварийных ремонтов оборудования.

Параллельное включение генератора в сеть предполагает, как и в случае параллельной работе трансформаторов обязательное выполнение определенных условий:

Равенство частот напряжения сети и подключаемого к ней генератора; зависит от частоты вращения электрической машины. Большая разность определяет больший избыток кинетической энергии при включении его в сеть.

При недопустимо большой разнице значений частот (более 0,2 Гц) успешная синхронизация может быть не достигнута; подключаемый генератор может не втянуться в синхронизм.

Равенство напряжений включаемого и работающего генератора (или сети). Успешная синхронизация может быть выполнена при расхождении значений в 5-10%. Регулируется изменением тока в обмотке возбуждения.

Соответствие порядка следования фаз (“фазировка”) включаемого генератора и сети (или рабочего генератора).

Способы синхронизации. Выполнение перечисленных условий может быть реализовано точной синхронизацией или самосинхронизацией.

Первый способ как правило, выполняется в автоматическом или полуавтоматическом режиме — с использованием специальной аппаратуры — синхроскопа. определяющего необходимый момент для параллельного включения добавочного генератора, находящегося в рабочем состоянии.

Высокая точность соответствия состояния параметров подключаемого генератора перечисленным выше требованиям в момент его включения в сеть делает этот способ наиболее предпочтительным в использовании.

Синхронизация генераторов мощностью до 15 МВт может быть выполнена и в ручном режиме; в этом случае должна быть предусмотрена блокировка от несинхронного включения.

К серьезным недостаткам данного способа синхронизации можно отнести относительную его сложность; поэтому, ввод генератора в работу в этом случае должен производиться только высококвалифицированным персоналом. Кроме того, нельзя не учитывать длительность процесса; в аварийных ситуациях, отличающихся нестабильностью частоты, он может занять несколько десятков минут.

Самосинхронизация — способ заключается в использовании невозбужденного вспомогательного генератора с включенным автоматом гашения поля с частотой вращения близкой к частоте вращения генератора сети.

При скольжении в 2-3% производится включение генератора с одновременной подачей возбуждения, после чего происходит постепенное втягивание генератора в синхронизм. Во избежание возникновения недопустимых толчков тока, остаточное напряжение на выводах статорной обмотки должно быть не более 0,3Uном.

Главное преимущество включения генератора без возбуждения в сеть — отсутствие необходимости подгонки рабочих параметров как при описанном выше способе точной синхронизации.

Однако, необходимо учесть и недостаток данного способа: процесс сопровождается снижением напряжения на выводах, что в некоторых случаях может стать причиной нарушения нормального режима работы оборудования.

Читайте также  Что делает генератор в мотоцикле

Кроме того, нельзя не отметить некоторые ограничения использования метода — невозможности использования параллельной работы генератора в качестве источника резервного электроснабжения.

Параллельная работа генераторов дизельных электростанций (ДЭС)

Параллельная работа генераторов ДЭС обеспечивает повышение надежности электроснабжения потребителей и экономичности эксплуатации ДЭС, а также уменьшает отклонения частоты и напряжения при колебаниях нагрузки. Поэтому для большинства генераторов ДЭС предусмотрен режим параллельной работы как с внешней электросистемой, так и с другими ДЭС.

Параллельная работа генераторов требует выполнения специальных условий, необходимых для безаварийного включения генераторов ДЭС на параллельную работу, и устойчивой, надежной работы нескольких ДЭС в условиях эксплуатации.

Синхронизация генераторов при включении на параллельную работу

Имеются два способа синхронизации генераторов: точная синхронизация и самосинхронизация.

При включении генератора способом точной синхронизации ток синхронизации в момент включения генератора на параллельную работу с сетью (или другим генератором) должен быть минимальным. Для выполнения этого условия необходимо фазоуказателем провести фазировку генератора с сетью, обеспечить равенство действующих значений напряжения генератора и сети (по вольтметру), добиться равенства частот генератора и сети (по частотомеру) и произвести включение генератора в момент совпадения векторов фазных напряжений генератора и сети (с помощью синхронизирующих ламп).

Для автоматического включения генератора способом точной, синхронизации в агрегатах АСДА-100 (см.рис.1) использован блок синхронизатора. После пуска и вывода электроагрегата на подсинхронную частоту вращения блок контроля напряжения и частоты вращения выдает сигнал на возбуждение синхронного генератора.

Рис.1. Принципиальная схема дизель-генератора АСДА-100
с полупроводниковыми блоками автоматики

Схема блока синхронизатора производит автоматическую подгонку напряжения и контроль разности напряжений, подгонку частоты и контроль разности частот генератора, включаемого на параллельную работу, и сети, а после выполнения заданных условий синхронизации дает сигнал на включение генератора на параллельную работу с сетью.

Способ самосинхронизации

При включении способом самосинхронизации невозбужденный генератор (выключатель гашения поля АГП включен) раскручивается дизелем до номинальной частоты вращения (с отклонением ±2%) и включается в сеть автоматическим выключателем генератора. Затем подается возбуждение (АГП отключен) и генератор втягивается в синхронизм.

В этом случае до подключения генератора в сеть на его обмотках имеется лишь небольшое остаточное напряжение. Поэтому бросок тока, возникающий в статоре в момент синхронизации, будет незначителен. После подачи возбуждения на генератор по мере нарастания магнитного потока ротора появляется синхронный момент, под воздействием которого генератор входит в синхронизм.

Этот способ прост, быстр, исключает возможность ошибочного включения генератора и обеспечивает автоматизацию процесса синхронизации. Поэтому он нашел широкое применение на ДЭС. Существует множество ручных, полуавтоматических и автоматических схем и устройств самосинхронизации.

На ДЭС серии АС применена схема автоматической самосинхронизации с использованием реле времени синхронизации РВС.

Мощность генераторов ДЭС, включаемых на параллельную работу способом самосинхронизации, не играет существенной роли. На ДЭС разрешается подключать на параллельную работу этим способом даже генератор, мощность которого превышает мощность всех уже работающих параллельно генераторов других ДЭС. Кратковременное снижение напряжения при включении быстро восстанавливается и не нарушает работу потребителей. Включать генератор рекомендуется при частоте вращения несколько большей синхронной (1%), чтобы генератор сразу же принял активную нагрузку. Подача возбуждения должна осуществляться без задержки вслед за подключением генератора к шинам, так как в противном случае генератор может не втянуться в синхронизм.

Рекомендуется включать генератор при скольжении 1-2 Гц, так как при этом сокращается время втягивания генератора в синхронизм. Шунтовой реостат в цепи возбуждения возбудителя (сопротивление уставки напряжения) необходимо устанавливать в положение, обеспечивающее надежное самовозбуждение и подъем напряжения на генераторе до нормального при его холостом ходе.

Для включения способом самосинхронизации вручную или полуавтоматически нужно, чтобы генератор перед включением работал без возбуждения (АГП отключен). Реостат в цепи возбуждения или сопротивление уставки напряжения должны обеспечивать подъем напряжения на генераторе при холостом ходе до номинального.

Агрегат разворачивают, плавно подводя к синхронной частоте вращения (ускорение 0,5-1,0 Гц/с).

Генератор подключают к шинам при погашенном поле генератора (показания вольтметров статора и возбудителя равны нулю) и разности частот по частотомеру 1-2 Гц.

Затем генератор возбуждают (включают АГП) и поднимают напряжение на нем (автоматически и вручную). После этого генератор втягивается в синхронизм и набирает нагрузку.

Выпадение генератора из синхронизма при параллельной работе.

Резкое изменение и нарушение режимов работы электрической сети и генераторов, а также нарушение условий синхронизации могут вызвать выпадение из синхронизма отдельных генераторов ДЭС. О выпадении из синхронизма генераторов можно судить по показаниям приборов: амперметры в цепи статора показывают значительные толчки тока (стрелки резко колеблются до упора), вольтметры — сильно колеблющееся пониженное напряжение, показания ваттметра меняются от начала шкалы до ее конца.

Определить выпадение из синхронизма можно и по пульсирующему в такт с качанием приборов гулу генератора. При выпадении генератора из синхронизма необходимо попытаться восстановить его синхронную работу, максимально увеличивая возбуждение и уменьшая активную нагрузку, а при невозможности восстановления синхронной работы следует отключить генератор от сети.

Распределение активной мощности ДЭС, работающей параллельно с другими ДЭС или промышленной сетью.

После включения генератора на параллельную работу с сетью осуществляют прием нагрузки на включенный генератор с помощью увеличения подачи топлива у первичного двигателя включаемого генератора.

Для устойчивой и надежной параллельной работы генераторов необходимо, чтобы активная мощность, отдаваемая работающими генераторами, распределялась между ними пропорционально их номинальным мощностям, так как в противном случае один из параллельно работающих генераторов окажется недогруженным, а другие перегруженными, что вызовет выход последних из строя или выпадение из синхронизма.

Пропорциональное распределение активной мощности между генераторами производится только в том случае, если приводные двигатели имеют одинаковый наклон характеристик, выражающих зависимость частоты вращения дизеля n от активной мощности Р на валу, т.е. одинаковый статизм.

При неодинаковом статизме привода и одинаковой частоте вращения параллельно работающих генераторов распределение активной мощности между ними не будет пропорционально их номинальным мощностям, как показано на рис.2. Чтобы этого не происходило, статизм двигателя заранее регулируют настройкой регулятора подачи топлива.

Рис.2. Распределение активной мощности между параллельно работающими
генераторами 1 и 2 при неравенстве статизма их двигателей.

n — частота вращения генератора;
Р — активная мощность генератора.

Обычно дизельные двигатели имеют статизм 3%, что позволяет обеспечить неравномерность распределения активной мощности между параллельно работающими генераторами не более 10% мощности меньшего генератора.

Для перераспределения активной мощности между параллельно работающими ДЭС необходимо изменить подачу топлива в дизель, например увеличить подачу топлива в дизель генератора, на который переводят активную мощность, и уменьшить подачу топлива в дизель генератора, с которого снимают активную мощность.

Распределение реактивной мощности между параллельно работающими генераторами и сетью.

При эксплуатации возможны следующие случаи параллельной работы генератора: с другими генераторами, имеющими принципиально отличную систему возбуждения (например машинную или статическую); с другими такими же генераторами или генераторами, имеющими аналогичную по принципу действия и схеме систему возбуждения; с промышленной сетью.

В первом случае для пропорционального распределения реактивной мощности между генераторами необходимо, чтобы напряжение каждого из генераторов при автономной работе несколько уменьшалось с увеличением реактивной нагрузки, а статизм по реактивной мощности генераторов был одинаков.

Статизмом по реактивной мощности называют относительное изменение напряжения генератора при увеличении его реактивной мощности. При неодинаковом статизме по реактивной мощности и одинаковом напряжении параллельно работающих генераторов распределение реактивной мощности между ними будет происходить непропорционально их номинальным мощностям (рис.3).

Рис.3. Распределение реактивной мощности между
параллельно работающими генераторами 1 и 2,
имеющими неодинаковый статизм по реактивной мощности.

U — напряжение генератора;
Q — реактивная мощность генератора.

Для удовлетворительной параллельной работы генераторы должны иметь статизм по реактивной мощности 3-4%. Системы возбуждения многих генераторов не обеспечивают необходимого статизма по реактивной мощности и поэтому имеют специальное устройство параллельной работы, работа которого рассмотрена ниже.

Во втором случае пропорциональное распределение реактивных мощностей между параллельно работающими генераторами может быть достигнуто двумя путями: обеспечением одинакового их статизма по реактивной мощности, т.е. аналогично случаю параллельной работы разнотипных генераторов, или с помощью уравнительной связи обмоток возбуждения, что обеспечит самобаланс системы по реактивной мощности.

При параллельной работе со статизмом по реактивной мощности в результате увеличения реактивной нагрузки от 0 до 100% номинальной уменьшение напряжения на зажимах параллельно работающих генераторов достигает 4% начального значения, что не всегда приемлемо.

При параллельной работе с уравнительными соединениями без статизма по реактивной мощности точность поддержания напряжения на зажимах параллельно работающих генераторов будет такой же, как и при их автономной работе.

Для обеспечения удовлетворительной параллельной работы генераторы тоже должны иметь устройства па¬раллельной работы.

Если генератор, работающий параллельно с промышленной сетью, необходимо нагрузить реактивной мощностью, то нужно увеличить его ток возбуждения. Изменение тока возбуждения генератора, работающего параллельно с сетью, достигается изменением сопротивления уставки напряжения. Устойчивая параллельная работа генератора с сетью возможна лишь при наличии статизма по реактивной мощности.

Статическая система возбуждения обеспечивает увеличение тока возбуждения генератора с ростом его нагрузки. При параллельной работе напряжения генератора и сети равны, поэтому при отсутствии статизма по реактивной мощности с увеличением последней будет увеличиваться ток возбуждения генератора. Увеличение тока возбуждения генератора, работающего параллельно с сетью, приведет в свою очередь к дальнейшему росту его активной мощности. Этот процесс будет продолжаться до тех пор, пока генератор не выйдет из строя вследствие недопустимой перегрузит.

При наличии статизма большей реактивной мощности соответствует меньшее напряжение генератора, но напряжение определено сетью и снизить его нельзя, поэтому увеличение реактивной мощности генератора при неизменном напряжении сети невозможно.

БЛОГ ЭЛЕКТРОМЕХАНИКА

Студенческий блог для электромеханика. Обучение и практика, новости науки и техники. В помощь студентам и специалистам

  • главная
  • инфо
  • блог
  • словарь электромеханика
  • электроника
  • крюинговые компании
    • Одесса/Odessa
    • Николаев/Nikolaev
  • Обучение
    • Предметы по специальности
      • АГЭУ
      • АСЭЭС
      • Диагностика и обслуживание судовых технических средств
      • Мехатронные системы
      • Микропроцессоры
      • Моделирование электромеханических систем
      • МПСУ
      • САЭП
      • САЭЭС
      • СДВС
      • СИВС
      • Силовая электроника
      • Судовые компьютерные ceти
      • СУЭ и ОСУ
      • ТАУ
      • Технология судоремонта
      • ТЭП
      • ТЭЭО и АС
    • Общие предметы
      • Безопасность жизнедеятельности
      • Высшая математика
      • Ділова українська мова
      • Интеллектуальная собственность
      • Культурология
      • Материаловедение
      • Охрана труда
      • Политология
      • Системы технологий
      • Судовые вспомогательные механизмы
      • Судовые холодильные установки
    • I курс
      • конспекты
      • ргр
      • контрольные
      • лабораторные
      • курсовые
      • зачёты
      • экзамены
    • II курс
      • конспекты
      • ргр
      • контрольные
      • лабораторные
      • курсовые
      • зачёты
      • экзамены
    • III курс
      • конспекты
      • ргр
      • контрольные
      • лабораторные
      • курсовые
      • зачёты
      • экзамены
    • IV курс
      • конспекты
      • ргр
      • контрольные
      • лабораторные
      • курсовые
      • зачёты
      • экзамены
    • V курс
      • конспекты
      • ргр
      • контрольные
      • лабораторные
      • курсовые
      • зачёты
      • экзамены
  • Теория
    • английский
    • интернет-ресурсы
    • литература
    • тематические статьи
  • Практика
    • типы судов
    • пиратство
    • видеоуроки
  • мануалы
  • морской словарь
  • технический словарь
  • история
  • новости науки и техники
    • авиация
    • автомобили
    • военная техника
    • робототехника

04.10.2014

Параллельная работа генераторов переменного тока

Параллельная работа генераторов переменного тока требует соблюдения более сложных условий, чем параллельная работа генераторов постоянного тока.

Для включения синхронного генератора параллельно с другим необходимо:

Читайте также  Увеличиваем мощность генератора диодом

1) равенство напряжений работающего и подключаемого генераторов;
2) равенство их частот;
3) совпадение порядка чередования фаз;
4) равенство углов сдвига между э. д. с. каждого генератору и напряжением на шинах.

Последнее условие сводится к геометрически одинаковому наложению роторов генераторов относительно обмоток своих статоров.

Процесс приведения генераторов в такое состояние, при котором все перечисленные условия будут выполнены, называется синхронизацией генераторов.

Если генераторы синхронизированы, то включение их на параллельную работу протекает спокойно, без появления в системе каких-либо дополнительных толчков тока. Если хотя бы одно из условий не выдержано, то между генераторами появляются значительные уравнительные токи, которые не позволяют осуществить параллельную работу генераторов, а в некоторых случаях могут даже вызвать их повреждение.

Рассмотрим параллельную работу двух синхронных генераторов.

Если генераторы одинаковы, электродвижущие силы и скорости вращения их равны, то при отсутствии внешней нагрузки (т. е. при холостом ходе) в цепи обмоток статоров генераторов тока не будет, так как э д. с. взаимно уравновешиваются.

При включении внешней нагрузки оба генератора начнут отдавать одинаковую, мощность. При индуктивной нагрузке напряжение каждого уменьшится на одну и ту же величину, причем между э. д. с. генератора и его напряжением появится некоторый сдвиг, по фазе определяемый углом δ. Мощность, отдаваемая генератором во внешнюю цепь, пропорциональна этому углу.

Предположим, что мы увеличили возбуждение, а следовательно, и э. д. с. первого генератора и уменьшили возбуждение второго так, что общее напряжение генераторов осталось прежним.
Так как мощность, развиваемая первичными двигателями, осталась неизменной, то как общая мощность, так и мощности, отдаваемые каждым из генераторов, также не изменились. Не изменился и ток внешней нагрузки: I — общий и I/2 — для каждого генератора.

Вместе с тем, так как э. д. с. обоих генераторов уже не равны, то между генераторами появится уравнительный ток Iу, протекающий только по цепи генераторов. Распределение токов в этом случае показано на рис. 1.

Как видим, ток в первом генераторе будет равен геометрической сумме токов внешней нагрузки I/2 и уравнительного Iу, а во втором — геометрической их разности.

Индуктивные сопротивления обмоток статоров генераторов значительно больше их активных сопротивлений. В связи с этим уравнительный ток будет отставать от разности э. д. с. генераторов почти на 90°.

При этом условии при сложении токов в первом генераторе и вычитании их во втором результирующий ток будет отставать от напряжения в каждом генераторе на различный угол.

Иными словами, каждый из генераторов будет работать при своем коэффициенте мощности, отличном от коэффициента мощности внешней сети. Если активная мощность, потребляемая внешней нагрузкой, близка к суммарной мощности обоих генераторов, то у перевозбужденного генератора действующий ток превысит номинальный ток генератора, чего допускать нельзя (перегрузка по току).

Отсюда следует, что при параллельной работе синхронных генераторов необходимо стремиться к тому, чтобы все генераторы работали с одним и тем же коэффициентом мощности, равным коэффициенту мощности сети.

Предположим теперь, что не изменяя возбуждения воздействием на регулятор первичного двигателя первого генератора, мы увеличили ему подачу топлива. В этом случае первичный двигатель разовьет увеличенный вращающий момент, под влиянием которого ротор первого генератора забежит вперед относительно ротора второго генератора, вращаясь в дальнейшем с прежней синхронной скоростью. Вследствие расхождения по фазе электродвижущих сил генераторов в их цепи возникнет разность э. д. с., под влиянием которой появится уравнительный ток.

Но уравнительный ток по своей фазе будет почти совпадать с э. д. с. первого генератора, т. е. явится для него током нагрузки, и будет почти противоположным э. д. с. второго генератора (будет уменьшать его нагрузку). В этом случае каждый из генераторов будет нести нагрузку, пропорциональную вращающему моменту, развиваемую его первичным двигателем.

При этом полюса более нагруженного генератора будут в пространстве находиться впереди полюсов менее нагруженного. Последнее обстоятельство равносильно тому, что у более нагруженного генератора угол сдвига фаз между э. д. с. и напряжением δ1 больше, чем у менее нагруженного δ2.

Следует отметить, что параллельная работа синхронных генераторов проходит устойчиво только при определенных значениях угла δ. Наиболее устойчива она при угле δ, равном 0°, что соответствует холостой работе генераторов; при угле, равном 90°, генератор выпадает из синхронизма и параллельная работа становится невозможной.

Неизменность угла δ зависит от постоянства скорости вращения первичного двигателя. При колебании скорости вращения вследствие изменения нагрузки или по каким-либо другим причинам угол δ может измениться до недопустимой величины. Поэтому надежность и устойчивость параллельной работы синхронных генераторов в значительной мере зависит от качества работы регуляторов оборотов первичных двигателей.

Необходимое для перераспределения нагрузок генераторов дистанционное управление подачей топлива первичным двигателям обеспечивается применением регуляторов с серводвигателем или с электромагнитным приводом клапанов подачи топлива. При включении напряжения серводвигатель или соленоид открывает клапан подачи топлива или пара. Степень открытия клапана, а следовательно, и количество подаваемого топлива регулируется продолжительностью включения серводвигателя или числом включенных соленоидов.

У синхронных генераторов с самовозбуждением и саморегулированием напряжения величина тока возбуждения, зависит от тока в цепи статора. В свою очередь при параллельной работе синхронных генераторов изменение тока возбуждения генератора влияет на величину его реактивного тока. Отсюда вытекает, что при параллельной работе синхронных генераторов с самовозбуждением и саморегулированием напряжения необходимо принимать специальные меры для обеспечения правильного распределения реактивного тока между ними.

В качестве такого мероприятия у генераторов одинаковой мощности предусматривают уравнительное соединение между их обмотками возбуждения (на стороне постоянного тока), как это изображено на рис. 2.

При замыкании автоматов генераторов подается ток на катушки контакторов К1 и К2, подключающих обмотки возбуждения к уравнительным шинам.

В результате параллельного соединения обмоток возбуждения любое изменение возбуждения одного генератора отражается и на величине возбуждения второго. Поэтому распределение реактивного тока между ними сохраняется правильным.

При параллельной работе генераторов разной мощности, уравнительное соединение выполняется в цепях схемы регулирования напряжения на стороне переменного тока (рис. 3).

Параллельная работа генераторов

Случается так, что возникает необходимость подключения второго генератора на параллельную работу. К примеру в судовых электроэнергетических системах с целью увеличения живучести устанавливаются два или более генераторов. Суммарная мощность генераторов всегда несколько больше суммарной мощности всех потребителей. Установка нескольких генераторов повышает живучесть и экономичность установки, дает возможность проводить плановые осмотры и ремонты генераторов, выводя их поочередно из действия.

Судовые генераторы могут работать раздельно, без электрической связи между собой, или совместно, при параллельном соединении. Различают кратковременную и длительную параллельную работу генераторов. Кратковременная параллельная работа предназначена для плавного перевода нагрузки с одного генератора на другой с последующим отключением первого генератора или раздельной их работы. Совместная параллельная работа генераторов имеет ряд преимуществ:

1) перевод нагрузки с одного генератора на другой осуществляется плавно, без перерыва питания;

2) обеспечивается бесперебойность питания потребителей при выходе из строя одного из генераторов;

3) обеспечивается более высокое качество электроэнергии (меньше колебания напряжения);

4) возможность поочередного проведения технических осмотров и ремонтов генераторов.

К недостаткам параллельной работы генераторов следует отнести:

1) усложнение схемы включения и управления генераторами;

2) значительное увеличение тока при коротких замыканиях в электроэнергетической системе.

Рассмотрим параллельную работу генераторов постоянного тока параллельного и смешанного возбуждения, т.к. генераторы последовательного возбуждения в таком режиме обычно не применяются, а в параллельной работе генераторов параллельного и независимого возбуждения практически различий нет.

Рис.1 — Схема параллельной работы генераторов параллельного возбуждения

Включение на параллельную работу генераторов параллельного возбуждения.

Принципиальная схема параллельной работы генераторов изображена на рис.1. Допустим, что первый генератор Г1 включен на шины и работает с некоторой нагрузкой, создавая на шинах напряжения U. Генератор Г2, работающий на холостом ходу, требуется включить в работу так, чтобы не изменился режим первого генератора Г1, а ток генератора Г2 при включении равнялся нулю.

Для замкнутого контура, образованного генераторами и участком шин между ними, составим уравнение по второму закону Кирхгофа

Отсюда следует, что ЭДС генераторов должны быть направлены встречно относительно друг друга. Следовательно, условия включения генераторов параллельного возбуждения на параллельную работу можно сформулировать так:

1. Полярность зажимов работающего и подключаемого генератора должна быть одинаковой.

2. ЭДС подключаемого генератора должна быть равна напряжению сети, к которой он подключается.

При выполнении этих условий ток генератора Г2 будет равен нулю, а режим генератора Г1 не изменится, так как

Если включить генератор Г2 с неправильной полярностью, то в замкнутой цепи, образованной якорями обоих генераторов и шинами, их ЭДС будут складываться и так как сопротивление этой цепи очень мало, то возникает очень большой ток, что может привести к аварии генераторов.

Перевод и распределение нагрузки. После подключения генератора Г2 к сети, можно принимать на него нагрузку. Для двух работающих параллельно генераторов уравнения равновесия напряжений цепи якоря можно представить в виде

откуда получаются соотношения для токов нагрузки

Из системы уравнений видно, что для принятия нагрузки на генераторы нужно увеличивать ЭДС, которые можно изменять либо изменением числа оборотов генератора, либо изменением тока возбуждения. Обычно частота вращения генераторов поддерживается постоянной с помощью автоматического регулятора скорости (АРС) и на практике ЭДС генераторов регулируют изменением тока возбуждения.

Для принятия нагрузки на генератор Г2 нужно увеличить ток Iв2 путем уменьшения сопротивления rв2 в цепи возбуждения. ЭДС Еа2 становится больше напряжения U, в результате чего в якоре генератора Г2 возникает ток I2. Если ток нагрузки не изменяется, то с появлением тока I2 ток I1 уменьшается. Если Еа1 при этом не изменять, то Еа1-I1ra1 становится больше и напряжение на шинах начинает расти. Поэтому для поддержания U=const одновременно с увеличением Еа2 нужно уменьшать Еа1 путем уменьшения тока возбуждения Iв1 в цепи возбуждения генератора Г1. Таким образом можно перевести часть или всю нагрузку с генератора Г1 на генератор Г2. Следует отметить, что при переводе нагрузки изменяются токи генераторов, а следовательно, изменяются и их мощности. При этом нарушается баланс мощностей генераторов и их первичных двигателей, в результате чего изменяются частоты вращения генераторов. Для поддержания числа оборотов постоянными включаются в работу АРС, которые изменяют подачу топлива, пара и т.д. в первичный двигатель и восста­навливают прежнюю частоту вращения.

Рис. 2 — Внешние характеристики генераторов

Как правило, в качестве генераторов для параллельной работа выбираются машины равной мощности, внешние характеристики которых совпадают. Тогда можно нагружать генераторы равномерно при одинаковом токе возбуждения. Если внешние характеристики не совпадают, то генераторы при параллельной работе нагружаются разными токами. На рис.2 показаны внешние характеристики двух генераторов, имеющие разный наклон. Допустим, что оба генератора включены параллельно и работают на холостом ходу с напряжением U0. При включении на них номинальной нагрузки равной 2Iн на шинах устанавливается номинальное напряжение Uн.

Читайте также  Чего требует генератор переменного тока

Этому напряжению по внешним характеристикам соответствуют токи нагрузки генераторов I1и I2, причем I1+I2=2Iн. Как видим, генератор, имеющий более «мягкую» характеристику (1), оказывается недогруженным, а с более «жесткой» характеристикой (2) перегружен. В этом случае для равномерной нагрузки обоих генераторов необходимо увеличивать ток возбуждения первого генератора и уменьшать его у второго генератора до уравнивания токов I1 и I2.

Если генераторы имеют различные мощности и предназначены для параллельной работы, то для пропорционального распределения нагрузки соответственно их мощностям без регулирования тока возбуждения, необходимо, чтобы совпадали их относительные характеристики . В этом случае нагрузка будет распределяться пропорционально номинальным мощностям генераторов.

Особенности параллельной работы генераторов смешанного возбуждения. Принципиальная схема включения генераторов смешанного возбуждения при параллельной работе представлена на рис. 3.

Рис. 3 — Схема параллельной работы генераторов смешанного возбуждения

Ее отличительная особенность состоит в том, что точки (I) и (2), в которых последовательные обмотки возбуждения подключены к одноименным зажимам якоря, соединены между собой уравнительным проводом.

Уравнительный провод позволяет обеспечить устойчивую параллельную работу генераторов. Чтобы уяснить необходимость уравнительного провода, рассмотрим параллельную работу генераторов смешанного возбуждения без уравнительного провода. Допустим, что работают два генератора одинаковой мощности, с одинаковой частотой вращения, одинаковым внутренним сопротивлением rа1= ra2, нагрузки, ЭДС и магнитные потоки их также равны.

Если по какой-либо причине скорость одного, например, первого генератора, возрастает, то это вызовет увеличение его ЭДС Ea1, а следовательно и увеличение тока нагрузки на этот генератор. Благодаря наличию последовательной обмотки, рост нагрузки влечет за собой увеличение результирующего магнитного потока этого генератора, что приводит к еще большему возрастанию ЭДС, а соответственно и тока и т.д. В результате нагрузка данного генератора будет возрастать, а у второго генератора уменьшаться, вплоть до его перехода в двигательный режим, что опасно для обоих генераторов.

В дальнейшем чрезмерное увеличение нагрузки на первом генераторе вызывает снижение его частоты вращения, а следовательно и ЭДС. Нагрузка начинает переходить на второй генератор, т.е. его обороты будут стремиться к увеличению. Таким образом возникает колебательный процесс перехода нагрузки с одного генератора на другой и параллельная работа получается неустойчивой.

При наличии уравнительного провода 1-2 (рис. 3), последовательные обмотки оказываются включенными параллельно. Следовательно, их токи всегда находятся в одном и том же отношении, определяемом сопротивлениями этих обмоток.

Если теперь почему-либо ЭДС Ea1 генератора Г1 станет больше ЭДС Ea2 генератора Г2, то в цепи между якорями возникает уравнительный ток, величина которого определяется выражением

Таким образом, при увеличении ЭДС, а следовательно и тока в последовательной обмотке одного генератора в том же отношении увеличится ток и в последовательной обмотке другого генератора. В соответствии с этим одновременно увеличатся ЭДС и нагрузочные токи обоих генераторов и колебательный процесс происходить не будет. Это равенство токов в последовательных обмотках будет сохраняться при любой нагрузке. Если параллельно работают генераторы разной мощности, то сопротивления их последовательных обмотках будут не равны, поэтому токи в этих обмотках будут распределяться обратно пропорционально их сопротивлениям. Однако в любом случае изменение тока в одном генераторе приведет к изменению тока в другом и колебательный процесс происходить не будет. В этих условиях параллельная работа генераторов смешанного возбуждения становится вполне устойчивой.

Прием и распределение нагрузки в генераторах смешанного возбуждения производится как в генераторах параллельного возбуждения путем изменения тока в параллельных обмотках возбуждения.

Синхронизация генераторов: способы и их преимущества

Электростанции средней и высокой мощности состоят из нескольких синхронных генераторов с параллельным подключением к сети переменного тока. Это предотвращает полное отключение потребителей при неисправностях оборудования. Для запуска машин необходима процедура безопасного включения. От ее продолжительности и условий протекания во многом зависит работоспособность оборудования станции.

Особенность работы синхронных ГУ состоит в том, что при запуске из состояния покоя ротор не может начать самостоятельное движение и нуждается в принудительном раскручивании до скорости вращения электромагнитного поля статора. При включении электромашин возникают пусковые токи, которые нередко сравнимы с показателями короткого замыкания, что может привести к снижению сетевого напряжения. При затяжном пуске резко возрастает риск перегрева рабочих узлов. Все эти нюансы учитывают при разгоне ротора до подсинхронной скорости, после чего генераторная установка включается в сеть с соблюдением ряда условий. Этот процесс и называется синхронизацией генератора с сетью.

Для чего нужна синхронизация генераторов и что это такое?

В перечень условий входят:

  • соблюдение идентичности чередования фаз электрической сети и машины;
  • равенство напряжений и частот:
  • совпадение по фазе векторов напряжений.

Перечисленные операции проводятся вручную или специальными автоматическими устройствами. Промежуточный вариант: часть операций выполняет персонал, а часть — автоматически. В современных системах электроснабжения предпочтение отдается автоматике. Для выполнения этой сложной и ответственной процедуры электростанции оборудуются автосинхронизаторами.

Способы синхронизации

Применение одного из перечисленных методов позволяет предотвратить обесточивание шин, повреждение коммутационного оборудования и электрогенератора.

Синхронизация генераторов на параллельную работу осуществляется тремя способами:

  • точной синхронизации с выравниванием напряжения и частоты машины и сети с включением в момент совпадения фаз;
  • самосинхронизацией с замыканием обмотки возбуждения ГУ, приблизительно равных частотах и включении с последующим возбуждением;
  • синхронизацией через индуктивное сопротивление с включением при близких значениях напряжения и частоты (применяется в автономных электростанциях).

Перечисленные методы имеют достоинства и недостатки. Их выбор зависит от вида и назначения ГУ, ее мощности, требований к параметрам напряжения и частоты.

Точная синхронизация электростанций

Для выполнения всех ее условий требуется несколько минут времени и наличие особого навыка у персонала. Операция не опасна для оборудования, так как номинальное значение тока не превышается. Она используется на генераторных установках большой мощности, где время опережения задается автоматикой. Это позволяет предотвратить возникновение сверхтоков при включении.

При выполнении соблюдаются следующие критерии:

  • различие напряжений сети и генераторной установки не более 1 % при наличии АВР с функцией автоматической подгонки, а при его отсутствии или ручном регулировании — 5 %;
  • угол напряжений не более 10 градусов;
  • отклонение частот не более 0,1 %.

Соблюдение условий достигается с помощью регулировки тока возбуждения машины и изменения вращающего момента вала. Контроль параметров производится по расположенным на пульте управления вольтметрам, частотометрам и синхроноскопу, которые подключают к трансформатору.

Недостатки точной синхронизации:

  • сложность подгонки всех параметров;
  • большой временной интервал, поскольку при авариях в системе может занимать несколько десятков минут, а важно обеспечить быстрое включение;
  • высокая вероятность механических повреждений при большом угле напряжений;
  • возможность использования только на высокомощных электростанциях с турбинами.

Преимущества способа заключаются в том, что при избежании ошибок переходные процессы при параллельном соединении генераторов очень незначительны и кратковременны.

Способ самосинхронизации

Этот метод позволяет значительно сократить продолжительность подготовительных процедур и имеет единственное условие включения: разница скорости вращения генераторов должна быть не более 2-3 Гц. Точная подгонка остальных величин на производится.

При включении ГУ этим способом стремятся минимизировать время входа в синхронизм и изменения напряжения и тока. Для этого подключаемой машине дается перевозбуждение. Разность скоростей агрегатов должна быть не более 3-5 % их синхронной скорости вращения, а ускорение составляет не более 1 Гц/с. Лучше всего производить параллельное подключение генераторов при уменьшении разности их скоростей вращения. Сокращение процесса происходит при более высокой скорости подключаемой ГУ. В этом случае агрегат сразу берет на себя нагрузку и производит генерирование.

Недостаток самосинхронизации — снижение напряжения на шинах станции и броски тока в цепи генератора. Если мощность подключаемого дизельного агрегата равна общей мощности станции падение напряжения порой достигает 40 %, а броски тока в 2-4 раза превышают номинал.

Синхронизация дизель-генераторов и газовых электростанций через индуктивное сопротивление

Метод через сопротивление часто называют грубой синхронизацией. Его достоинства заключаются в простоте операций и высокой вероятности безаварийного включения.

Его используют в автономных системах энергоснабжения.

Последовательность действий состоит в приведении Гу во вращение, возбуждении и последующем подключении на шины при достижении околосинхронных значений напряжения и частоты. Окончательная синхронизация происходит через сопротивление после возникновения электрической связи с сетью.

Недостаток способа — большие толки и качания. По этой причине он применяется в автономных системах, мощность которых значительно уступает станциям централизованного энергоснабжения.

Особенности автоматических синхронизаторов (АС)

Современные АС выполняют точную автоматическую синхронизацию с помощью микропроцессора. Они имеют соответствующее климатическое исполнение и выполняют:

  • регулирование частоты ГУ импульсами противоположных знаков для достижения оптимального значения;
  • регулирование напряжения с заданной точностью;
  • выбор установки времени опережения;
  • индикацию состояния АС и ГУ;
  • контроль и диагностику отказов с распознаванием неисправностей и недостоверности данных;
  • передачу информации по сети;
  • сохранение данных.

Устройства оснащаются программным обеспечением с моделью объекта регулирования для выбора предварительных настроек и обучения персонала. В них предусмотрены режимы ручного и автоматического тестирования. Оборудование выпускается в виде отдельного модуля, устанавливается в шкаф автоматики или предлагается как панель синхронизации. При этом функции у всех разновидностей одинаковые.

Основные положения правил технической эксплуатации

Синхронизация генераторов производится в соответствии с правилами технической эксплуатации и устройства электроустановок. Согласно стандартам РФ способ точной автоматической синхронизации предусматривается для турбогенераторов мощностью более 3 МВт и гидрогенераторов от 50 МВт. В аварийных ситуациях используется самосинхронизация без учета системы охлаждения и технических характеристик агрегатов.

Самосинхронизация допустима для турбогенераторов мощностью до 3 МВт и для установок этого типа с косвенным охлаждением, оснащенных трансформаторами. А также для гидрогенераторов мощностью до 50 МВт.

Ручные настройки применяются для генераторов до 15 МВт, а при работе двух и более параллельно подключенных ГУ используется автоматическое и полуавтоматическое оборудование. При ручном методе обязательна блокировка от несинхронного включения.

Соответствующие устройства размещаются на центральном или местном пульте управления, главном или блочном щите. Помимо автоматики все ГУ должны быть оборудованы ручными настройками с блокировкой от несинхронного включения.

При введении в сеть двух генераторов с общим выключателем их необходимо синхронизировать между собой самосинхронизацией, а затем с сетью точной настройкой.

Самосинхронизация обязательна при ликвидации аварий. При этом соблюдается правило, что сверхпереходный ток не превышает номинальный в 3 раза.

Процесс синхронизации может осуществляться только специально обученным персоналом. Для точной ручной настройки параметров необходимы специалисты высокой квалификации. Алгоритмы этого процесса постоянно совершенствуются, внедряются новые цифровые технологии, устройства управления. Важно выбрать правильный вариант оборудования.

Специалисты ГК «ЭнергоПроф» предоставляют комплексные услуги по оснащению систем автономного энергоснабжения блоками АВР с функцией блокировки и устройств АС. Мы производим синхронизацию ГУ с последующим техническим обслуживанием и обучаем персонал станции.

Яков Кузнецов/ автор статьи

Приветствую! Я являюсь руководителем данного проекта и занимаюсь его наполнением. Здесь я стараюсь собирать и публиковать максимально полный и интересный контент на темы связанные ремонтом автомобилей и подбором для них запасных частей. Уверен вы найдете для себя немало полезной информации. С уважением, Яков Кузнецов.

Понравилась статья? Поделиться с друзьями:
NEVINKA-INFO.RU
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: