Характеристики синхронного генератора характеристика короткого замыкания

Свойства синхронного генератора определяются характеристиками холостого хода короткого замыкания внешними и регу лировочными... Характеристика холостого хода синхронного генератора Представляет собой график...

Характеристики синхронного генератора характеристика короткого замыкания

Характеристики синхронного генератора

Свойства синхронного генератора определяются характеристиками холостого хода, короткого замыкания, внешними и регу­лировочными.

Характеристика холостого хода синхронного генератора.Представляет собой график зависимости напряжения на выходе генератора в режиме х.х. U1 = Е от тока возбуждения Iв.0 при n1 = const. Схема включения синхронного генератора для снятия характеристики х.х. приведена на рис. 20.9, а. Если характеристики х.х. различных синхронных генераторов изобразить в относительных единицах Е* = f (Iв*), то эти характеристики мало отличаются друг от друга и будут очень схожи с нормальной характеристикой х.х. (риc. 20.9, б), которую используют при расчетах синхронных машин:

E* 0,58 1,0 1,21 1,33 1,40 1,46 1,51
Iв* 0,5 1,0 1,5 2,0 2,5 3,0 3,5

Здесь E* = Е / U1ном — относительная ЭДС фазы обмотки статора;

Iв* = Iв0 /Iв0ном — относительный ток возбуждения; Iв0ном — ток возбуждения в режиме х.х., соответствующий ЭДС х.х. Е = U1ном

Характеристика короткого замыкания.Характеристику трехфазного к.з. получают следующим образом: выводы обмотки статора замыкают накоротко (рис. 20.10, а) и при вращении ротора с частотой вращения n1 постепенно увеличивают ток возбуждения до значения, при котором ток к.з. превышает номинальный рабочий ток статорной обмотки не более чем на 25% (I = l,25 I1ном). Так как в этом случае ЭДС обмотки статора имеет значение, в несколько раз меньшее, чем в рабочем режиме генератора, и, следовательно, основной магнитный поток весьма мал, то магнитная цепь машины оказывается ненасыщенной. По этой причине ха­рактеристика к.з. представляет собой прямую линию (рис. 20.10, б). Активное сопротивление обмотки статора невелико по сравне­нию с ее индуктивным сопротивлением, поэтому, принимая r1 ≈ 0, можно считать, что при опыте к.з. нагрузка синхронного генерато­ра (его собственные обмотки) является чисто индуктивной. Из этого следует, что при опыте к.з. реакция якоря синхронного гене­ратора имеет продольно-размагничивающий характер (см. § 20.3).

Векторная диаграм­ма, построенная для ге­нератора при опыте трехфазного к.з., пред­ставлена на рис. 20.10, в. Из диаграммы вид­но, что ЭДС инду­цируемая в обмотке ста­тора, полностью урав­новешивается ЭДС продольной реакции якоря и ЭДС рассеяния .

Рис. 20.9. Опыт холостого хода синхронного генератора

При этом МДС обмотки возбуждения имеет как бы две со­ставляющие: одна ком­пенсирует падение на­пряжения , а дру­гая компенсирует раз­магничивающее влия­ние реакции якоря .

Характеристики к.з. и х.х. дают возможность определить значения токов возбуждения, со­ответствующие указан­ным составляющим МДС возбуждения. С этой целью характери­стики х.х. и к.з. строят в одних осях (рис. 20.11), при этом на оси ор­динат отмечают относительные значения напряжения х.х. Е* = E/ U1ном и тока к.з. Iк* = I/ I1ном. На оси ординат отклады­вают отрезок ОВ, выражающий в масштабе напряжения относительное значение ЭДС рассеяния . Затем точку В сносят на

Рис. 20.10. Опыт короткого замыкания син­хронного генератора

Рис. 20.11. Определение состав­ляющих тока к.з.

характеристику х.х. (точка В’) и опускают перпендикуляр B’D на ось абсцис. Полученная точка D разделила ток возбуждения Iв0ном на две части: Iвх — ток возбуждения, необходимый для компен­сации падения напряжения , и — ток возбуждения, компен­сирующий продольно-размагничивающую реакцию якоря.

Один из важных параметров синхронной машины — отно­шение короткого замыкания (ОКЗ), которое представляет собой отношение тока возбуж­дения Iв0ном, соответствующего номинальному напряжению при х.х., к току возбуждения Iв.к.ном соответствующему номиналь­ному току статора при опыте к.з. (рис. 20.10, б):

Для турбогенераторов ОКЗ = 0,4 ÷ 0,7; для гидрогене­раторов ОКЗ = 1,0 ÷ 1,4.

ОКЗ имеет большое практическое значение при оценке свойств синхронной машины: машины с малым ОКЗ менее устой­чивы при параллельной работе (см. гл. 21), имеют значительные колебания напряжения при изменениях нагрузки, но такие маши­ны имеют меньшие габариты и, следовательно, дешевле, чем ма­шины с большим ОКЗ.

Внешняя характеристика.Представляет собой зависимость напряжения на выводах обмотки статора от тока нагрузки: U1 = f (I1) при Iв = const; соs φ1, = const; n1 = nном = const. На рис. 10.12, а представлены внешние характеристики, соответствующие различным по характеру нагрузкам синхронного генератора.

При активной нагрузке (соs φ1 = 1) уменьшение тока нагрузки I1 сопровождается ростом напряжения U1, что объясняется уменьшением падения напряжения в обмотке статора и ослабле­нием размагничивающего действия реакции якоря по поперечной оси. При индуктивной нагрузке (cos φ1

Дата добавления: 2015-11-18 ; просмотров: 3012 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Характеристика короткого замыкания синхронного генератора

Одной из важных характеристик синхронного генератора является характеристика короткого замыкания — зависимость тока статора от тока возбуждения Iк=f(If) при симметричном коротком замыкании на выводах статора при номинальной скорости вращения ротора.

Зависимость тока короткого замыкания в обмотке статора от тока возбуждения снимается при постепенном повышении тока возбуждения. Ток статора изменяется от нуля до значения 1,25∙Iном. Эта зависимость линейная, так как генератор не насыщен.

Индуктивный характер тока при коротком замыкании определяется индуктивным сопротивлением обмотки статора, которое значительно больше активного сопротивления обмотки (в относительных единицах R=0,01-0,001, а X=1,0-2,5).

Ток короткого замыкания может быть определен как:

, А; (4.6)

где E ЭДС, соответствующая току возбуждения If, которая определяется по характеристике холостого хода.

Рисунок 4.3 — Характеристики холостого хода и короткого замыкания

Пренебрегая активным сопротивлением, ток короткого замыкания можно считать чисто индуктивным:

, А. (4.7)

Таким образом, по характеристике холостого хода и характеристике короткого замыкания можно определить опытным путем значение индуктивного сопротивления обмотки статора Х:

(4.8)

Отношение короткого замыкания представляет собой отношение тока возбуждения соответствующего номинальному напряжению при холостом ходе, к току возбуждения соответствующему номинальному току статора при опыте короткого замыкания.

(4.9)

Рисунок 4.4 — К определению кратности тока короткого замыкания

Характеристики холостого хода и короткого замыкания дают возможность определить значения токов возбуждения двух составляющих: одна компенсирует падения напряжения в цепи статора Iвх , а другая компенсирует размагничивающее влияние реакции статора Iвd.

Отношение короткого замыкания, так же, как и индуктивное сопротивление обмотки статора Х определяет перегрузочную способность синхронной машины. Чем больше , тем больше предельная нагрузка. тем больше, чем больше воздушный зазор, т.е. при той же мощности меньше концентрация энергии магнитного поля. Такие машины требуют больших вложений материалов, что увеличивает их стоимость. У турбогенераторов =0,4-1,0 , а гидрогенераторов =0,8-1,8.

(4.10)

Отношение короткого замыкания имеет большое практическое значение при оценке свойств синхронной машины. Машины с малым менее устойчивы при параллельной работе с сетью и имеют значительные колебания напряжения при изменениях нагрузки. Но такие машины имеют меньшие габариты и, следовательно, дешевле, чем машины с большим .

studopedia.org — Студопедия.Орг — 2014-2021 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.002 с) .

Характеристики синхронного генератора

Рабочие свойства синхронного генератора оцениваются его характеристиками, важнейшими из которых являются характеристики: холостого хода, трехфазного короткого за­мыкания, индукционная нагрузочная, внешние и регулиро­вочные.

Характеристика холостого хода Е= f(IB) рассмотрена в предыдущей лекции.

Характеристика трехфазного короткого замыкания представляет собой зависимость тока якоря при коротком замыкании от тока возбуждения IK= f(IB) при n=const. На рис. 11 представ­лены характеристика короткого замыкания 1 и характеристика холостого хода 2.

Рис. 11. Характеристика трехфазного короткого замыкания.

Из-за относительной малости активного сопротивления га обмотка якоря синхронной машины представляет собой практически чисто индуктивное сопротивление. Поэтому ток короткого замыкания отстает от ЭДС на 90° и создает в машине продольную размагничивающую реакцию якоря. Вследствие этого установившийся ток короткого замыкания в синхронном генераторе получается относительно неболь­шим. Так, при ток IK обычно имеет значение, близ­кое к номинальному. Из-за размагничивающего действия реакции якоря при коротком замыкании машина слабо на­сыщена, и поэтому характеристика IK= f(IB) представляет собой линейную зависимость.

Практическое значение этой характеристики состоит в том, что при совместном ее рассмотрении с характери­стикой холостого хода по ним можно определить ненасы­щенное значение xd, МДС реакции якоря и отношение ко­роткого замыкания.

Синхронное индуктивное сопротивление по продольной оси xd можно найти, если принять, что при коротком замыкании U=0, ra=0, Iq=0, IK=Id, тогда

Построена векторная диаграмма синхронно­го генератора при трехфазном коротком замыкании. Исходя из (6), получаем

Если для произвольного тока IВ(1) по характеристике ко­роткого замыкания определить ток IK(1), а по спрямленной характеристике холостого хода — ЭДС Е (см. рис. 11), то по (7) определим ненасыщенное значение xd.

Рис. 12. Векторная диаграмма син­хронного генератора при коротком за­мыкании. Рис. 13. Определение ОКЗ.

Реакцию якоря при токе IK=IHOM можно определить по характеристическому треугольнику (см. рис. 11). Здесь катет ВС представляет собой падение напряжения в индуктивном сопротивлении рассеяния IHOMxσ, а катет АВ равен МДС реакции якоря при токе IK=IHOM. Для явнополюсной машины эта МДС равна Fad, а для неявнополюсной Fa. Для токов, отличных от номинального, МДС пере­считывается пропорционально току. Полученные таким путем МДС используются для построения векторных диа­грамм.

Читайте также  Форд фокус можно ли ехать без ремня генератора

Отношением короткого замыкания (ОКЗ) называется отношение тока короткого замыкания IK (рис. 13), воз­никающего при МДС возбуждения, соответствующей номинальному напряжению в режиме холостого хода, к номинальному току якоря:

ОКЗ характеризует влияние реакции якоря на работу машины.

Синхронные машины с малым ОКЗ дают большее из­менение напряжения при нагрузке, являются менее устойчивыми при параллельной работе, но зато такой генератор является более дешевым.

Значение ОКЗ обратно пропорционально xd. У гидро­генераторов , а у турбогенераторов .

Индукционная нагрузочная характеристика представля­ет собой зависимость U=f(IB) при I=const, n=const, cosφ=0. Она показывает, как изменяется напряжение генератора U с изменением тока возбуждения IB при по­стоянном индуктивном токе нагрузки. Обычно индукцион­ная нагрузочная характеристика снимается при I=IНОM. В качестве нагрузки используется катушка с переменной индуктивностью. Так как катушка обладает определенным; активным сопротивлением, то получить в этом случае cosφ=0 нельзя. Но опыт показывает, что при снятии рас­сматриваемой характеристики достаточно установить cosφ

Рис. 15. Векторная диаграмма синхронного генератора при cosφ=0.

На рис. 15 дана векторная диаграмма для явнополюсного генератора при cosφ=0.

Нагрузочная характеристика при I=const может быть построена по треугольнику ВСА (рис. 14), по­лученному при токе IK=I. Если тре­угольник ВСА передвигать парал­лельно самому себе так, чтобы вер­шина С скользила по характеристи­ке холостого хода, то точка А опи­шет нагрузочную характеристику (кривая ). В верхней части харак­теристики этот треугольник займет положение B’С’А’. Опытная индук­ционная нагрузочная характеристика в действительности не вполне со­впадает с характеристикой, постро­енной по характеристическому треугольнику, а отклоняется от нее вправо (кривая 1 на рис. 14). Расхождение в опытных и расчетных характеристи­ках происходит из-за неточного учета потока рассеяния обмотки возбуждения при нагрузке, что вызывает повы­шенное насыщение магнитной системы ротора.

По опытным характеристикам холостого хода и нагру­зочной с некоторым приближением можно определить сто­роны характеристического треугольника. При U=UHOM проводится прямая, параллельная оси абсцисс. Из точки А» на этой прямой откладывают отрезок А»О»=АО. Из точки О» проводится прямая, параллельная прямолиней­ной части характеристики холостого хода, до пересечения с характеристикой холостого хода в точке С». Опустив из точки С» перпендикуляр на линию О»А», получим иско­мый треугольник »ѻА». Определив отрезок »ѻ в масштабе напряжения, найдем

Полученное таким образом сопротивление хр будет не­сколько больше индуктивного сопротивления рассеяния хσ:

где меньшие значения коэффициента относятся к неявнополюсным генераторам.

Расхождение между этими сопротивлениями объясня­ется несовпадением опытной и расчетной нагрузочных ха­рактеристик. Сопротивление хр называют сопротивлением Потье. Отрезок DD’ на рис. 14 соответствует уменьше­нию напряжения из-за размагничивающего действия ре­акции якоря, а отрезок D’A» — из-за падения напряжения в сопротивлении хσ.

Внешние характеристики являются основными эксплуа­тационными характеристиками генератора. Они показыва­ют, как изменяется напряжение на выводах генератора U при изменении тока нагрузки I, если IB=const, cosφ=const. На характер внешних характеристик сильное влияние оказывает cosφ. На рис. 16 показаны внешние характеристики при. трех значениях cosφ. Для всех харак­теристик исходной точкой являлась точка, соответствую­щая номинальному напряжению при номинальном токе якоря. Токи возбуждения, полученные при установке исходной точки, в дальнейшем поддерживаются неизменны­ми. Изменение тока I производится нагрузочным резисто­ром, включенным в цепь якоря.

При активно-индуктивной нагрузке (φ>0) с уменьше­нием тока I напряжение на выводах машины возрастает, так как уменьшаются влияния размагничивающего дейст­вия продольной реакции якоря и падения напряжения . Чем ниже cosφ, тем сильнее влияние продоль­ной реакции якоря, вследствие чего напряжение при уменьшении тока I будет увеличиваться резче.

Рис. 16. Внешние характерис­тики. Рис. 17. Векторная диаграмма синхронного генератора при cosφ=1.

При cosφ=1 (рис. 17) в машине также будет иметь место продольная размагничивающая реакция якоря (Fad≠0), вследствие ослабления действия которой при уменьшении тока I напряжение U будет увеличиваться, но в меньшей мере, чем при cosφ 0) , а при cosφ≠1 (φ 0) и активной (φ=0) нагрузках в машине существует про­дольная размагничивающая реакция якоря, которая при увеличении тока якоря возрастает. Чтобы сохранить по­стоянным напряжение, необходимо при росте нагрузки компенсировать размагничивающее действие продоль­ной реакции якоря за счет увеличения тока возбуждения. Регулировочные характеристики для cosφ 0) и cosφ=1 имеют возрастающий характер. При активно-емкостной нагрузке (φ

§88. Режимы работы синхронного генератора и его характеристики

Холостой ход. Э. д. с, индуцированная в каждой фазе обмотки якоря синхронного генератора, при холостом ходе

cE — постоянная величина, зависящая от конструкции машины (числа витков обмотки якоря, числа полюсов и др.);

Фв — магнитный поток, создаваемый обмоткой возбуждения.
Регулирование напряжения и частоты. Из формулы (88) следует, что регулировать э. д. с. (напряжение генератора) можно двумя способами: изменением частоты вращения п или изменением магнитного потока возбуждения Фв. Для изменения потока возбуждения в цепь обмотки возбуждения включают регулировочный реостат (см. рис. 284) или автоматически действующий регулятор напряжения, которые позволяют изменить ток возбуждения, поступающий в эту обмотку, а следовательно, и создаваемый ею поток. Регуляторы напряжения широко применяют для регулирования возбуждения генераторов, работающих при переменной частоте вращения, т. е. генераторов, приводимых во вращение от дизеля (на тепловозах) или от колесной пары (на пассажирских вагонах). При изменении частоты вращения п и нагрузки машины они автоматически изменяют ток возбуждения Iв, т. е. поток Фв, так, чтобы напряжение генератора было стабильным или изменялось по заданному закону.

Регулирование частоты f1, как следует из формулы (86), осуществляется изменением частоты вращения ротора.

Работа машины при нагрузке. При увеличении нагрузки синхронного генератора напряжение его изменяется. Это изменение происходит по двум причинам. При протекании тока нагрузки по обмотке якоря создается так же, как и в асинхронной машине, вращающееся магнитное поле, т. е. свой магнитный поток якоря Фя. Поток якоря Фя и поток возбуждения Фв вращаются с одинаковой частотой и создают, следовательно, некоторый результирующий поток Фрез = Фяв. В результате э. д. с. машины Е = сЕФрезn, т. е. будет отличаться от э. д. с. Е при холостом ходе.

Воздействие потока якоря на результирующий поток синхронной машины называется реакцией якоря. Так как под действием реакции якоря изменяется результирующий поток в машине, то и напряжение генератора будет зависеть от тока, проходящего по обмотке якоря, и его сдвига фаз относительно напряжения. Когда ток в обмотке якоря совпадает по фазе с э. д. с. холостого хода Е (рис. 288,а), поток Фя действует по поперечной оси машины q — q; он размагничивает одну половину каждого полюса и под-магничивает другую. Результирующий поток Фрез в этом случае из-за насыщения магнитной цепи машины несколько уменьшается по сравнению с Фв.

В случае когда ток в обмотке якоря отстает от Е на 90° (рис. 288, б), поток якоря Фя действует по продольной оси машины против Фв, т. е. уменьшает результирующий поток (размагничивает машину); если ток в обмотке якоря опережает Е на 90° (рис. 288, в), поток Фя совпадает по направлению с Фв, т. е. увеличивает поток Фрез (подмагничивает машину). Если ток якоря отстает или опережает э. д. с. Е на угол, меньший 90°, то это можно рассматривать как сочетание рассмотренных случаев. В общем случае если ток якоря отстает от напряжения, то реакция якоря действует размагничивающим образом. Она уменьшает результирующий поток и напряжение генератора. Когда ток опережает напряжение, то реакция якоря увеличивает результирующий поток и напряжение генератора.

Второй причиной изменения напряжения генератора при его нагрузке являются внутренние падения напряжения в обмотке

Рис. 288. Реакция якоря синхронной машины при различном характере нагрузки

якоря — активное и реактивное. Эти падения напряжения возникают в синхронной машине по тем же причинам, что и в асинхронном двигателе и трансформаторе.

Внешние характеристики синхронного генератора (рис. 289) представляют собой зависимости изменения напряжения генератора U от тока нагрузки Iя при постоянных значениях т, Iв и cos?. Коэффициент мощности cos?, при котором работает генератор, определяется характером его нагрузки (соотношением между активным и реактивным сопротивлениями потребителей). При активной нагрузке напряжение генератора с ростом тока нагрузки уменьшается по кривой 2, а при активно-индуктивной — по кривой 1; чем больше угол сдвига фаз ? между током Iя и напряжением U, тем сильнее размагничивающее действие реакции якоря и тем ниже идет кривая напряжения. При активно-емкостной нагрузке, когда ток Iя опережает по фазе напряжение U, реакция якоря подмагничивает машину и напряжение U может даже возрастать по сравнению с U = E при холостом ходе (кривая 3).

В синхронных генераторах из-за значительной реакции якоря изменение напряжения во много раз больше, чем в трансформаторах. Обычно генераторы работают при cos? = 0,85-0,9 при отстающем токе, при этом ?U= 35-25% от Uном. При столь большом изменении напряжения для нормальной работы подключенных к генератору потребителей требуется применять специальные устройства для стабилизации его выходного напряжения, например быстродействующие регуляторы возбуждения.

Читайте также  Что может быть с топливной системой генератора

Отдаваемая генератором мощность при одних и тех же значениях тока зависит от коэффициента мощности cos?, при котором работает генератор, т. е. от характера его нагрузки. Однако проводники генератора рассчитываются на определенный ток, а его изоляция и магнитная система — на определенное напряжение и магнитный поток независимо от cos ср нагрузки. По этой причине номинальной мощностью генератора считается его полная мощность S в киловольт-амперах (кВ*А), на которую рассчитана машина по условиям нагревания и длительной безаварийной работы. Регулировать активную мощность синхронного генератора при работе его на какую-либо нагрузку можно путем изменения сопротивления нагрузки или напряжения машины.

При передаче энергии от вала ротора синхронного генератора в обмотку статора в различных элементах машины возникают потери мощности (рис. 290). Потери имеют место в обмотках статора и ротора — электрические потери ?Рэл, в стали их сердечников — магнитные потери ?Рм и в трущихся элементах (подшипники, вентиляторы и пр.) — механические потери ?Рмх. К. п. д. синхронных машин находится в пределах от 0,85 до 0,95, т. е. имеет примерно те же значения, как и у асинхронных машин.

Короткое замыкание. При коротком замыкании синхронного генератора ток короткого замыкания Iк ограничивается внутренним сопротивлением обмотки якоря, которое имеет в основном индуктивный характер. Поэтому ток Iк отстает от напряжения

Рис. 289. Внешние характеристики синхронного генератора при различной нагрузке

Рис. 290. Энергетическая диаграмма синхронного генератора

на угол, близкий к 90°, и реакция якоря сильно размагничивает машину и резко уменьшает поток Фрез и э. д. с. генератора Е. В результате установившийся ток короткого замыкания в синхронных машинах сравнительно невелик (в некоторых машинах он меньше номинального), но из этого нельзя делать вывод, что короткое замыкание не опасно для генератора.

При внезапном коротком замыкании и уменьшении результирующего потока машины Фрез в обмотках возбуждения и демпферной индуцируются э. д. с. и возникают токи, которые согласно правилу Ленца препятствуют изменению потока Фрез. Поэтому этот поток и э. д. с. генератора уменьшаются сравнительно медленно, хотя машина уже замкнута накоротко. В результате ток в обмотке якоря в начальный момент короткого замыкания резко возрастает, а затем постепенно уменьшается. Наибольший ток Iк в начальный момент короткого замыкания называется ударным; он может превышать амплитуду номинального тока якоря в 10—15 раз.

Для ограничения ударного тока в цепь обмотки якоря иногда вводят дополнительную индуктивность (реактор).

Характеристики синхронного генератора (СГ).

К характеристикам синхронного генератора (СГ) относятся:

1. характеристика холостого хода (Х.Х.);

2. нагрузочные характеристики;

3. внешние характеристики;

4. регулировочные характеристики;

5. характеристика короткого замыкания (К.З.);

6. отношение короткого замыкания (К.З.).

Характеристика холостого хода.

Характеристика Х.Х. – есть зависимость ЭДС обмотки якоря синхронного генератора, неподключенного к нагрузке, от тока в его обмотке возбуждения.

Нелинейность характеристики Х.Х. обусловлена насыщением магнитной цепи синхронного генератора (СГ), при достижении тока в обмотке возбуждения If значений, близких к номинальному. Возврат нисходящей ветви к характеристике Х.Х. не в нуль, связан с остаточной намагниченностью.

Нагрузочные характеристики.

Нагрузочная характеристика представляет собой зависимость напряжения на выходе синхронного генератора (СГ) от тока в обмотке возбуждения при номинальной нагрузке Ia=Iн.

В случае активной, активно-индуктивной, индуктивной нагрузок нагрузочная характеристика проходит ниже кривой характеристики Х.Х., ввиду размагничивания реакции якоря. В случае активно- емкостной, емкостной нагрузок кривая нагрузочной характеристики проходит выше характеристики Х.Х. и линии номинального напряжения, ввиду намагничивания реакции якоря.

Внешние характеристики.

Внешняя характеристика – есть зависимость напряжения на выходе синхронного генератора (СГ) от величины тока нагрузки Ia, при If=const, f1=const, n=const и cos =const.

В случае индуктивного рода нагрузки напряжение с ее ростом снижается. В случае емкостной составляющей нагрузки напряжение с ее ростом увеличивается.

Регулировочные характеристики.

Регулировочная характеристика – есть зависимость тока в обмотке возбуждения синхронного генератора (СГ) от его тока нагрузки Ia, при поддержании постоянства выходного напряжения (U=const), f1=const,

n=const, cos =const.

Для поддержания постоянного напряжения, при возрастании индуктивной нагрузки, требуется увеличение тока в обмотке возбуждения If, а при возрастании емкостной нагрузки – уменьшение If.

Характеристика короткого замыкания.

Характеристика К.З. трехфазной цепи – есть зависимость тока К.З. от тока в обмотке возбуждения, при U=0, f1=const, n=const, cos =const.

Так как основной поток в воздушном зазоре при К.З. создает малую ЭДС ( ), то магнитная система синхронного генератора (СГ) при таком режиме является ненасыщенной. Поэтому характеристика К.З. носит строго прямолинейный характер.

Характеристики одно- и двух — фазного К.З. носят также прямолинейный характер, причем, чем меньше фаз замкнуто накоротко, тем выше проходят характеристики К.З., ввиду размагничивающего воздействия К.З. фаз на суммарное.

Отношение короткого замыкания.

Важное практическое значение для оценки свойств синхронной машины (СМ) имеет отношение Ifo/Ifк, соответствующее отношению величин ЭДС Х.Х. (Ео), определяемое по характеристике Х.Х., к току в обмотке возбуждения при К.З., соответствующего номинальному току, определяемого по прямой трехфазного К.З.. Это отношение называется отношением короткого замыкания (К.З.), и характеризует главным образом влияние реакции якоря на систему возбуждения синхронной машины (СМ).

Обозначим ЭДС, получаемое при If=Ifo по продолжению прямолинейной части характеристики Х.Х., через Еn. Тогда отношение К.З. равно:

Xd*-относительно индуктивное сопротивление якоря по продольной оси.

Отсюда отношение К.З. имеет вид:

Для синхронных машин (СМ), работающих без насыщения магнитной системы, отношениеIfo/Ifк =1, и тогда отношение К.З.=1/Xd*

Таким образом, для ненасыщенных синхронных машин (СМ), отношение К.З. равно обратной величине относительного значения индуктивности сопротивления по продольной оси. Для синхронных машин (СМ) неявнополюсного типа отношение К.З. = (0.5÷0.7), для явнополюсных отношение К.З. = (1÷1.5).

Синхронные машины (СМ) с малым отношением К.З. имеют гораздо менее жесткие характеристики при колебаниях нагрузки, а также являются менее устойчивыми при параллельной работе.

Большие величины воздушного зазора, характерные для явнополюсных синхронных машин (СМ), приводят к увеличению отношения К.З., обуславливают жесткие характеристики и повышают устойчивость работы генератора параллельно с другим генератором, а также делают работу генератора более устойчивой при колебаниях нагрузки. С другой стороны увеличение воздушного зазора приводит к ухудшению использования активных и конструктивных материалов синхронных машин (СМ) и увеличению веса и габаритов синхронных машин (СМ).

Режимы работы синхронных генераторов, рабочие характеристики генераторов

Основными величинами, характеризующими синхронный генератор, являются: напряжение на зажимах U , нагрузка I , полная мощность P (кВа), число оборотов ротора в минуту n , коэффициент мощности cos φ .

Важнейшие рабочие характеристики синхронного генератора следующие:

характеристика холостого хода,

Характеристика холостого хода синхронного генератора

Электродвижущая сила генератора пропорциональна величине магнитного потока Ф, создаваемого током возбуждения i в, и числу оборотов n ротора генератора в минуту:

где с — коэффициент пропорциональности.

Хотя величина электродвижущей силы синхронного генератора зависит от числа оборотов n ротора, регулировать ее путем изменения скорости вращения ротора невозможно, так как с числом оборотов ротора генератора связана частота электродвижущей силы, которая должна быть сохранена постоянной.

Следовательно, остается единственный способ регулировки величины электродвижущей силы синхронного генератора — это изменение основного магнитного потока Ф. Последнее обычно достигается путем регулирования тока возбуждения iв с помощью реостата, введенного в цепь возбуждения генератора. В том случае когда обмотка возбуждения питается током от генератора постоянного тока, сидящего на одном валу с данным синхронным генератором, ток возбуждения синхронного генератора регулируется изменением напряжения на зажимах генератора постоянного тока.

Зависимость электродвижущей силы Е синхронного генератора от тока возбуждения iв при постоянстве номинальной скорости вращения ротора ( n = const) и нагрузке, равной нулю ( 1 = 0), называется характеристикой холостого хода генератора.

На рисунке 1 приведена характеристика холостого хода генератора. Здесь восходящая ветвь 1 кривой снята при возрастании тока i в от нуля до i в m , а нисходящая ветвь 2 кривой — при изменении iв от iвm до iв = 0.

Рис. 1. Характеристика холостого хода синхронного генератора

Несовпадение восходящей 1 и нисходящей 2 ветвей объясняется остаточным магнетизмом. Чем больше площадь, ограниченная этими ветвями, тем больше потерь энергии в стали синхронного генератора на перемагничивание.

Крутизна подъема кривой холостого хода на ее начальном прямолинейном участке характеризует магнитную цепь синхронного генератора. Чем меньше расход ампер-витков в воздушных зазорах генератора, тем при прочих одинаковых условиях будет круче характеристика холостого хода генератора.

Внешняя характеристика генератора

Напряжение на зажимах нагруженного синхронного генератора зависит от электродвижущей силы Е генератора, от падения напряжения в активном сопротивлении его статорной обмотки, падения напряжения, обусловленного электродвижущей силой самоиндукции рассеяния Es, и падения напряжения, обусловленного реакцией якоря.

Читайте также  Что сломалось в генераторе калина

Электродвижущая сила рассеяния Es, как известно, зависит от магнитного потока рассеяния Ф s , который не проникает в магнитные полюса ротора генератора и, следовательно, не изменяет степени намагничивания генератора. Электродвижущая сила самоиндукции рассеяния Es генератора относительно мала, а поэтому практически ею можно пренебречь. В соответствии с этим ту часть электродвижущей силы генератора, которая компенсирует электродвижущую силу самоиндукции рассеяния Es, можно считать практически равной нулю.

Реакция якоря оказывает более заметное влияние на режим работы синхронного генератора и, в частности, на величину напряжения на его зажимах. Степень этого влияния зависит не только от величины нагрузки генератора, но и от характера нагрузки.

Рассмотрим вначале влияние реакции якоря синхронного генератора для случая, когда нагрузка генератора носит чисто активный характер. Для этой цели возьмем часть схемы работающего синхронного генератора, изображенную на рис. 2 ,а. Здесь показаны часть статора с одним активным проводником якорной обмотки и часть ротора с несколькими его магнитными полюсами.

Рис. 2. Влияние реакции якоря для нагрузок: а — активного, б — индуктивного, в — емкостного характера

В рассматриваемый момент времени северный полюс одного из электромагнитов, вращающихся вместе с ротором против часовой стрелки, как раз проходит под активным проводником статорной обмотки.

Электродвижущая сила, индуктированная в этом проводнике, направлена к нам из-за плоскости рисунка. А так как нагрузка генератора носит чисто активный характер, то ток I в якорной обмотке совпадает по фазе с электродвижущей силой. Следовательно, в активном проводнике статорной обмотки ток течет к нам из-за плоскости рисунка.

Магнитные линии поля, создаваемого электромагнитами, показаны здесь сплошными линиями, а магнитные линии поля, создаваемого током провода якорной обмотки, — пунктирной линией.

Внизу на рис. 2 ,а показана векторная диаграмма магнитной индукции результирующего магнитного поля, находящегося над северным полюсом электромагнита. Здесь мы видим, что магнитная индукция В основного магнитного поля, создаваемого электромагнитом, имеет радиальное направление, а магнитная индукция В я магнитного поля тока якорной обмотки направлена вправо и перпендикулярно вектору В .

Результирующая магнитная индукция Врез направлена вверх и вправо. Это значит, что в результате сложения магнитных полей произошло некоторое искажение основного магнитного поля. Слева от северного полюса оно несколько ослабилось, а справа — несколько усилилось.

Нетрудно видеть, что радиальная составляющая вектора результирующей магнитной индукции, от которой по сути дела зависит величина индуктированной электродвижущей силы генератора, не изменилась. Следовательно, реакция якоря при чисто активной нагрузке генератора не влияет на величину электродвижущей силы генератора. Это значит, что и падение напряжения в генераторе при чисто активной нагрузке обусловлено только падением напряжения в активном сопротивлении генератора, если пренебречь электродвижущей силой самоиндукции рассеяния.

Теперь допустим, что нагрузка синхронного генератора носит чисто индуктивный характер. В этом случае ток I отстает по фазе от электродвижущей силы Е на угол π/2 . Это значит, что максимум тока возникает в проводе несколько позднее, чем максимум электродвижущей силы. Следовательно, когда в проводе якорной обмотки ток достигнет максимального значения, северный полюс N будет уже не под этим проводом, а сместится несколько дальше в направлении вращения ротора, как это показано на рис. 2 ,б.

В этом случае магнитные линии (пунктирные линии) магнитного потока якорной обмотки замыкаются через два соседних разноименных полюса N и S и направлены навстречу магнитным линиям основного магнитного поля генератора, создаваемого магнитными полюсами. Это приводит к тому, что основное магнитное пате не только искажается, но и делается несколько слабее.

На рис. 2,6 приведена векторная диаграмма магнитных индукций: основного магнитного поля В, магнитного поля, обусловленного реакцией якоря В я, и результирующего магнитного поля В рез.

Здесь мы видим, что радиальная составляющая магнитной индукции результирующего магнитного поля стала меньше магнитной индукции В основного магнитного поля на величину Δ В. Следовательно, стала меньше и индуктированная электродвижущая сила, так как она обусловлена радиальной составляющей магнитной индукции. А это значит, что напряжение на зажимах генератора при всех прочих равных условиях будет меньше, чем напряжение при чисто активной нагрузке генератора.

Если генератор имеет нагрузку чисто емкостного характера, то ток в нем опережает по фазе электродвижущую силу на угол π/2 . Ток в проводниках якорной обмотки генератора теперь достигает максимума раньше, чем электродвижущая сила Е. Следовательно, когда в проводе якорной обмотки (рис. 2,в) ток достигнет максимального значения, северный полюс N еще не подойдет под этот провод.

В этом случае магнитные линии (пунктирные линии) магнитного потока якорной обмотки замыкаются через два соседних разноименных полюса N и S и направлены попутно с магнитными линиями основного магнитного поля генератора. Это приводит к тому, что основное магнитное поле генератора не только искажается, но и несколько усиливается.

На рис. 2,в приведена векторная диаграмма магнитной индукции: основного магнитного поля В , магнитного поля, обусловленного реакцией якоря Вя, и результирующего магнитного поля B рез. Мы видим, что радиальная составляющая магнитной индукции результирующего магнитного поля стала больше магнитной индукции В основного магнитного поля на величину Δ В. Следовательно, увеличилась и индуктированная электродвижущая сила генератора.А это значит, что напряжение на зажимах генератора при всех прочих одинаковых условиях станет больше, чем напряжение при чисто индуктивной нагрузке генератора.

Выяснив влияние реакции якоря на электродвижущую силу синхронного генератора при различных по своему характеру нагрузках, перейдем к выяснению внешней характеристики генератора. Внешней характеристикой синхронного генератора называется зависимость напряжения U на его зажимах от нагрузки I при постоянной скорости вращения ротора (n = const), постоянстве тока возбуждения (i в = const) и постоянстве коэффициента мощности (cos φ = const).

На рис. 3 приведены внешние характеристики синхронного генератора для различных по своему характеру нагрузок. Кривая 1 выражает внешнюю характеристику при активной нагрузке (cos φ = 1,0). В этом случае напряжение на зажимах генератора падает при изменении нагрузки от холостого хода до номинальной в пределах 10 — 20% напряжения при холостом ходе генератора.

Кривая 2 выражает внешнюю характеристику при активно-индуктивной нагрузке (cos φ = 0 ,8). В этом случае напряжение на зажимах генератора падает быстрее из-за размагничивающего действия реакции якоря. При изменении нагрузки генератора от холостого хода до номинальной напряжение уменьшается в пределах 20 — 30% напряжения при холостом ходе.

Кривая 3 выражает внешнюю характеристику синхронного генератора при активно-емкостной нагрузке (cos φ = 0,8). В этом случае напряжение на зажимах генератора несколько растет из-за намагничивающего действия реакции якоря.

Рис. 3. Внешние характеристики генератора переменного тока для различных нагрузок: 1 — активной, 2 — индуктивной, 3 емкостной

Регулировочная характеристика синхронного генератора

Регулировочная характеристика синхронного генератора выражает зависимость тока возбуждения i в генератора от нагрузки I при постоянстве действующего значения напряжения на зажимах генератора (U = const), постоянстве числа оборотов ротора генератора в минуту ( n = const) и постоянстве коэффициента мощности (cos φ = const).

На рис. 4 приведены три регулировочные характеристики синхронного генератора. Кривая 1 относится к случаю активной нагрузки (cos φ = 1 ) .

Рис. 4. Регулировочные характеристики генератора переменного тока для различных нагрузок: 1 — активной, 2 — индуктивной, 3 — емкостной

Здесь мы видим, что с ростом нагрузки I генератора ток возбуждения растет. Это понятно, так как с ростом нагрузки I увеличивается падение напряжения в активном сопротивлении якорной обмотки генератора и требуется увеличить электродвижущую силу Е генератора путем увеличения тока возбуждения i в , чтобы сохранить постоянство напряжения U.

Кривая 2 относится к случаю активно-индуктивной нагрузки при cos φ = 0 ,8 . Эта кривая поднимается круче, чем кривая 1, вследствие размагничивающего действия реакции якоря, снижающего величину электродвижущей силы Е, и, следовательно, напряжение U на зажимах генератора.

Кривая 3 относится к случаю активно-емкостной нагрузки при cos φ = 0,8. Эта кривая показывает, что с ростом нагрузки генератора требуется меньший ток возбуждения iв генератора для поддержания постоянства напряжения на его зажимах. Это понятно, так как в этом случае реакция якоря усиливает основной магнитный поток и, следовательно, способствует увеличению электродвижущей силы генератора и напряжения на его зажимах.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Яков Кузнецов/ автор статьи

Приветствую! Я являюсь руководителем данного проекта и занимаюсь его наполнением. Здесь я стараюсь собирать и публиковать максимально полный и интересный контент на темы связанные ремонтом автомобилей и подбором для них запасных частей. Уверен вы найдете для себя немало полезной информации. С уважением, Яков Кузнецов.

Понравилась статья? Поделиться с друзьями:
NEVINKA-INFO.RU
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: