Характеристики синхронного генератора что это такое

Характеристики синхронного генератора что это такое § 116. Характеристики синхронных генераторов Работа машины в различных режимах и свойства самой машины определяются ее

Характеристики синхронного генератора что это такое

Характеристики синхронного генератора что это такое

§ 116. Характеристики синхронных генераторов

Работа машины в различных режимах и свойства самой машины определяются ее характеристиками.

Для снятия характеристик синхронного генератора собирают схему, представленную на рис. 278.


Рис. 278. Схема снятия характеристик синхронного генератора

Рассмотрим характеристику холостого хода синхронного генератора. Она представляет зависимость индуктированной в статоре э.д.с. Е0 от тока возбуждения Iв при разомкнутой внешней цепи машины:

Генератор приводится во вращение с синхронной скоростью, соответствующей номинальной частоте генератора. Увеличивают при помощи реостата ток возбуждения, отмечая показания амперметра в цепи возбуждения. По показаниям вольтметра, включенного на зажимы обмотки статора, определяют величину индуктированной э.д.с. Е0.

Характеристика холостого хода синхронного генератора показана на рис. 279. Прямолинейная часть характеристики указывает на пропорциональность между индуктированной э.д.с. и током возбуждения. В дальнейшем магнитная система генератора насыщается, кривая изгибается, т. е. при значительном увеличении тока возбуждения индуктированная э.д.с. растет очень медленно. Обычно нормальная работа машины имеет место за изгибом характеристики холостого хода.


Рис. 279. Характеристика холостого хода синхронного генератора

Зависимость напряжения на зажимах генератора U от тока нагрузки I при постоянных (пост) значениях тока возбуждения Iв, коэффициента мощности cos φ и скорости вращения n дается внешней характеристикой:

при Iв = пост, cos φ = пост, n = nн = пост.

По показаниям амперметра и вольтметра, включенных в цепь обмотки статора, строят характеристику. На рис. 280 даны внешние характеристики генератора для различных видов нагрузки.


Рис. 280. Внешние характеристики синхронного генератора

Напомним, что положительным углом φ принято считать угол φ в цепи, когда ток отстает по фазе от напряжения, и отрицательным, когда ток опережает по фазе напряжение.

Изменение напряжения U с нагрузкой происходит вследствие реакции якоря и падения напряжения в обмотке якоря (статора).

При индуктивной нагрузке реактивный ток размагничивает машину и при увеличении тока нагрузки напряжение уменьшается.

При емкостной нагрузке напряжение генератора с увеличением тока нагрузки повышается вследствие действия продольно-намагничивающей реакции якоря.

Регулировочная характеристика представляет зависимость тока возбуждения Iв от тока нагрузки I при постоянных значениях напряжения на зажимах генератора U, скорости вращения n и коэффициента мощности cos φ:

Регулировочные характеристики, представленные на рис. 281, показывают, как с изменением нагрузки необходимо менять ток возбуждения, чтобы компенсировать падение напряжения в обмотке якоря и действие реакции якоря.


Рис. 281. Регулировочные характеристики синхронного генератора

В процессе эксплуатации нагрузка генератора изменяется в течение суток как по величине, так и по своему характеру. Так, например, если генератор установлен на местной заводской электростанции, то в обеденные перерывы нагрузка значительно снижается. В вечернее время включаются лампы электрического освещения, а некоторая часть электродвигателей обычно отключается. Следовательно, активная нагрузка увеличивается, а индуктивная уменьшается и cos φ изменяется.

При увеличении активной нагрузки необходимо соответственно увеличить подачу пара, воды или нефти в первичный двигатель, а с уменьшением нагрузки, наоборот, уменьшить. Если увеличилась индуктивная нагрузка синхронного генератора (cos φ уменьшился), то необходимо увеличить ток возбуждения.

Режимы работы синхронных генераторов, рабочие характеристики генераторов

Основными величинами, характеризующими синхронный генератор, являются: напряжение на зажимах U , нагрузка I , полная мощность P (кВа), число оборотов ротора в минуту n , коэффициент мощности cos φ .

Важнейшие рабочие характеристики синхронного генератора следующие:

характеристика холостого хода,

Характеристика холостого хода синхронного генератора

Электродвижущая сила генератора пропорциональна величине магнитного потока Ф, создаваемого током возбуждения i в, и числу оборотов n ротора генератора в минуту:

где с — коэффициент пропорциональности.

Хотя величина электродвижущей силы синхронного генератора зависит от числа оборотов n ротора, регулировать ее путем изменения скорости вращения ротора невозможно, так как с числом оборотов ротора генератора связана частота электродвижущей силы, которая должна быть сохранена постоянной.

Следовательно, остается единственный способ регулировки величины электродвижущей силы синхронного генератора — это изменение основного магнитного потока Ф. Последнее обычно достигается путем регулирования тока возбуждения iв с помощью реостата, введенного в цепь возбуждения генератора. В том случае когда обмотка возбуждения питается током от генератора постоянного тока, сидящего на одном валу с данным синхронным генератором, ток возбуждения синхронного генератора регулируется изменением напряжения на зажимах генератора постоянного тока.

Зависимость электродвижущей силы Е синхронного генератора от тока возбуждения iв при постоянстве номинальной скорости вращения ротора ( n = const) и нагрузке, равной нулю ( 1 = 0), называется характеристикой холостого хода генератора.

На рисунке 1 приведена характеристика холостого хода генератора. Здесь восходящая ветвь 1 кривой снята при возрастании тока i в от нуля до i в m , а нисходящая ветвь 2 кривой — при изменении iв от iвm до iв = 0.

Рис. 1. Характеристика холостого хода синхронного генератора

Несовпадение восходящей 1 и нисходящей 2 ветвей объясняется остаточным магнетизмом. Чем больше площадь, ограниченная этими ветвями, тем больше потерь энергии в стали синхронного генератора на перемагничивание.

Крутизна подъема кривой холостого хода на ее начальном прямолинейном участке характеризует магнитную цепь синхронного генератора. Чем меньше расход ампер-витков в воздушных зазорах генератора, тем при прочих одинаковых условиях будет круче характеристика холостого хода генератора.

Внешняя характеристика генератора

Напряжение на зажимах нагруженного синхронного генератора зависит от электродвижущей силы Е генератора, от падения напряжения в активном сопротивлении его статорной обмотки, падения напряжения, обусловленного электродвижущей силой самоиндукции рассеяния Es, и падения напряжения, обусловленного реакцией якоря.

Электродвижущая сила рассеяния Es, как известно, зависит от магнитного потока рассеяния Ф s , который не проникает в магнитные полюса ротора генератора и, следовательно, не изменяет степени намагничивания генератора. Электродвижущая сила самоиндукции рассеяния Es генератора относительно мала, а поэтому практически ею можно пренебречь. В соответствии с этим ту часть электродвижущей силы генератора, которая компенсирует электродвижущую силу самоиндукции рассеяния Es, можно считать практически равной нулю.

Реакция якоря оказывает более заметное влияние на режим работы синхронного генератора и, в частности, на величину напряжения на его зажимах. Степень этого влияния зависит не только от величины нагрузки генератора, но и от характера нагрузки.

Рассмотрим вначале влияние реакции якоря синхронного генератора для случая, когда нагрузка генератора носит чисто активный характер. Для этой цели возьмем часть схемы работающего синхронного генератора, изображенную на рис. 2 ,а. Здесь показаны часть статора с одним активным проводником якорной обмотки и часть ротора с несколькими его магнитными полюсами.

Рис. 2. Влияние реакции якоря для нагрузок: а — активного, б — индуктивного, в — емкостного характера

В рассматриваемый момент времени северный полюс одного из электромагнитов, вращающихся вместе с ротором против часовой стрелки, как раз проходит под активным проводником статорной обмотки.

Электродвижущая сила, индуктированная в этом проводнике, направлена к нам из-за плоскости рисунка. А так как нагрузка генератора носит чисто активный характер, то ток I в якорной обмотке совпадает по фазе с электродвижущей силой. Следовательно, в активном проводнике статорной обмотки ток течет к нам из-за плоскости рисунка.

Магнитные линии поля, создаваемого электромагнитами, показаны здесь сплошными линиями, а магнитные линии поля, создаваемого током провода якорной обмотки, — пунктирной линией.

Внизу на рис. 2 ,а показана векторная диаграмма магнитной индукции результирующего магнитного поля, находящегося над северным полюсом электромагнита. Здесь мы видим, что магнитная индукция В основного магнитного поля, создаваемого электромагнитом, имеет радиальное направление, а магнитная индукция В я магнитного поля тока якорной обмотки направлена вправо и перпендикулярно вектору В .

Результирующая магнитная индукция Врез направлена вверх и вправо. Это значит, что в результате сложения магнитных полей произошло некоторое искажение основного магнитного поля. Слева от северного полюса оно несколько ослабилось, а справа — несколько усилилось.

Нетрудно видеть, что радиальная составляющая вектора результирующей магнитной индукции, от которой по сути дела зависит величина индуктированной электродвижущей силы генератора, не изменилась. Следовательно, реакция якоря при чисто активной нагрузке генератора не влияет на величину электродвижущей силы генератора. Это значит, что и падение напряжения в генераторе при чисто активной нагрузке обусловлено только падением напряжения в активном сопротивлении генератора, если пренебречь электродвижущей силой самоиндукции рассеяния.

Теперь допустим, что нагрузка синхронного генератора носит чисто индуктивный характер. В этом случае ток I отстает по фазе от электродвижущей силы Е на угол π/2 . Это значит, что максимум тока возникает в проводе несколько позднее, чем максимум электродвижущей силы. Следовательно, когда в проводе якорной обмотки ток достигнет максимального значения, северный полюс N будет уже не под этим проводом, а сместится несколько дальше в направлении вращения ротора, как это показано на рис. 2 ,б.

В этом случае магнитные линии (пунктирные линии) магнитного потока якорной обмотки замыкаются через два соседних разноименных полюса N и S и направлены навстречу магнитным линиям основного магнитного поля генератора, создаваемого магнитными полюсами. Это приводит к тому, что основное магнитное пате не только искажается, но и делается несколько слабее.

Читайте также  Чертеж крепления для переноса генератора

На рис. 2,6 приведена векторная диаграмма магнитных индукций: основного магнитного поля В, магнитного поля, обусловленного реакцией якоря В я, и результирующего магнитного поля В рез.

Здесь мы видим, что радиальная составляющая магнитной индукции результирующего магнитного поля стала меньше магнитной индукции В основного магнитного поля на величину Δ В. Следовательно, стала меньше и индуктированная электродвижущая сила, так как она обусловлена радиальной составляющей магнитной индукции. А это значит, что напряжение на зажимах генератора при всех прочих равных условиях будет меньше, чем напряжение при чисто активной нагрузке генератора.

Если генератор имеет нагрузку чисто емкостного характера, то ток в нем опережает по фазе электродвижущую силу на угол π/2 . Ток в проводниках якорной обмотки генератора теперь достигает максимума раньше, чем электродвижущая сила Е. Следовательно, когда в проводе якорной обмотки (рис. 2,в) ток достигнет максимального значения, северный полюс N еще не подойдет под этот провод.

В этом случае магнитные линии (пунктирные линии) магнитного потока якорной обмотки замыкаются через два соседних разноименных полюса N и S и направлены попутно с магнитными линиями основного магнитного поля генератора. Это приводит к тому, что основное магнитное поле генератора не только искажается, но и несколько усиливается.

На рис. 2,в приведена векторная диаграмма магнитной индукции: основного магнитного поля В , магнитного поля, обусловленного реакцией якоря Вя, и результирующего магнитного поля B рез. Мы видим, что радиальная составляющая магнитной индукции результирующего магнитного поля стала больше магнитной индукции В основного магнитного поля на величину Δ В. Следовательно, увеличилась и индуктированная электродвижущая сила генератора.А это значит, что напряжение на зажимах генератора при всех прочих одинаковых условиях станет больше, чем напряжение при чисто индуктивной нагрузке генератора.

Выяснив влияние реакции якоря на электродвижущую силу синхронного генератора при различных по своему характеру нагрузках, перейдем к выяснению внешней характеристики генератора. Внешней характеристикой синхронного генератора называется зависимость напряжения U на его зажимах от нагрузки I при постоянной скорости вращения ротора (n = const), постоянстве тока возбуждения (i в = const) и постоянстве коэффициента мощности (cos φ = const).

На рис. 3 приведены внешние характеристики синхронного генератора для различных по своему характеру нагрузок. Кривая 1 выражает внешнюю характеристику при активной нагрузке (cos φ = 1,0). В этом случае напряжение на зажимах генератора падает при изменении нагрузки от холостого хода до номинальной в пределах 10 — 20% напряжения при холостом ходе генератора.

Кривая 2 выражает внешнюю характеристику при активно-индуктивной нагрузке (cos φ = 0 ,8). В этом случае напряжение на зажимах генератора падает быстрее из-за размагничивающего действия реакции якоря. При изменении нагрузки генератора от холостого хода до номинальной напряжение уменьшается в пределах 20 — 30% напряжения при холостом ходе.

Кривая 3 выражает внешнюю характеристику синхронного генератора при активно-емкостной нагрузке (cos φ = 0,8). В этом случае напряжение на зажимах генератора несколько растет из-за намагничивающего действия реакции якоря.

Рис. 3. Внешние характеристики генератора переменного тока для различных нагрузок: 1 — активной, 2 — индуктивной, 3 емкостной

Регулировочная характеристика синхронного генератора

Регулировочная характеристика синхронного генератора выражает зависимость тока возбуждения i в генератора от нагрузки I при постоянстве действующего значения напряжения на зажимах генератора (U = const), постоянстве числа оборотов ротора генератора в минуту ( n = const) и постоянстве коэффициента мощности (cos φ = const).

На рис. 4 приведены три регулировочные характеристики синхронного генератора. Кривая 1 относится к случаю активной нагрузки (cos φ = 1 ) .

Рис. 4. Регулировочные характеристики генератора переменного тока для различных нагрузок: 1 — активной, 2 — индуктивной, 3 — емкостной

Здесь мы видим, что с ростом нагрузки I генератора ток возбуждения растет. Это понятно, так как с ростом нагрузки I увеличивается падение напряжения в активном сопротивлении якорной обмотки генератора и требуется увеличить электродвижущую силу Е генератора путем увеличения тока возбуждения i в , чтобы сохранить постоянство напряжения U.

Кривая 2 относится к случаю активно-индуктивной нагрузки при cos φ = 0 ,8 . Эта кривая поднимается круче, чем кривая 1, вследствие размагничивающего действия реакции якоря, снижающего величину электродвижущей силы Е, и, следовательно, напряжение U на зажимах генератора.

Кривая 3 относится к случаю активно-емкостной нагрузки при cos φ = 0,8. Эта кривая показывает, что с ростом нагрузки генератора требуется меньший ток возбуждения iв генератора для поддержания постоянства напряжения на его зажимах. Это понятно, так как в этом случае реакция якоря усиливает основной магнитный поток и, следовательно, способствует увеличению электродвижущей силы генератора и напряжения на его зажимах.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Основные характеристики синхронных генераторов

Основными характеристиками синхронных генераторов являются:

— характеристика холостого хода;

Характеристика холостого хода показывает зависимость ЭДС генератора от величины тока возбуждения при постоянной частоте и отключенной нагрузке, т.е. при холостом ходе Е = f(Iв) при Iн = 0, n = const.

В нижней части характеристика холостого хода прямолинейна, поскольку при малых индукциях большая часть МДС (W Iв) затрачивается на преодоление магнитным потоком воздушного зазора между статором и ротором, а для воздуха зависимость Ф = f(Iв) линейная. Стальные же участки магнитопровода при малых индукциях не представляют существенного сопротивления магнитному потоку.

При дальнейшем увеличении МДС и потока сказывается магнитное насыщение стали, вследствие чего магнитное сопротивление стальных участков начинает быстро возрастать и для их преодоления потоком требуется значительно большая часть МДС. Поэтому характеристика начинает наклоняться в сторону оси абсцисс и становится криволинейной.

При полном насыщении стали магнитопровода, которое наступает при очень больших МДС, характеристика холостого хода снова выпрямляется, но ее наклон к оси абсцисс значительно меньше, чем на начальном линейном участке.

Характеристика холостого хода определяет свойства магнитной цепи синхронного генератора. Она аналогична кривой намагничивания, которую рассматривали в теме магнитные цепи. т.е. она имеет восходящую и нисходящую ветви обусловленные наличием гистерезиса в сердечнике машины.

Рабочую точку А, соответствующую номинальному режиму работы генератора, выбирают обычно на перегибе («колене») характеристики холостого хода.

Внешняя характеристика показывает, как изменяется напряжение на генераторе при изменении тока нагрузки и постоянной частоте вращения, а также при неизменных коэффициенте мощности и токе возбуждения

U = f(Iн) при Iв, n, cos = const.

С увеличением нагрузки, подключенной к генератору, возрастает ток якоря Iя. Это приводит к увеличению падения напряжения в обмотке якоря. Тогда из основного уравнения генератора U = E – Iя · Rя, следует, что напряжение на выходе генератора будет уменьшаться вследствие:

— изменения напряжения на обмотке якоря Iя · Rя ;

— изменения ЭДС Е из-за реакции якоря, зависящей от характера нагрузки.

При подключении различной по характеру нагрузки (R, L, С) внешняя характеристика различна. Это обуславливается влияние тока якоря на магнитное поле генератора. Используя закон электромагнитной индукции и известные фазовые соотношения (ток на индуктивности отстает от напряжения на угол 90 0 , а на емкости опережает напряжение на такой же угол) можно увидеть, что при подключении емкости ток нагрузки (якоря) подмагничивает генератор (благодаря продольно – намагничивающей реакции якоря).

При индуктивной нагрузке, ток якоря наиболее сильно размагничивает генератор (сильно сказывается влияние продольно – размагничивающей реакции якоря).

Регулировочная характеристикапоказывает, как следует изменять ток возбуждения синхронного генератора при изменении тока нагрузки, чтобы поддерживать неизменным напряжение Iв = f(I) при U, n, cos = const.

Различный характер кривых обусловлен опять фазовыми соотношениями в цепях с разной нагрузкой, как и во внешней характеристике.

Для поддержания напряжения неизменным при активной и тем более активно-индуктивной нагрузке, когда сильно сказывается продольно-размагничивающая реакция якоря, ток возбуждения нужно увеличивать, а при активно-емкостной нагрузке – уменьшать.

| следующая лекция ==>
Особенности конструкции бесконтактных синхронных генераторов | И КПД синхронного генератора

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Принцип работы и устройство синхронного генератора переменного тока

Электричество – единственный вид энергии, которую легко можно передать на большие расстояния, а затем преобразовать её в механическую, тепловую или превратить в световое излучение. Саму же электроэнергию также можно получить разными способами: химическим, тепловым, механическим, фотоэлектрическим и др. Но именно механический способ, который основан на применении генераторов, оказался самым эффективным. Среди этих источников электроэнергии широкое применение нашёл синхронный генератор переменного тока.

Практически вся электроэнергия, используемая в быту и на производстве, вырабатывается генераторами этого типа. Они заслуживают того, чтобы более подробно рассмотреть их устройство и разобраться в принципе работы этих удивительных синхронных машин.

Устройство

В конструкции синхронных генераторов используются две основные рабочие детали – вращающийся ротор и неподвижный статор. На валу ротора располагаются постоянные магниты либо обмотки возбуждения. Магниты имеют зубчатую форму, с противоположно направленными полюсами.

Читайте также  Что такое генератор смит

Бесщёточные генераторы.

Обмотки статора размещают таким образом, чтобы их сердечники совпадали с выступами магнитных полюсов ротора, или с сердечниками катушек ротора. Количество зубцов магнита, обычно, не превышает 6. При такой конструкции вырабатываемый ток снимается непосредственно с обмоток статоров. Другими словами, статор выступает в роли якоря.

В принципе, постоянные магниты можно расположить на статоре, а рабочие обмотки, в которых будет индуцироваться ЭДС, — на роторе. Работоспособность генератора от этого не изменится, однако потребуются кольца и щётки для снятия напряжения с обмоток якоря, а это, чаще всего, не рационально.

Схематическое изображение бесщеточного генератора без обмоток возбуждения изображено на рис. 1.

Рис. 1. Модель генератора с магнитным ротором

Пояснение:

  • схема устройства;
  • схема расположения магнитных полюсов на якоре. Здесь буквами NS обозначено коаксиальный магнит с полюсами, а литерой R – стальной магнитопровод ротора в виде когтеобразных наконечников.
  • модель генератора в разрезе. Выводы фазных обмоток статора соединены «звездой».

Синхронные машины с индукторами.

Заметим, что постоянные магниты в качестве ротора используются в альтернаторах небольшой мощности. В мощных электрических машинах всегда применяются обмотки индуктора с независимым возбуждением. Независимым источником питания является маломощный генератор постоянного тока, смонтированный на валу синхронного двигателя.

Существуют конструкции синхронных генераторов малой и средней мощности, с самовозбуждающимися обмотками. Для возбуждения индуктора выпрямленный ток фазных обмоток подаётся через щётки на кольца, расположенные на валу статора. Строение такого альтернатора показано на рис. 2.

Рис. 2. Строение синхронного генератора средней мощности

Обратите внимание на наличие щёток, на которые подаётся питания от независимого источника.

По количеству фаз синхронные генераторы делятся на:

  • однофазные;
  • двухфазные;
  • трёхфазные.

По конструкции ротора можно выделить генераторы с явновыраженными полюсами и с неявновыраженными. В неявнополюсном роторе отсутствуют выступы, а катушки провода якоря спрятаны в пазы статора.

По способу соединения фазных обмоток различают трёхфазные генераторы:

  • соединённые по шестипроводной системе Тесла (не нашли практического применения);
  • «звезда»;
  • «треугольник»;
  • сочетание шести обмоток, соединённых в виде одной «звезды» и «треугольника». Это соединение ещё называют «Славянка».

Самое распространённое соединение – «звезда» с нейтральным проводом.

Принцип работы

Рассмотрим принцип генерации тока на примере контурной рамки, помещённой между магнитными полюсами. (Рис. 3)

Рис. 3. Схема, объясняющая принцип работы генератора

Если заставить рамку вращаться (по направлению стрелок), то она будет пересекать магнитные силовые линии. При этом, по закону электромагнитной индукции, в рамке индуцируется электрический ток, который проявляется при подключении нагрузки к щёткам. Его направление можно определить по правилу буравчика. На схеме направление тока показано чёрными стрелками.

Обратите внимание на то, что на участках рамки ab и cd ток движется в противоположных направлениях. Эти направления меняются при переходе участков рамки от одного полюса к другому полюсу магнита. Если каждый вывод рамки подключить к отдельному кольцу (на рисунке они подключены к коллектору!), то на выходе мы получим переменный ток.

Величина тока пропорциональна скорости вращения ротора. Кроме того, переменный ток характеризуется ещё одним параметром – частотой. Эта величина напрямую зависит от частоты вращения вала.

Частота тока в электросетях строго соблюдается. В России и в ряде других стран она составляет 50 Гц, то есть 50 колебаний в секунду.

Этот параметр довольно легко вычислить из таких соображений: за один оборот рамки (или двухполюсного магнита) происходит одно изменение направления тока. Если вал синхронного генератора делает 1 оборот в секунду, то частота переменного тока составит 1 Гц. Для получения частоты 50 Гц необходимо обеспечить 50 оборотов статора в секунду или 3000 об./мин.

При возрастании числа полюсов заданная частота удерживается путём снижения скорости вращения статора. (обратно пропорциональная зависимость). Так, для четерёхполюсного статора (число полюсов в два раза больше) для поддержания частоты 50 Гц скорость вращения вала необходимо снизить в два раза. Соответственно если используется 6 полюсов, то частота вращения вала должна уменьшиться в три раза – до 1000 об./мин.

Заметим, что в некоторых странах, таких как США, Япония и др. существуют другие стандарты – 60 Гц, а переменный 400 Гц используется, например, в бортовой сети современных самолётов.

Регулирование частоты

Достигнуть требуемых параметров частоты можно 2 путями:

  1. Сконструировать генератор с определённым количеством полюсов электромагнитов.
  2. Обеспечить соответствующую расчётную частоту вращения вала.

Например, в тихоходных гидротурбинах, вращающихся со скоростью 150 об./мин. для регулирования частоты число полюсов синхронных генераторов увеличивают до 40. На дизельных электростанциях, при скоростях вращения 750 об./мин., оптимальное число полюсов – 8.

Регулирование ЭДС

В связи с изменениями параметров активных нагрузок возникает необходимость в выравнивании номинальных напряжений. Несмотря на то, что ЭДС индукции синхронного генератора связана со скоростью вращения ротора, однако, из-за требований по соблюдению стабильной частоты, этим способом нельзя изменять указанный параметр. Но параметры магнитной индукции можно изменить путём снижения или увеличения магнитного потока, который зависит от количества витков обмотки индуктора и величины тока возбуждения.

Регулирование осуществляется путём включения в цепь катушек возбуждения дополнительных реостатов, электронных схем или регулировкой тока генератора-возбудителя (Рис. 4). В случае использования альтернаторов с постоянными магнитами, в таких устройствах напряжение регулируется внешними стабилизаторами.

Рис. 4. Схема регулировки напряжения

Благодаря малому весу и отличным токовым характеристикам синхронные генераторы переменного тока нашли применение во всех современных автомобилях. Поскольку бортовая сеть авто использует постоянный ток, конструкции автомобильных генераторов оборудованы трехфазным выпрямителем. Для выпрямляемых переменных токов частота не имеет значения, а вот напряжение должно быть стабильно. Этого добиваются с помощью внешних электронных устройств. На рисунке 5 представлена электрическая схема подключения генератора к бортовой сети современного автомобиля.

Рис. 5. Схема подключения генератора к бортовой сети авто

Применение

У синхронных генераторов переменного тока есть одна важная особенность: они поддаются синхронизации с другими подобными электрическими машинами. При этом синхронные скорости и ЭДС параллельно включенных альтернаторов совпадают, а фазовый сдвиг равен нулю. Данное обстоятельство позволяет применять устройства в промышленной энергетике и подключать резервные генераторы при превышении номинальных мощностей в часы пиковых нагрузок.

Трёхфазные тяговые генераторы применяют на тепловозах. Переменные токи для питания двигателей выпрямляются полупроводниковыми устройствами. Сегодня в России уже выпускаются тепловозы на базе асинхронных электродвигателей, не требующих выпрямления тока. В режиме торможения они работают в качестве асинхронных генераторов.

Синхронные генераторы устанавливают на гибридных автомобилях с целью совмещения тяги ДВС и мощности тяговых электродвигателей. Развивая активную мощность при номинальных нагрузках, они позволяют экономить дорогое топливо.

Существует много других сфер применения. Например, мобильные мини-электростанции, бытовые генераторы тока, как однофазный двигатель и т. п.

Характеристики синхронного генератора

Свойства синхронного генератора определяются характеристиками холостого хода, короткого замыкания, внешними и регу­лировочными.

Характеристика холостого хода синхронного генератора.Представляет собой график зависимости напряжения на выходе генератора в режиме х.х. U1 = Е0 от тока возбуждения Iв.0 при n1 = const. Схема включения синхронного генератора для снятия характеристики х.х. приведена на рис. 20.9, а. Если характеристики х.х. различных синхронных генераторов изобразить в относительных единицах Е* = f (Iв*), то эти характеристики мало отличаются друг от друга и будут очень схожи с нормальной характеристикой х.х. (риc. 20.9, б), которую используют при расчетах синхронных машин:

E* 0,58 1,0 1,21 1,33 1,40 1,46 1,51
Iв* 0,5 1,0 1,5 2,0 2,5 3,0 3,5

Здесь E* = Е0 / U1ном — относительная ЭДС фазы обмотки статора;

Iв* = Iв0 /Iв0ном — относительный ток возбуждения; Iв0ном — ток возбуждения в режиме х.х., соответствующий ЭДС х.х. Е0 = U1ном

Характеристика короткого замыкания.Характеристику трехфазного к.з. получают следующим образом: выводы обмотки статора замыкают накоротко (рис. 20.10, а) и при вращении ротора с частотой вращения n1 постепенно увеличивают ток возбуждения до значения, при котором ток к.з. превышает номинальный рабочий ток статорной обмотки не более чем на 25% (I = l,25 I1ном). Так как в этом случае ЭДС обмотки статора имеет значение, в несколько раз меньшее, чем в рабочем режиме генератора, и, следовательно, основной магнитный поток весьма мал, то магнитная цепь машины оказывается ненасыщенной. По этой причине ха­рактеристика к.з. представляет собой прямую линию (рис. 20.10, б). Активное сопротивление обмотки статора невелико по сравне­нию с ее индуктивным сопротивлением, поэтому, принимая r1 ≈ 0, можно считать, что при опыте к.з. нагрузка синхронного генерато­ра (его собственные обмотки) является чисто индуктивной. Из этого следует, что при опыте к.з. реакция якоря синхронного гене­ратора имеет продольно-размагничивающий характер (см. § 20.3).

Векторная диаграм­ма, построенная для ге­нератора при опыте трехфазного к.з., пред­ставлена на рис. 20.10, в. Из диаграммы вид­но, что ЭДС инду­цируемая в обмотке ста­тора, полностью урав­новешивается ЭДС продольной реакции якоря и ЭДС рассеяния .

Читайте также  Эдс вырабатываемая генератором зависит котором зависит от

Рис. 20.9. Опыт холостого хода синхронного генератора

При этом МДС обмотки возбуждения имеет как бы две со­ставляющие: одна ком­пенсирует падение на­пряжения , а дру­гая компенсирует раз­магничивающее влия­ние реакции якоря .

Характеристики к.з. и х.х. дают возможность определить значения токов возбуждения, со­ответствующие указан­ным составляющим МДС возбуждения. С этой целью характери­стики х.х. и к.з. строят в одних осях (рис. 20.11), при этом на оси ор­динат отмечают относительные значения напряжения х.х. Е* = E0/ U1ном и тока к.з. Iк* = I/ I1ном. На оси ординат отклады­вают отрезок ОВ, выражающий в масштабе напряжения относительное значение ЭДС рассеяния . Затем точку В сносят на

Рис. 20.10. Опыт короткого замыкания син­хронного генератора

Рис. 20.11. Определение состав­ляющих тока к.з.

характеристику х.х. (точка В’) и опускают перпендикуляр B’D на ось абсцис. Полученная точка D разделила ток возбуждения Iв0ном на две части: Iвх — ток возбуждения, необходимый для компен­сации падения напряжения , и — ток возбуждения, компен­сирующий продольно-размагничивающую реакцию якоря.

Один из важных параметров синхронной машины — отно­шение короткого замыкания (ОКЗ), которое представляет собой отношение тока возбуж­дения Iв0ном, соответствующего номинальному напряжению при х.х., к току возбуждения Iв.к.ном соответствующему номиналь­ному току статора при опыте к.з. (рис. 20.10, б):

Для турбогенераторов ОКЗ = 0,4 ÷ 0,7; для гидрогене­раторов ОКЗ = 1,0 ÷ 1,4.

ОКЗ имеет большое практическое значение при оценке свойств синхронной машины: машины с малым ОКЗ менее устой­чивы при параллельной работе (см. гл. 21), имеют значительные колебания напряжения при изменениях нагрузки, но такие маши­ны имеют меньшие габариты и, следовательно, дешевле, чем ма­шины с большим ОКЗ.

Внешняя характеристика.Представляет собой зависимость напряжения на выводах обмотки статора от тока нагрузки: U1 = f (I1) при Iв = const; соs φ1, = const; n1 = nном = const. На рис. 10.12, а представлены внешние характеристики, соответствующие различным по характеру нагрузкам синхронного генератора.

При активной нагрузке (соs φ1 = 1) уменьшение тока нагрузки I1 сопровождается ростом напряжения U1, что объясняется уменьшением падения напряжения в обмотке статора и ослабле­нием размагничивающего действия реакции якоря по поперечной оси. При индуктивной нагрузке (cos φ1

Дата добавления: 2015-11-18 ; просмотров: 3013 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Характеристики синхронного генератора

Рабочие свойства синхронного генератора оцениваются его характеристиками, важнейшими из которых являются характеристики: холостого хода, трехфазного короткого за­мыкания, индукционная нагрузочная, внешние и регулиро­вочные.

Характеристика холостого хода Е= f(IB) рассмотрена в предыдущей лекции.

Характеристика трехфазного короткого замыкания представляет собой зависимость тока якоря при коротком замыкании от тока возбуждения IK= f(IB) при n=const. На рис. 11 представ­лены характеристика короткого замыкания 1 и характеристика холостого хода 2.

Рис. 11. Характеристика трехфазного короткого замыкания.

Из-за относительной малости активного сопротивления га обмотка якоря синхронной машины представляет собой практически чисто индуктивное сопротивление. Поэтому ток короткого замыкания отстает от ЭДС на 90° и создает в машине продольную размагничивающую реакцию якоря. Вследствие этого установившийся ток короткого замыкания в синхронном генераторе получается относительно неболь­шим. Так, при ток IK обычно имеет значение, близ­кое к номинальному. Из-за размагничивающего действия реакции якоря при коротком замыкании машина слабо на­сыщена, и поэтому характеристика IK= f(IB) представляет собой линейную зависимость.

Практическое значение этой характеристики состоит в том, что при совместном ее рассмотрении с характери­стикой холостого хода по ним можно определить ненасы­щенное значение xd, МДС реакции якоря и отношение ко­роткого замыкания.

Синхронное индуктивное сопротивление по продольной оси xd можно найти, если принять, что при коротком замыкании U=0, ra=0, Iq=0, IK=Id, тогда

Построена векторная диаграмма синхронно­го генератора при трехфазном коротком замыкании. Исходя из (6), получаем

Если для произвольного тока IВ(1) по характеристике ко­роткого замыкания определить ток IK(1), а по спрямленной характеристике холостого хода — ЭДС Е0 (см. рис. 11), то по (7) определим ненасыщенное значение xd.

Рис. 12. Векторная диаграмма син­хронного генератора при коротком за­мыкании. Рис. 13. Определение ОКЗ.

Реакцию якоря при токе IK=IHOM можно определить по характеристическому треугольнику (см. рис. 11). Здесь катет ВС представляет собой падение напряжения в индуктивном сопротивлении рассеяния IHOMxσ, а катет АВ равен МДС реакции якоря при токе IK=IHOM. Для явнополюсной машины эта МДС равна Fad, а для неявнополюсной Fa. Для токов, отличных от номинального, МДС пере­считывается пропорционально току. Полученные таким путем МДС используются для построения векторных диа­грамм.

Отношением короткого замыкания (ОКЗ) называется отношение тока короткого замыкания IK (рис. 13), воз­никающего при МДС возбуждения, соответствующей номинальному напряжению в режиме холостого хода, к номинальному току якоря:

ОКЗ характеризует влияние реакции якоря на работу машины.

Синхронные машины с малым ОКЗ дают большее из­менение напряжения при нагрузке, являются менее устойчивыми при параллельной работе, но зато такой генератор является более дешевым.

Значение ОКЗ обратно пропорционально xd. У гидро­генераторов , а у турбогенераторов .

Индукционная нагрузочная характеристика представля­ет собой зависимость U=f(IB) при I=const, n=const, cosφ=0. Она показывает, как изменяется напряжение генератора U с изменением тока возбуждения IB при по­стоянном индуктивном токе нагрузки. Обычно индукцион­ная нагрузочная характеристика снимается при I=IНОM. В качестве нагрузки используется катушка с переменной индуктивностью. Так как катушка обладает определенным; активным сопротивлением, то получить в этом случае cosφ=0 нельзя. Но опыт показывает, что при снятии рас­сматриваемой характеристики достаточно установить cosφ

Рис. 15. Векторная диаграмма синхронного генератора при cosφ=0.

На рис. 15 дана векторная диаграмма для явнополюсного генератора при cosφ=0.

Нагрузочная характеристика при I=const может быть построена по треугольнику ВСА (рис. 14), по­лученному при токе IK=I. Если тре­угольник ВСА передвигать парал­лельно самому себе так, чтобы вер­шина С скользила по характеристи­ке холостого хода, то точка А опи­шет нагрузочную характеристику (кривая ). В верхней части харак­теристики этот треугольник займет положение B’С’А’. Опытная индук­ционная нагрузочная характеристика в действительности не вполне со­впадает с характеристикой, постро­енной по характеристическому треугольнику, а отклоняется от нее вправо (кривая 1 на рис. 14). Расхождение в опытных и расчетных характеристи­ках происходит из-за неточного учета потока рассеяния обмотки возбуждения при нагрузке, что вызывает повы­шенное насыщение магнитной системы ротора.

По опытным характеристикам холостого хода и нагру­зочной с некоторым приближением можно определить сто­роны характеристического треугольника. При U=UHOM проводится прямая, параллельная оси абсцисс. Из точки А» на этой прямой откладывают отрезок А»О»=АО. Из точки О» проводится прямая, параллельная прямолиней­ной части характеристики холостого хода, до пересечения с характеристикой холостого хода в точке С». Опустив из точки С» перпендикуляр на линию О»А», получим иско­мый треугольник »ѻА». Определив отрезок »ѻ в масштабе напряжения, найдем

Полученное таким образом сопротивление хр будет не­сколько больше индуктивного сопротивления рассеяния хσ:

где меньшие значения коэффициента относятся к неявнополюсным генераторам.

Расхождение между этими сопротивлениями объясня­ется несовпадением опытной и расчетной нагрузочных ха­рактеристик. Сопротивление хр называют сопротивлением Потье. Отрезок DD’ на рис. 14 соответствует уменьше­нию напряжения из-за размагничивающего действия ре­акции якоря, а отрезок D’A» — из-за падения напряжения в сопротивлении хσ.

Внешние характеристики являются основными эксплуа­тационными характеристиками генератора. Они показыва­ют, как изменяется напряжение на выводах генератора U при изменении тока нагрузки I, если IB=const, cosφ=const. На характер внешних характеристик сильное влияние оказывает cosφ. На рис. 16 показаны внешние характеристики при. трех значениях cosφ. Для всех харак­теристик исходной точкой являлась точка, соответствую­щая номинальному напряжению при номинальном токе якоря. Токи возбуждения, полученные при установке исходной точки, в дальнейшем поддерживаются неизменны­ми. Изменение тока I производится нагрузочным резисто­ром, включенным в цепь якоря.

При активно-индуктивной нагрузке (φ>0) с уменьше­нием тока I напряжение на выводах машины возрастает, так как уменьшаются влияния размагничивающего дейст­вия продольной реакции якоря и падения напряжения . Чем ниже cosφ, тем сильнее влияние продоль­ной реакции якоря, вследствие чего напряжение при уменьшении тока I будет увеличиваться резче.

Рис. 16. Внешние характерис­тики. Рис. 17. Векторная диаграмма синхронного генератора при cosφ=1.

При cosφ=1 (рис. 17) в машине также будет иметь место продольная размагничивающая реакция якоря (Fad≠0), вследствие ослабления действия которой при уменьшении тока I напряжение U будет увеличиваться, но в меньшей мере, чем при cosφ 0) , а при cosφ≠1 (φ 0) и активной (φ=0) нагрузках в машине существует про­дольная размагничивающая реакция якоря, которая при увеличении тока якоря возрастает. Чтобы сохранить по­стоянным напряжение, необходимо при росте нагрузки компенсировать размагничивающее действие продоль­ной реакции якоря за счет увеличения тока возбуждения. Регулировочные характеристики для cosφ 0) и cosφ=1 имеют возрастающий характер. При активно-емкостной нагрузке (φ

Яков Кузнецов/ автор статьи

Приветствую! Я являюсь руководителем данного проекта и занимаюсь его наполнением. Здесь я стараюсь собирать и публиковать максимально полный и интересный контент на темы связанные ремонтом автомобилей и подбором для них запасных частей. Уверен вы найдете для себя немало полезной информации. С уважением, Яков Кузнецов.

Понравилась статья? Поделиться с друзьями:
NEVINKA-INFO.RU
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: