Щеточный аппарат синхронного генератора - NEVINKA-INFO.RU

Щеточный аппарат синхронного генератора

Альтернатор генератора: синхронный (щеточный) или асинхронный (бесщеточный) - принцип работы и особенности. Узнайте больше у нас на сайте. Только актуальные и полезные статьи от интернет-магазина инструментов «Sea Tools»

Щеточный аппарат синхронного генератора

Альтернатор генератора: синхронный (щеточный) или асинхронный (бесщеточный) — принцип работы и особенности

Выбор генератора всегда был не самым простым вопросом и не так уж редко даже те, кто не понаслышке был знаком с такого рода оборудованием сталкивался с проблемами при выборе и уж что говорить о неподготовленном потребителе.

Существует множество аспектов при выборе генератора для лома или же для промышленного применения, все эти аспекты необходимо знать и в равной степени уделять им внимание для формирования верного выбора агрегата, чтобы он мог полностью удовлетворить Вас своей работой.

Сегодня мы будет говорить о том, чтобы верно подобрать генератор исходя от того, какой тип альтернатора на него установлен, для того, чтобы выбранный Вами бензиновый генератор обеспечивал Вас стабильным напряжением и не имел сбоев в своей работе. На первый взгляд вопрос очень сложный, но все не так страшно как кажется, выбор будет колебаться между всего двумя видами генераторов, синхронный, то есть щеточный, или асинхронный, бесщеточный альтернатор. Сегодня чаще всего покупаются модели именно с синхронным альтернатором, и почему Вы поймете далее. Надеемся, что сможем как можно лучше посвятить Вас в этот вопрос данной статьей.

Все об альтернаторе

Для начала стоит сказать немного о самом названии, в самом начале, когда технология, служащая для выработки электрического тока так и называлась, альтернатор, позже его стали называть генератор, весь, и альтернатор и двигатель и другие его части в сборе, это название проще и отражает саму суть работы такого агрегата – преобразование одного вида энергии в другой.

Что же касается самого альтернатора, то можно с полной уверенностью сказать что именно он является самой важной частью в любом генераторе, ведь именно от отвечает за самую важную работу этого агрегата, а именно преобразование кинетической работы, продуцируемой вращением вала двигателя в электрический ток переменного типа. Состоит альтернатор из подвижной и неподвижной части, как и любой электродвигатель, из статора и ротора.

Вращение в альтернаторе производится за счет электродвижущей силы, а для возникновения оной необходимо возбудить магнитное поле на обмотке. В этом плане между альтернаторами разнице нет, разница лишь в том, в какой способ электромагнитное поле передается на а обмотку статора, а именно на синхронные и асинхронные. В конструктивном плане разница в том, что синхронный альтернатор имеет обмотку на роторе, в то время как асинхронный не имеет ее и способы передачи соответственно у них разные.

Если не углубляться в теорию и рассмотреть строение альтернаторов, то коротко говоря у синхронного альтернатора более сложное строение за счет наличия и щеток, и обмоток на роторе и статоре, а асинхронный по конструкции более простой по конструкции. Считается, что последний менее надежен и менее вынослив, но это еще не делает его хуже, чем первый, все зависит от того, в каких условиях применяется генератор, есть множество факторов, которые могут поменять их местами или уровнять.

Достоинства синхронного альтернатора

Есть разница между тем, какой обмоткой будет обладать Ваш альтернатор, если же Вы хотите купить дизельный генератор для редких включений, и Вы не намерены подавать на него слишком большую нагрузку, то есть смысл сэкономить деньги и купить алюминиевый тип, если же работать генератор будет часто и должен будет выдерживать достаточно высокую нагрузку, то стоит подумать о медной обмотке. Альтернатор с медной обмоткой будет давать максимально качественный ток на выходе. Важная часть синхронного альтернатора – это щетки, именно они отвечают за снятие тока со статора на ротор. Главное преимущество такого альтернатора – это возможность выдерживать пиковые нагрузки и кратковременные перепады и выдавать качественное электричество на выходе, что и делает его столь востребованным. Также стоит отметить, что только с таким генератором будет совместима система AVR. Синхронный генератор будет более правильным выбором для работы в бытовых условиях, для запитки дома или другого объекта с чувствительной к перепадам технике. Стоит отметить и высокую стоимость такого оборудования, такой генератор будет стоить дороже генератора с асинхронным альтернатором.

Недостатки синхронного альтернатора

Главным недостатком синхронного альтернатора можно назвать то, что он требует достаточно тщательного технического обслуживания. Щетки необходимо периодически заменять, график замены напрямую зависит от того, какие щетки установлены на альтернатор, угольные изнашиваются быстрее, медно-графитовые изнашиваются дольше. Помимо того, что у щеточного узла есть такой расходный материал как щетки, требующие периодической замены, сам альтернатор греется из-за трения щеток о ротор, и поэтому требует наличия охлаждения и тут есть побочный эффект.

Для охлаждения двигателя применяется вентилятор, который всасывает воздух и охлаждает обмотку, а вместе с воздухом он тянет и пыль, грязь и даже влагу. Более дорогие модели имеют достаточно высокий класс защиты для того, чтобы оградить альтернатор от влаги и пыли, но полностью защититься невозможно.

Преимущества асинхронного альтернатора

Преимущество асинхронного альтернатора заключается в том, что он имеет более простую конструкцию, а с этим и стоимость его меньше. Для движения подвижной части не требуется щетки для снятия электричества, достаточно магнитного поля и конденсаторов. Стоит отметить высокую степень защиты и отсутствие необходимости в сервисном обслуживании. Так как такой альтернатор нагревается намного меньше синхронного, отпадает необходимость в охлаждении, благодаря чему его конструкция более уплотненная, что позволило предотвратить попадание пыли, грязи и влаги внутрь альтернатора. Это делает его долговечным и надежным. Вес и физические размеры асинхронного альтернатора также намного меньше, чем у синхронного, так что и сам инверторный генератор компактнее. Также ощутимым преимуществом такого генератора будет в том, что его альтернатору не страшны короткие замыкания, что делает его хорошим вариантом для работы со сварочным оборудованием.

Недостатки асинхронного альтернатора

Помимо положительных сторон у него также есть и отрицательные стороны, которые заключаются в том, что выходящее напряжение не самого высокого качества, оно может скакать, а так как этот тип альтернатора несовместим с работой AVR, это может существенно отразится на его работе в бытовых условиях, например для запитки дома. Стоит отметить, что низкий уровень качества тока и скачки напряжения на выходе у асинхронного генератора вызвано тем, что он плохо переносит стартовые пиковые нагрузки от аппретуры, подключаемой к нему, и это может вызвать плачевные последствия для техники, очень чувствительной к перепадам напряжения, например компьютеры, телефоны и другая электроника.

Помните, что не все асинхронные генераторы имеют очень большие скачки напряжения на выходе, хороший проверенный бренд всегда будет устанавливать на свой генератор только самый надежный двигатель, который будет поддерживать постоянное число оборотов при скачках нагрузки, обеспечивая минимальные отклонения от нормы в работе генератора.

Подведение итогов, какой альтернатор выбрать: синхронный или асинхронный

При выборе между синхронным и асинхронным альтернатором стоит отталкиваться от того, в каких условиях будет применяться генератор и какие цели будут перед ним стоять и уже от этого отталкиваться при выборе.

Для того чтобы обеспечить свой дом или дачу стабильным электричеством, без перепадов и резких скачков, то стоит конечно же купить генератор синхронный, или щеточный, так как он будет давать на выходе ровное напряжение и качественный ток, что очень важно при подключении чувствительной аппретуры. Также такой генератор пригоден для работы с медицинским оборудованием, лабораторным или офисным оборудованием. Для всех этих целей старайтесь покупать модели с функцией AVR.

Если же главная цель генератора – это строительные работы на открытом воздухе, где большая загрязненность, пыль и влага, то стоит купить генератор с асинхронным альтернатором, который имеет большую устойчивость ко всем этим факторам. К тому же он пригоден для работы со сварочным оборудованием, так как исключен риск короткого замыкания при работе такого оборудования.

Так же у нас на сайте Вы сможете найти большой выбор Бензиновый генератор AGT или Бензиновый генератор Iron Angel

Принцип работы и устройство синхронного генератора переменного тока

Электричество – единственный вид энергии, которую легко можно передать на большие расстояния, а затем преобразовать её в механическую, тепловую или превратить в световое излучение. Саму же электроэнергию также можно получить разными способами: химическим, тепловым, механическим, фотоэлектрическим и др. Но именно механический способ, который основан на применении генераторов, оказался самым эффективным. Среди этих источников электроэнергии широкое применение нашёл синхронный генератор переменного тока.

Практически вся электроэнергия, используемая в быту и на производстве, вырабатывается генераторами этого типа. Они заслуживают того, чтобы более подробно рассмотреть их устройство и разобраться в принципе работы этих удивительных синхронных машин.

Устройство

В конструкции синхронных генераторов используются две основные рабочие детали – вращающийся ротор и неподвижный статор. На валу ротора располагаются постоянные магниты либо обмотки возбуждения. Магниты имеют зубчатую форму, с противоположно направленными полюсами.

Бесщёточные генераторы.

Обмотки статора размещают таким образом, чтобы их сердечники совпадали с выступами магнитных полюсов ротора, или с сердечниками катушек ротора. Количество зубцов магнита, обычно, не превышает 6. При такой конструкции вырабатываемый ток снимается непосредственно с обмоток статоров. Другими словами, статор выступает в роли якоря.

В принципе, постоянные магниты можно расположить на статоре, а рабочие обмотки, в которых будет индуцироваться ЭДС, — на роторе. Работоспособность генератора от этого не изменится, однако потребуются кольца и щётки для снятия напряжения с обмоток якоря, а это, чаще всего, не рационально.

Схематическое изображение бесщеточного генератора без обмоток возбуждения изображено на рис. 1.

Рис. 1. Модель генератора с магнитным ротором

Пояснение:

  • схема устройства;
  • схема расположения магнитных полюсов на якоре. Здесь буквами NS обозначено коаксиальный магнит с полюсами, а литерой R – стальной магнитопровод ротора в виде когтеобразных наконечников.
  • модель генератора в разрезе. Выводы фазных обмоток статора соединены «звездой».

Синхронные машины с индукторами.

Читайте также  Что такое генератор знакомств

Заметим, что постоянные магниты в качестве ротора используются в альтернаторах небольшой мощности. В мощных электрических машинах всегда применяются обмотки индуктора с независимым возбуждением. Независимым источником питания является маломощный генератор постоянного тока, смонтированный на валу синхронного двигателя.

Существуют конструкции синхронных генераторов малой и средней мощности, с самовозбуждающимися обмотками. Для возбуждения индуктора выпрямленный ток фазных обмоток подаётся через щётки на кольца, расположенные на валу статора. Строение такого альтернатора показано на рис. 2.

Рис. 2. Строение синхронного генератора средней мощности

Обратите внимание на наличие щёток, на которые подаётся питания от независимого источника.

По количеству фаз синхронные генераторы делятся на:

  • однофазные;
  • двухфазные;
  • трёхфазные.

По конструкции ротора можно выделить генераторы с явновыраженными полюсами и с неявновыраженными. В неявнополюсном роторе отсутствуют выступы, а катушки провода якоря спрятаны в пазы статора.

По способу соединения фазных обмоток различают трёхфазные генераторы:

  • соединённые по шестипроводной системе Тесла (не нашли практического применения);
  • «звезда»;
  • «треугольник»;
  • сочетание шести обмоток, соединённых в виде одной «звезды» и «треугольника». Это соединение ещё называют «Славянка».

Самое распространённое соединение – «звезда» с нейтральным проводом.

Принцип работы

Рассмотрим принцип генерации тока на примере контурной рамки, помещённой между магнитными полюсами. (Рис. 3)

Рис. 3. Схема, объясняющая принцип работы генератора

Если заставить рамку вращаться (по направлению стрелок), то она будет пересекать магнитные силовые линии. При этом, по закону электромагнитной индукции, в рамке индуцируется электрический ток, который проявляется при подключении нагрузки к щёткам. Его направление можно определить по правилу буравчика. На схеме направление тока показано чёрными стрелками.

Обратите внимание на то, что на участках рамки ab и cd ток движется в противоположных направлениях. Эти направления меняются при переходе участков рамки от одного полюса к другому полюсу магнита. Если каждый вывод рамки подключить к отдельному кольцу (на рисунке они подключены к коллектору!), то на выходе мы получим переменный ток.

Величина тока пропорциональна скорости вращения ротора. Кроме того, переменный ток характеризуется ещё одним параметром – частотой. Эта величина напрямую зависит от частоты вращения вала.

Частота тока в электросетях строго соблюдается. В России и в ряде других стран она составляет 50 Гц, то есть 50 колебаний в секунду.

Этот параметр довольно легко вычислить из таких соображений: за один оборот рамки (или двухполюсного магнита) происходит одно изменение направления тока. Если вал синхронного генератора делает 1 оборот в секунду, то частота переменного тока составит 1 Гц. Для получения частоты 50 Гц необходимо обеспечить 50 оборотов статора в секунду или 3000 об./мин.

При возрастании числа полюсов заданная частота удерживается путём снижения скорости вращения статора. (обратно пропорциональная зависимость). Так, для четерёхполюсного статора (число полюсов в два раза больше) для поддержания частоты 50 Гц скорость вращения вала необходимо снизить в два раза. Соответственно если используется 6 полюсов, то частота вращения вала должна уменьшиться в три раза – до 1000 об./мин.

Заметим, что в некоторых странах, таких как США, Япония и др. существуют другие стандарты – 60 Гц, а переменный 400 Гц используется, например, в бортовой сети современных самолётов.

Регулирование частоты

Достигнуть требуемых параметров частоты можно 2 путями:

  1. Сконструировать генератор с определённым количеством полюсов электромагнитов.
  2. Обеспечить соответствующую расчётную частоту вращения вала.

Например, в тихоходных гидротурбинах, вращающихся со скоростью 150 об./мин. для регулирования частоты число полюсов синхронных генераторов увеличивают до 40. На дизельных электростанциях, при скоростях вращения 750 об./мин., оптимальное число полюсов – 8.

Регулирование ЭДС

В связи с изменениями параметров активных нагрузок возникает необходимость в выравнивании номинальных напряжений. Несмотря на то, что ЭДС индукции синхронного генератора связана со скоростью вращения ротора, однако, из-за требований по соблюдению стабильной частоты, этим способом нельзя изменять указанный параметр. Но параметры магнитной индукции можно изменить путём снижения или увеличения магнитного потока, который зависит от количества витков обмотки индуктора и величины тока возбуждения.

Регулирование осуществляется путём включения в цепь катушек возбуждения дополнительных реостатов, электронных схем или регулировкой тока генератора-возбудителя (Рис. 4). В случае использования альтернаторов с постоянными магнитами, в таких устройствах напряжение регулируется внешними стабилизаторами.

Рис. 4. Схема регулировки напряжения

Благодаря малому весу и отличным токовым характеристикам синхронные генераторы переменного тока нашли применение во всех современных автомобилях. Поскольку бортовая сеть авто использует постоянный ток, конструкции автомобильных генераторов оборудованы трехфазным выпрямителем. Для выпрямляемых переменных токов частота не имеет значения, а вот напряжение должно быть стабильно. Этого добиваются с помощью внешних электронных устройств. На рисунке 5 представлена электрическая схема подключения генератора к бортовой сети современного автомобиля.

Рис. 5. Схема подключения генератора к бортовой сети авто

Применение

У синхронных генераторов переменного тока есть одна важная особенность: они поддаются синхронизации с другими подобными электрическими машинами. При этом синхронные скорости и ЭДС параллельно включенных альтернаторов совпадают, а фазовый сдвиг равен нулю. Данное обстоятельство позволяет применять устройства в промышленной энергетике и подключать резервные генераторы при превышении номинальных мощностей в часы пиковых нагрузок.

Трёхфазные тяговые генераторы применяют на тепловозах. Переменные токи для питания двигателей выпрямляются полупроводниковыми устройствами. Сегодня в России уже выпускаются тепловозы на базе асинхронных электродвигателей, не требующих выпрямления тока. В режиме торможения они работают в качестве асинхронных генераторов.

Синхронные генераторы устанавливают на гибридных автомобилях с целью совмещения тяги ДВС и мощности тяговых электродвигателей. Развивая активную мощность при номинальных нагрузках, они позволяют экономить дорогое топливо.

Существует много других сфер применения. Например, мобильные мини-электростанции, бытовые генераторы тока, как однофазный двигатель и т. п.

Бесщёточный синхронный генератор

Одним из основных недостатков при обслуживании судовых синхронных генераторов является наличие щёточно-кольцевого аппарата. Этот узел наиболее изнашивается в процессе работы. Большое количество пыли от угольных щёток загрязняет обмотки, создавая проводниковые мосты между токоведущими частями синхронного генератора и корпусом: ухудшается изоляция генератора, уменьшая срок их службы, требуется внеочередной ремонт с полной разборкой.

Всё это отсутствует у бесщёточных синхронных генераторов. Возбуждение СГ осуществляется небольшим по размерам возбудителем переменного тока, состоящим из трёхфазной обмотки, расположенной на роторе генератора и электромагнитных полюсов, находящихся на статоре рядом со статорной обмоткой основной машины. Обмотка возбуждения возбудителя питается постоянным током от автоматического регулятора напряжения. Трёхфазный переменный ток, генерируемый в роторной обмотке, выпрямляется трёхфазным выпрямителем, расположенным на роторной обмотке возбудителя и поступает на роторную обмотку возбуждения генератора. Выпрямительное устройство бесщёточного генератора состоит из кремниевых диодов, соединённых по трёхфазной мостовой схеме, регулируемого балластного резистора и сглаживающего конденсатора.

Бесщёточный синхронный генератор (рис. 1.1) состоит из следующих компонентов, где:

G — статорная обмотка, выходная;

FG — роторная обмотка возбуждения генератора;

Si — блок вращающихся кремниевых выпрямителей;

E — роторная обмотка возбудителя, выходная;

FE — статорная обмотка возбуждения;

EVA — внешний реостат задающего напряжения;

AVR — автоматический регулятор напряжения (АРН).

Статорная обмотка синхронного генератора уложена в пазы железа статора и представляет собой три обмотки, соединенные звездой.

Конструктивно БСГ объединён с возбудителем переменного тока и вращающимся выпрямительным устройством в один агрегат. Отличительной особенностью БСГ является отсутствие контактных колец и щёток.

Возбудитель представляет собой обращённый трёхфазный синхронный генератор, у которого обмотка возбуждения является неподвижной и питается непосредственно от автоматического регулятора напряжения. В некоторых рассматриваемых далее системах возбуждения и регулирования напряжения генераторов (например,“TAIYO”, “MITSUBISHI”) обмотка возбуждения возбудителя состоит из двух частей: основной и управляемой от AРН, что обеспечивает более надёжное начальное возбуждение. Трёхфазная роторная обмотка возбудителя, соединённая звездой подключена к роторной обмотке генератора через трёхфазный блок вращающихся кремниевых выпрямителей, который находится между этими двумя обмотками, ближе к возбудителю, на специально смонтированном изоляционном кольце. Кольцо и вентили вращаются вместе с роторами генератора и возбудителя и размещёны на общем валу.

Трёхфазный переменный ток, генерируемый при вращении в роторной обмотке возбудителя, выпрямляется трёхфазным кремниевым выпрямителем, расположенным на роторной обмотке возбудителя, и постоянное напряжение поступает на роторную обмотку генератора. Расположение вращающихся выпрямителей на роторной обмотке возбудителя удобно как для воздушного охлаждения, так и проведения обслуживания и ремонтных работ при проверке и замене вентилей.

В дополнение к кремниевому выпрямителю параллельно выходному напряжению подключается сглаживающий конденсатор и разрядный резистор для предотвращения обмотки возбуждения и конденсатора от пробоя.

Благодаря такой конструкции, исчезает необходимость в контактных кольцах и щётках для подвода тока к обмотке возбуждения генератора. Таким образом, возбудитель совместно с AРН позволяет поддерживать напряжение генератора с заданным отклонением при малых и больших нагрузках и обеспечивает защиту от короткого замыкания. Отсутствие щёточной аппаратуры значительно повышает надёжность БСГ, сокращает трудозатраты на обслуживание ввиду отсутствия угольной пыли на обмотках. Они также могут применяться и на высоких частотах вращения первичных двигателей, чем обеспечивается более надёжное возбуждение.

У БСГ, также как и у обычных синхронных генераторов, имеется демпферная обмотка. Она находится на явных полюсах ротора и имеет вид широких медных шин, соединенных в беличью клетку. Назначением демпферной обмотки является предотвращение колебаний напряжения ввиду резкого изменения нагрузки при параллельной работе генераторов, а также ограничение повышения третьей гармоники напряжения с увеличением нагрузки.

В результате совместных усилий обмоток статора генератора и возбудителя создаётся результирующая магнитодвижущая сила а, следовательно, и поток возбуждения, обеспечивая реакцию ротора и падение напряжения в обмотке статора генератора во всех режимах работы – от холостого хода до номинальной нагрузки.

Возбудитель переменного токапредставляет собой обращённый синхронный генератор роторного типа. Ротор установлен на том же валу, что и ротор генератора и представляет собой трехфазную обмотку переменного тока. Нагрузкой возбудителя является обмотка возбуждения статора, поэтому необходим возбудитель переменного тока высокой частоты: чем выше частота, тем больше возбуждение. Однако высокая частота стремится увеличить потери в железе. Так как увеличение числа полюсов пропорционально увеличению частоты, то частота особенно ограничивается при использовании на низкой частоте вращения с точки зрения экономичности конструкции. В основном, для возбудителя переменного тока принята частота 60 Гц.

Читайте также  Форд фьюжн ремень генератора натяжка

Кремниевый выпрямитель возбудителя переменного тока. Учитывая электрические и механические свойства, кремниевый выпрямитель для бесщёточного синхронного генератора должен быть высоконадежным, небольших габаритов и массы.

Он состоит из кремниевой части, которая закреплена вертикально на тонкой пластине основания, для надежного контакта пластины, основания и элемента, и питающего провода. Этот силовой тип контакта кремниевого элемента выпрямителя использует свою огромную силу, когда она приложена вертикально вместе с давлением по направлению к пластине основания и проявляет великолепные характеристики, учитывая такие механические недостатки как внешнее давление, центробежная сила, вибрация системы в действии. Все главные части кремниевого элемента типа P-N перехода помещены в кожух, в котором находится инертный газ, на работу которого не влияют окружающие атмосферные условия.

В дополнение к кремниевому выпрямителю параллельно подключены конденсатор и резистор для предотвращения от чрезмерного напряжения обмоток, предохраняя их от пробоя. При сборке вышеупомянутых компонентов FUJI El. произвел тщательную проверку их механической силы и местоположения, минимизируя пространство для установки, добиваясь однородной и эффективной вентиляции.

По габаритам БСГ сохранил те же размеры что и обычные СГ.

В настоящее время бесщеточные синхронные генераторы успешно используются на судах в качестве основных и аварийных источников электроэнергии.

В основном БСГ не требует особых трудозатрат на обслуживание. Достаточно почаще менять фильтры на воздухозаборах.

Таким образом, БСГ обеспечивает максимум надежности при минимуме трудозатрат на обслуживание.

Щетки – слабое место генератора. Есть бесщеточные варианты, но их мало используют. Почему?

Если автомобильный генератор выходит из строя, то самой распространенной причиной является износ щеточного узла. Однако давным-давно изобретены бесщеточные генераторы – почему же они до сих пор не вытеснили своих якобы менее продвинутых «конкурентов»?

Самая распространенная и массовая на сегодня конструкция автомобильного генератора – с использованием графитовых щеток, подающих напряжение на обмотку ротора (так называемую «катушку возбуждения») через пару вращающихся скользящих контактов в виде медных колец на валу ротора. Подобное решение применяется на большинстве автомобилей за редким исключением, ибо оно отработано и за десятилетия подтвердило свою практичность.

В такой конструкции крайне просто и эффективно реализовано поддержание стабильного напряжения в бортсети автомобиля на любых оборотах двигателя и, соответственно, генератора – электронный блок стабилизации напряжения (который по старинке принято именовать «реле-регулятором») отслеживает уровень напряжения на выходе и уменьшает или увеличивает ток в катушке возбуждения. Как только напряжение проседает, ток увеличивается. Как только оно приближается к верхнему пределу 14,2 вольта – уменьшается. Этот процесс идет быстро и непрерывно, и в результате мы имеем стабильное напряжение и на холостых оборотах, и на высокой скорости.

Щеточный узел – сухой и слабо защищенный от песка и влаги. А все, что открыто и трется без смазки, постепенно изнашивается и отказывает. Именно щеточный узел является наиболее частым источником выходов генератора из строя. Тем более что он обычно еще и неразборно совмещен с электронным блоком стабилизации напряжения («реле-регулятором»).

Однако в последние годы слово «БЕСщеточный» (или его аналог «бесколлекторный») на слуху у «широких народных масс» (с) – оно стало известно даже относительно далеким от техники людям. В самых разных сферах быта активно пропагандируются бесщеточные электромоторы – сегодня на них летают квадрокоптеры, крутятся шуруповерты, косят газоны триммеры и работают прочие механизмы и гаджеты. Даже откровенным гуманитариям уже успешно внушили, что «щетки – это плохо: они изнашиваются, отказывают, греются и вызывают потери тока». Почему же в автомобильном генераторе щеточный узел до сих пор не исчез, тогда как в последнее время от него все чаще отказываются даже в моторчиках дешевых детских игрушек?!

Может быть, потому, что на бесколлекторные (или же бесщеточные – как больше нравится) технологии массово переводятся электромоторы, а мы-то ведем речь про генератор? Нет, дело не в этом. Тут как раз никаких препятствий нет. Электромотор и электрогенератор – чрезвычайно похожие по своей сути электрические машины, вдобавок зачастую обратимые: мотор способен вырабатывать ток, если его вращать принудительно, а генератор может выполнять роль мотора, если на него опять же подать ток извне.

Использовать бесщеточный генератор в автомобиле можно, это давно реализовано и практикуется. Однако выпускаются подобные генераторы весьма ограничено и массовыми почему-то не стали… Почему?

Сделать автомобильный генератор бесщеточным в принципе не так сложно. Для чего, собственно, нужны щетки? Чтобы подать через них питание 12 вольт на катушку возбуждения внутри вращающегося ротора. После чего сегментный ротор с катушкой, на которую подан постоянный ток от аккумулятора, становится многополюсным электромагнитом и порождает возникновение тока в неподвижной обмотке – в статоре.

Убрать скользящий щеточный контакт в автомобильном генераторе возможно за счет особой конструкции ротора. Для этого ротор делают удлиненным, а катушку возбуждения выполняют в виде внешнего кольца и неподвижно закрепляют на статоре. Ведь для работы генератора ротор должен стать магнитом, а как намагничивать ротор – катушкой внутри, или катушкой снаружи – непринципиально…

Первые бесщеточные генераторы с неподвижной катушкой возбуждения встречались на автомобилях и полвека назад, и даже раньше. Как правило, ставили их на коммерческий транспорт (дальнобойные грузовики) и сельскохозяйственные и строительные машины (комбайны, трактора, бульдозеры и т. п.). Первым была важна увеличенная надежность и уменьшенная вероятность отказов на длинных перегонах пути, а вторым – защита от постоянно сопровождающих их при работе абразивной пыли и влаги, способных быстро убивать щеточный узел, проникая в генератор через вентиляционные щели. В принципе, в ограниченных объемах используются они в подобных машинах и по сей день.

Однако, согласитесь: генератор, не боящийся воды и пыли, с увеличенным сроком службы благодаря отказу от трущихся насухую деталей – это весьма недурственно! Причем  неплохо для любого генератора, а не только для установленного на грузовике или комбайне! Почему же технология не распространилась на массовый легковой сегмент? Причин тут несколько.

  • Технология производства бесщеточных генераторов более многоэтапна, и генераторы в конечном итоге существенно дороже.
  • При сопоставимых технологиях производства (без дорогостоящих инноваций) бесщеточный генератор в итоге получается крупнее и тяжелее щеточного с теми же характеристиками.
  • Большинство грузовых и сельскохозяйственных «бесщеточников» имели относительно узкий диапазон рабочих оборотов, на которых они эффективны, и на холостом ходу и просто на пониженных передачах толком не заряжали аккумулятор.
  • Современные «бесщеточники» существенно усложнились, дабы сохранить компактность, одновременно получив возможность выдавать большие токи с малых оборотов и не бояться оборотов высоких. Вдобавок к неподвижной обмотке возбуждения в конструкцию добавились постоянные магниты, позволяющие увеличить токоотдачу на малых оборотах, специальные размагничивающие обмотки, нейтрализующие действие постоянных магнитов на высоких оборотах, многофазные статоры, усложненные диодные мосты.

Все это и ряд других факторов ограничивали и продолжают ограничивать распространение таких генераторов. А после эволюционной оптимизации генераторов со щетками (ставших мощнее, компактнее, линейнее и т. п.) преимущества «бесщеточников» оказались еще менее выраженными. Несмотря на явно изнашивающиеся пары трения медь-графит, реально щеточные генераторы ходят весьма долго и их не принято считать потенциально проблемным узлом автомобиля, требующим инновационных вмешательств.

Впрочем, в ряде случаев бесщеточные генераторы имеют актуальность не только на фурах и тракторах. К примеру, щеточного узла нет на некоторых генераторах ряда дизельных кроссоверов BMW и Mercedes. В их моторах применяются генераторы повышенной мощности (180-190 ампер) с водяным охлаждением, которые прикручиваются своей задней крышкой к крышке водяной рубашки двигателя с соответствующим отверстием, как бы «затыкая его своим задом», и, таким образом, частично омываются антифризом. В конструкции мощных водоохлаждаемых генераторов щетки сильно затрудняют компоновку и обслуживание, поэтому от них иногда отказываются. Также серийно встречаются такие генераторы в некоторых комплектациях серьезных рамных внедорожников типа Nissan Patrol. А уазисты любят внедрять в свои тюнингованные «котлеты» не боящиеся купания в болоте 110-амперные бесщеточные генераторы от автобусов ПАЗ. Ну а алтайский завод тракторного электрооборудования еще с советских времен (и, кажется, по сей день!) производит небольшими тиражами бесщеточный генератор для моделей ВАЗ классического (01-07) и раннего переднеприводного (08-099) семейств.

Тем не менее в конечном итоге все решает экономика и отчасти инжиниринг. На сегодняшний день в массовом потребительском автопроме надежность простейшего щеточного генератора принята за образец баланса цены, живучести и ремонтопригодности. И отходят от этого канона лишь в относительно редких случаях, когда проектирование технически сложного, продвинутого и достаточно дорогого автомобиля неизбежно требует усложненных и недешевых решений…

Генераторы синхронные или асинхронные (щеточные или бесщеточные)

Отсутствие централизованного энергоснабжения или довольно частые перебои в электросети явление частое. Решение здесь одно – приобретение миниэлектростанции. Автономный источник энергии поможет сохранить нервы владельцу загородного дома и приобрести уверенность частному предпринимателю. Традиционный подход к покупке заключается в подборе техники, согласно ее техническим характеристикам. А именно, расчет мощности, выбор топлива, обзор дополнительных опций. Это правильное решение. Но есть некоторые особенности генераторных установок, с которыми следует ознакомиться подробнее. Более подробная информация о всех нюансах при выборе генератора предоставлена в статье: » Как правильно подобрать генератор для дома «.

Содержание статьи:

  • Конструктивные особенности альтернатора;
  • Плюсы и минусы синхронного альтернатора;
  • Плюсы и минусы асинхронного альтернатора;

КОНСТРУКТИВНЫЕ ОСОБЕННОСТИ АЛЬТЕРНАТОРА

Конструкция электростанции открытого типа внутри каркасной рамы или закрытого типа внутри кожуха состоит из альтернатора и двигателя внутреннего сгорания. Механическую энергию работающего двигателя альтернатор преобразовывает в электрическую энергию, которая и служит основным источником питания. Вращающийся ротор альтернатора воздействует магнитным полем на неподвижный статор, в результате, чего возникает электродвижущая сила на его обмотках. Различают 2 вида альтернаторов: синхронный и асинхронный.

У синхронного генератора есть жесткая связь между обмотками статора и частотой вращения ротора. Ротор начинает вращаться под действием механической энергии с синхронной скоростью. Ток в обмотку поступает через угольные щетки, которые находятся в непосредственном контакте со статором. Отсюда и произошло название щеточный альтернатор. Обмотки присутствуют как на статоре, так и на роторе.

Читайте также  Худ генератор кс го

В асинхронном альтернаторе передача магнитного поля происходит без плотного контакта. Ротор вращается в одном магнитном поле со статором, с некоторым его опережением. Щетки в этой конструкции не используются, поэтому альтернатор называется бесщёточным. Его упрощенный конструктив (без обмоток ротора и отсутствие угольных щеток) позволил существенно снизить цену на генератор в целом.

СИНХРОННЫЙ АЛЬТЕРНАТОР

В качестве материала для обмотки используют два вида проволоки медная и алюминиевая. И та, и другая имеют высокую электропроводимость, хотя у меди она значительно выше. Грамотными потребителями ценится именно медная обмотка. Медь медленно нагревается и быстро отдает тепло, что сказывается на общем тепловом балансе генератора. В отличие от алюминия, медная обмотка обладает большей износоустойчивостью. Если для кратковременных включений можно приобретать генератор с алюминиевой обмоткой, то для продолжительных работ и для использования генератора, как основной источник питания следует остановить внимание на медных обмотках, которые предлагают ведущие мировые бренды, в том числе, Elemax, Matari Hyundai и другие. Некоторые торговые марки идут на всевозможные ухищрения, чтобы обмануть доверчивого покупателя. Например, имитируют цвет меди, красят обмотку. При покупке, необходимо задавать подробные вопросы, в том числе о том, из какого материала обмотка.

Угольные щетки, которые служат скользящим соединением, являются также главным элементом конструкции. От их качества и свойств обмоток зависит стабильность выходного напряжения. Благодаря щеточному узлу, альтернатор может игнорировать кратковременные всплески напряжения и выдавать более чистый ток в узких границах 230 В. Высокая точность колебаний составляет до 5%. Во время непосредственного контакта неизбежно повышается температура обмотки генератора, для чего необходимо усиленное охлаждение. Чаще всего, такие генераторы изготавливают в открытом исполнении, чтобы обеспечить лучший приток воздуха. Открытая конструкция способствует загрязнению важных узлов генератора, но производители и здесь на высоте постоянно совершенствуют защитные системы и повышают класс защиты. Более качественный блок может состоять из медно-графитовых щеток, которые более устойчивы к повышению температуры и более долговечны.

Удержанием напряжения с точными параметрами занимается стабилизатор напряжения – AVR. Такая опция присутствует только в синхронных генераторах. Именно поэтому, к ним безопасно подключать чувствительную аппаратуру, газовые котлы, медицинское оборудование, ноутбуки, компьютеры и многое другое.

Итак, преимущества щеточного альтернатора:

• высокое качество выходного напряжения;
• возможность подключения автоматического регулятора напряжения;
• лучшая стабильность работы и устойчивость к кратковременным нагрузкам.

Отрицательные стороны:

• необходимость регулярной замены щеточного узла;
• постоянная очистка всех механизмов;
• низкий класс защиты;
• высокая стоимость.

Варианты использования:

  • загородный дом, который наполнен дорогостоящим оборудованием, различной бытовой техникой. Функция AVR поможет сохранить работоспособность компьютера, видеоплеера, телевизора и других электроприборов;
  • медицинские лаборатории и мобильные станции, офисы, начиненные компьютерным оборудованием, принтерами, факсами и др.

АСИНХРОННЫЙ АЛЬТЕРНАТОР

Работа альтернатора происходит без щеточного узла, отсутствие которого серьезно упрощает конструкцию и обслуживание. Отсутствие обмоток исключает их перегрев и аварийный выход из строя генератора. И, конечно же, существенно уменьшает габариты генераторной установки и ее общий вес. У бесщеточных генераторов очень высокий класс защиты, куда входит даже защита от падающей воды и от проникновения мелких фракций. К этому типу генераторов можно подключать сварочные аппараты, так как они не боятся коротких замыканий. Правда, пусковых токов они не переносят. У них бывают довольно сильные перепады выходного напряжения, что говорит о нестабильности работы. Как альтернативный вариант, для улучшения качества выходного тока можно приобрести стартовый усилитель, который добавит уверенности в сохранности дорогостоящей аппаратуры либо дополнительный блок автоматического регулятора напряжения. Уровень исполнения и класс двигателя также играют решающую роль в повышении качества напряжения, а именно, его способность поддерживать постоянные обороты при изменении нагрузки.

Достоинства бесщеточного альтернатора:

• компактные размеры, вес и, как следствие, лучшая мобильность;
• небольшая стоимость, за счет упрощенной конструкции;
• минимальное техническое обслуживание;
• возможность подключения сварочного аппарата.

Минусы:

• большие колебания выходного напряжения, до 10%;
• слабая способность к сглаживанию пусковых токов.

Область применения:

  • строительные площадки с большим количеством мусора и повышенной влажностью окружающего воздуха;
  • выездные пикники, охота, рыбалка, все, что входит в понятие активного отдыха;
  • объекты со сварочными работами.

Рекомендуем к просмотру видео-обзор:

В чем разница между щеточными и бесщеточными двигателями?

Все чаще на просторах интернет-магазинов можно найти инструменты с двумя типами двигателей. Инструменты и садовая техника WORX также не отстают от современных трендов при производстве техники, так что на нашем сайте вы тоже можете найти специальную характеристику двигателя — щеточный или бесщеточный. Так что же это за характеристика, на что она влияет и в чем принципиальные отличия инструментов с тем или иным двигателем? Давайте разбираться.

Устройство и принцип действия щеточного двигателя

Щеточный двигатель по-другому еще называется коллекторным. Состоит двигатель из нескольких важных частей.

Ротор — по-другому, якорь. Как раз он вращается внутри и преобразует электрическую энергию в механическую. Якорь обмотан медной проволокой (обмоткой) с разных сторон ротора. За счет прохождения тока через проволоку создается магнитное поле, которое в свою очередь и создает вращение элемента.

На обмотке в бесщеточном двигателе установлен коммутатор, который используется для переключения с одной обмотки на другую, что позволяет менять направление вращения ротора. Этот коммутатор и есть коллектор, от которого взял свое название двигатель.

Чтобы напряжение передалось на обмотки, а ток прошел через коллектор в двигатель устанавливаются специальные щетки. Щетки обычно состоят из графита; они всегда контактируют с коммутатором и обеспечивают подачу энергии к катушкам с обмоткой. Есть две щетки, и каждая из них подключается к противоположному полюсу батареи. Это гарантирует, что при вращении ротора ток, протекающий к катушкам, постоянно меняет направление. Это приводит к необходимому изменению магнитного поля, которое позволяет ротору продолжать вращаться.

Все вышеописанные элементы установлены в статор. Статор — неподвижных элемент двигателя, в котором могут быть либо еще одна катушка с проволокой, либо постоянный магнит. За счет того или другого элемента и создается магнитное поле обратной полярности ротору, из-за чего тот вращается.

Коллекторные двигатели могут работать от переменного напряжения, так как при смене полярности ток в обмотках возбуждения и якоря также меняет направление, в результате чего вращательный момент не меняет своего направления.

Плюсы и минусы щеточного двигателя

Так мы с вами вкратце разобрались с устройством щеточного двигателя. Теперь в чем же его плюсы и минусы?

Плюсы

Минусы

Устройство и принцип действия бесщеточного двигателя

Теперь давайте разберем принцип работы бесщеточного двигателя. Как понятно из названия, его принципиальное отличие в отсутствии щеток. Но как же он тогда работает? Как нужная энергия поступает в двигатель?

В устройстве бесщеточного двигателя также присутствует ротор и статор — основные элементы любого мотора. Но при этом отсутствует коллектор, соответственно и двигатель по-другому называется бесколлекторным. Если у щеточного двигателя работа происходит за счет электро-механической смены полярности, то в бесщеточном двигателе все работает благодаря электромагнитной индукции. Также отличается местоположение обмотки — здесь она располагается на статоре, в отличие от предыдущего вида двигателя.

Вместо щеток и коллектора в бесщеточном двигателе установлены датчики Холла и контроллер, который контролирует подачу напряжения на катушки для создания индуктивности, а также положение ротора и скорость его вращения.

Когда плата подает на обмотку ток, создается тоже противоположное магнитное поле, и магниты на роторе начинают вращаться.

Еще одной особенностью бесщеточных двигателей нужно назвать их типы. Двигатели бывают двух типов — синхронный и асинхронный. В синхронном двигателе частота вращений ротора равна частоте вращений магнитного поля — то есть один оборот ротор совершает после одного полного прохождения тока через катушку. А в асинхронном двигателе обратная ситуация — частота вращений ротора меньше, чем частота вращения магнитного поля. То есть ток проходит через катушку быстрее.

Плюсы и минусы бесщеточного двигателя

Если с устройством бесщеточного двигателя мы разобрались, то теперь давайте рассмотрим положительные и отрицательные стороны инструментов с бесщеточными моторами.

Плюсы:

Минусы:

Но не бывает все настолько радужно. Даже у инструментов с бесщеточными двигателями есть и свои недостатки. Так сказать, ложка дегтя в бочке меда.

  1. К минусам, в первую очередь стоит отнести стоимость инструментов. Техника с бесщеточным мотором в цене дороже, чем упрощенные модели со щеточным двигателем.
  2. Вторым недостатком бесколлекторных инструментов может быть сложное и дорогое техническое обслуживание. Бесщеточный двигатель — технологичное устройство, для работы с которым нужны знания в микроэлектронике. К счастью, в сотрудники наших сервисных центров знают и умеют обслуживать бесколлекторные двигатели.

Итоги сравнения щеточного и бесщеточного двигателей

Если сравнивать инструменты с разными видами двигателей, то можно смело сказать, что техника с бесщеточным двигателем надежнее и мощнее. Но нужно учитывать тот факт, что ориентирована такая техника больше на профессиональные работы. В быту же и инструменты со щеточным двигателем отлично справятся со своими задачами. Потому перед покупкой инструмента заранее определите цели, для которых вы будете использовать инструменты.

В ассортименте компании WORX есть инструменты и со щеточными и с бесщеточными двигателями. Чтобы определить какой именно тип двигателя установлен в инструменте, обратите внимание на иллюстрацию в карточке товара — в бесщеточных моделях есть специальная пометка «BRUSHLESS MOTOR».

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: